Appendix-A. More Experimental Results
A-1. KDD2010 Data Set
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Figure 9: Computation time at different A values and duality gaps on KDD2010 data set. The last
plot presents Celer and Thunder time-ratios.

KDD2010 is another large-scale data set from LIBSVM website. There are 8,407,752 data samples,
and 20,216,830 features in the data set. The data set is from Carnegie Learning and DataShop, and
was used in KDD Cup 2010. As BLITZ takes much more computation time than Thunder and Celer
on large data sets, we do not include it in the results from this set of experiments. Figure 9 compares
the running time for Thunder and Celer at different A\ values and solution accuracies. The solution
accuracies are 1.0E-5, 1.0E-8, and 1.0E-11. The A values include 0.01\,,,4, and 0.001\,,,,,.. Figure 9
shows that the running time of Thunder increases slowly with the solution accuracy increasing, and
the time used by Celer increases significantly.

A-2. URL Data Set
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Figure 10: Running time of Celer and Thunder on URL data set at different \ values and duality gaps.

We further compare Thunder with Celer on one more LIBSVM data set. There are 3,231,961 features
and 2,396,130 samples in the URL data set. Similar to the finance and KDD2010 data sets, the
data are stored in sparse format. We test both solvers at three A values, 0.01\,,4,, 0.005\,,,4,, and
0.001\;,45- Figure 10 gives the running times at two solution resolutions, 1.0E-5 and 1.0E-8. The
plots illustrate that Thunder consistently takes much less time at different A\ values and duality gaps.
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A-3. More Results for LASSO Path on URL Data Set

We evenly select 50 A values on the logarithmic scale of the range [A;,44, 0.001\,,,4,] for the URL
data set. Table 1 gives the running for both methods.

Method | Time (Sec.)
Celer 61936.9
Thunder 15823.4
Table 1: Running time of LASSO path with Celer and Thunder on URL data set at accuracy 1.0E-8.

Appendix-B. Convergence of Feature Recruiting

Lemma 4 With O(u) as the complexity for one iteration of coordinate minimization for a LASSO-type
problem, H as the total number of features involved in recruiting operations, and pyr as the size of
the active set when DoRecruit is set to false, the complexity for the feature recruiting phase of the
proposed algorithm is
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Proof: To prove Lemma 4, we assume there is an accuracy threshold for each feature to be added into
the active set, and then we just need to add up all the operations required to reach the thresholds for
all the final active features. Let Qp(8) = P (8) — Pn(B5). According to the coordinate minimization
analysis in [17], the updating iteration number to add the h-th feature is approximately given by
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each added feature. O(K1u) is the time complexity for K1 base CM operations; vy, <Oy, and (1—¢)U},
are the size of set A, R* and R?, respectively. O(n(vy, + ¢¥y,)) is the computation complexity for
duality gap and the recruiting operation in one iteration of outer loop. The complexity upper bound
T, for feature recruiting phase is
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With @, = u + ¢¥p, we have
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Similarly, for term A, we have

pHLH + 72 (u

EQ 2
108, Qu (Br)®" s“’jij” log Qrr (Br)®" = + ¢p — dpr) log Qur (Brr) ™!

T2

L L?
<(w+ (w? — ¢)pH — %pfq) log Qu (Bu)~"

Then the following inequality holds true:

To1 Taz
@Qni1(Pn) 1 S ph—p
T, < wlog I M4 n < Mo 1 PRTPy >10 "
= Ot 0, (B0 Qi (Brr) hZ::l ¢ (M Pt —) o g Qn(Bn)
Ta3 7’04
79 Ph+1 1 E2 Ph+1 1
+ (w= — ¢) log IT— 1Qn+1(Bn) 7%1 g I~ 1Qn+1(Bn) )
Qn(Br)Pr  Qu(Bma)rr v Qn(Br)Ph  Qu(By)Ph
where
_ 1 m}2l
Mup =y, + = my, + Tz = mn + 1+ 2+ O(SE)
1= 2 2
3 m2 3’)/2 74
=1+ = O(=h)y =1 ° -
+ 5+ 0(53) 2, (4L4p2)’
and
2 4
Pr =P v v v Dn —D U
Myp — 1+ - = _ +O(— + _ '
#(M Pht1 Pht1 ¢<L2Ph (4L4pi) Pht1 Pht1
Because
Ty —wlog T~} Qn+1(Bn) 1

"= Qn(Br)M Qu (B )

4

Qni1(Br) | "~ 1 -1
_w<210g ot 2 gk + Ol s Qa6 + s Qi) ),

and
H-1 A .

- h 1 Ph
hz:; <¢ My —1+ i ) - th) 0g Qn(Br)
H—-1

372 A

Sh:1 <¢ 2L2 4L4ph)+ph_ )-U) loth(ﬂh)
H-1 3.2 y )

= 2 <¢ pP—DPn— ﬁ - O(m)) + u) log Qn(5r)
H-1

= <¢ P —pn) >1oth(5h) ’

h=1

16



we can derive that
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Since the first term is smaller than T,3 , we have the complexity for the feature recruiting phase as
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Appendix-C. Convergence of Feature Screening

After Thunder sets DoRecruit to False, usually there are some inactive features remaining in A;.
They can be removed from the active set A, with the screening operation. Let G4 = P(8q4) — P(5*)
represent the primal accuracy for the screening of the d-th feature. A is the optimal active feature
set of the original LASSO problem that {x; : |z, 0*| = 1}. Let Gp,, = Q,,,, the complexity for the
feature screening phase is given by Lemma 5.

Lemma 5 Let Zp be the total number of features removed from the active set after DoRecruit is set
to False. The upper bound of the complexity for feature screening phase is
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Proof: To prove Lemma 5, we can use the similar strategies as for Lemma 4. We need to add up the
operations needed to reach the screening accuracy threshold for all the inactive features. Let Ty
denotes the time consumed by both inactive feature screening and accuracy pursuing phases. pq is
the size of feature set after d features have been removed with the screening procedure. We have
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where G = (HZD Gpd ! pd)m.
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Thus the upper bound of the complexity for feature screening stage is as stated in the lemma. [

Appendix-D. Proof of Theorem 1

Based on the analysis in Lemma 4 and 5, the complexity of the proposed method is given by the
following theorem.

Theorem 1 With O(u) as the complexity for one iteration of coordinate minimization of the
LASSO problem with a ~y-convex loss function, the time complexity for the proposed algorithm

is O (usj (nﬁlog g +npH + |A|log ?)) Here H is the total number of features involved in

recruiting operations, p is the maximum size of the active set during the algorithm iterations, Q is the
geometric mean of the sub-problem primal objective function precision values corresponding to each
recruiting operation, and € p is the primal objective function precision for the last feature screening

operation. n =1+ B> + %ﬁr}ébw’ and < is the feature partition ratio for R1 and Ro.

Proof: With G,,,, = Qu(Bu), ¢ = et % based on Lemma 4 and Lemma 5, the time
complexity for the proposed algorithm can be written as
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Here C = Ky/p. Letn = 1+ 75 + %}2‘0“}’ D = Mmaxp.i<n<HDh and ¢ =
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Let ep = Gyz,, the time complexity for the proposed algorithm can be simplified as
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According to the proof of Theorem 1, the algorithm complexity is given by
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size of the primal sub-problem. With n = 1+ 2= + =52 2=5E after some calculation, we

obtain the optimal approximation of K7 given by a\/np/ u, where a is a constant value. In the

algorithm, we can set K proportional to \/np/u. Experimentally, the performance of Thunder is
not sensitive to the value of K.

and dj, is the average step

20




	Introduction
	Sequential and Dynamic Screening
	Homotopy Method
	Working Set Method
	Our Contributions

	Methodology
	Solving the Sub-problem with an Active Set
	Feature Recruiting with Sampling Strategy
	Improve Feature Recruiting with Bi-level Selection

	Convergence Analysis
	Complexity Analysis for Feature Recruiting
	Complexity of Thunder Algorithm

	Experiments
	Simulation Study
	Finance Data Set
	LASSO Path

	Discussion
	Conclusions

