
We sincerely thank the reviewers for their time and constructive comments. We try to focus on one point raised by the1

reviewers in each paragraph as follows.2

The proposed algorithm in this paper is to improve the solution efficiency of the sparse learning problems given by3

equation (1) in the main file. As discussed at the beginning of the supplemental file, Thunder outperforms existing4

solvers is mainly because of the passive feature recruiting strategies, sampling method for feature recruiting, and the5

safe stop condition regarding feature recruiting employed by the algorithm. These strategies can ensure Thunder has6

a smaller active set during algorithm updating, effective feature screening, efficient feature recruiting, and algorithm7

safety guarantee. According to our complexity study in Theorem 1 and Section 3.2, maintaining a small active set is8

crucial to active/working set type of algorithms. The efficiency of Thunder is based on strong theoretical support rather9

than engineering tricks.10

The prediction and feature selection accuracy relies on the selection of λ. This λ selection problem has been studied by11

the statistics community, and it is beyond the scope of this paper. In this paper, we focus on optimization methodologies12

that can further scale up the solutions of sparse learning given one particular λ. As the problem is convex, duality gap is13

usually used to measure the precision of the solutions regarding a particular λ value.14

The correlation between features may affect the efficiency of Thunder, but it does not impact the algorithm’s safety.15

Here safety means the algorithm final step active set does not miss any features in the optimal active set Ā of the16

problem. According to the derivation in Section 2.1, the stop condition regarding feature recruiting given in Lemma 117

ensures that the final active set is a super set that contains the optimal active set. If the condition in Lemma 1 is not18

met, Algorithm 2 will not stop feature recruiting. Each operation and updating of Algorithm 2 will decrease (or not19

change) the duality gap of the original problem, and the problem is convex. The duality gap will become smaller and20

smaller and then the algorithm can distinguish all active features according to Lemma 1. The safety of the algorithm is21

guaranteed by the safety of the operation at each step. As shown in the experiments, Thunder can outperform existing22

solvers on all three large real-world data sets, i.e., Finance, KDD2010, and URL. The results on these real-world data23

sets prove the advantages and effectiveness of Thunder under different data correlation scores.24

According to the proof of Theorem 1, the algorithm complexity is given byO
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, after derivation we can get the optimal approximation of K1 given27

by a
√
np/u, and a is a constant value. In the algorithm, we can set K1 proportional to

√
np/u. Experimentally, the28

performance of Thunder is not sensitive to the value of K2. We agree with the reviewers that we will include detailed29

theoretical analysis as well as the experimental study regarding the selection of K1 and K2 in the next version.30

Similarly, in our experiments, the feature partition ratio ς does not affect Thunder’s performance very significantly. As31

long as the size of R1
t is more than around 1.5 times of At, the performance of Thunder does not change a lot regarding32

ς . Thunder is not very sensitive to either ς or K2 is because that the operations on At and R1
t , and the inner loop33

updating takes the main part of the algorithm. Another reason is that the sampling strategy utilized by Thunder can34

significantly reduce the feature recruiting and condition checking complexity resulted from the features outside of At.35

The current algorithm complexity analysis in the supplemental file ignores the sampling steps. We will improve the36

complexity analysis along with the detailed sensitivity study regarding R1
t and R2

t ratio in the next version.37

To recruit an active feature xi ∈ R1
t , we need to evaluate its activity with |x>i θ∗|. However, here θ∗ is unknown optimal38

dual variable, we have to use the current θt in hand to approximate the feature’s activity. As mentioned above, we39

employ passive feature recruiting strategies, and it means that we only perform the recruiting operation when we are40

pretty sure about the features’ activity. Give a feature xi ∈ R1
t , if its activity ( |x>i θt|) lower bound is larger than41

the upper bounds of most features in R1
t , we can say that we are confident about its activity, and then move it to the42

active set At. The purpose of the proposed sampling strategy is to reduce the cost induced by the condition checking43

step in the feature recruiting operation. Instead of comparing the lower bound of |x>i θt| with most feature’s upper44

bound, we do the comparison with a small subset of it. The sampling strategy does not reduce or break the algorithm’s45

accuracy and safety, and it is because that the algorithm’s safety is guaranteed by the safe stop condition regarding46

feature recruiting. We will take the reviewers’ suggestions and show more results on the effectiveness of sampling.47

We thank the reviewers again for their insightful comments on writing. We will improve the figures, descriptions of the48

algorithm, term definition, notations, and writing based on their suggestions. We will include the papers listed by the49

reviewers in the reference.50


