
(a) Training set, with
σ2
= 0.2, T = 200.

(b) Performance vs σ2.

(c) Single update com-
putation time vs. length
of the data point.

Figure 1: Compar-
ison of RNN with
feedforward neural
network with Snake.

General Comment: We are very grateful to all the reviewers for carefully reading our paper.1

Their feedback has helped us to improve the paper accordingly. The two messages of this paper2

are that (1) learning a periodic or semi-periodic function with neural networks is yet unresolved,3

and we argue that the key to solve this is to focus on the extrapolation properties of neural4

networks; (2) we proposed to solve this problem with a simple alternative activation function.5

“A significant shortcoming is the lack of comparison with recurrent neural networks"6

(R2, R4): We respectfully yet strongly disagree with this. It is indeed interesting to see how7

RNN would perform for these tasks. However, the problem with RNNs is that they implicitly8

parametrize the data point x by time: x = x(t). It is hence limited to model periodic functions9

of at most 1d and cannot generalize to a periodic function of arbitrary dimension; e.g., it is10

not clear how one could define RNN to learn the function f(x, z) = sin(x) + sin(z), which11

is an easy task for feedforward networks with Snake. For this reason, we do not believe our12

method (with Snake + feedforward) needs to be a competitor to RNN. This being said, we13

perform a comparison of RNN with Snake with feedforward on a 1d problem. See Figure 1.a14

for the training set of this task. The simple function we try to model is y = sin(0.1x), we add15

a white noise with variance σ2 to each y, and the model sees a time series of length T . See16

1.b for the performance of both models, when T = 100, and validated on a noise-free hold-out17

section from T = 101 to 300. We see that the proposed method outperforms RNN significantly.18

On this task, One major advantage of our method is that it does not need to back-propagate19

through time (BPTT), which both causes vanishing gradient and prohibitively high computation20

time during training. In Figure 1.c we plot the average computation time of a single gradient21

update vs. the length of the time series, we see that, even at smallest T = 5, the RNN requires22

more than 10 times of computation time to update (when both models have a similar number23

of parameters, about 3000). This is a significant advantage of our method over RNN even for24

1d periodic problems. These results will be added to the final version.25

Stopping Criterion in Experiments (R4): Our stopping criterion is chosen fairly and reason-26

ably: all experiments are stopped at the time when the training loss of all the methods stop to27

decrease and becomes a constant, i.e., when the model has converged. The performances of28

this converged model is not visibly different from the early stopping point for the experiments29

we considered. For example, the goal of Figure 7 (for the atmospheric experiment) and Figure30

14.b (EUR-USD experiment in the appendix) are plotted to order to show that we stopped at the31

point when the model converged, moreover, neither of our model or the baselines seem to suffer significantly from32

overfitting, judging from these two figures. Therefore, the comparison is indeed fair and reasonable. In our final version,33

we will add similar plots for other experiments to clarify the stopping criterion for the experiments.34

0.0 2.5 5.0 7.5
Year

20

22

24

26

28

30

Te
m

pe
ra

tu
re

Snake
L.ReLU
Swish
ground truth

(a) Same as Fig. 6 in the
paper.

0 1000 2000
epoch

0.00

0.02

0.04

0.06

0.08
lo

ss

test, Snake
test, L.ReLU
test, Swish
train, Snake
train, L.ReLU
train, Swish

(b) Training loss and
testing loss.

Figure 2: Comparison with Swish etc..

Comparison to Swish and Leaky-ReLU Seems Necessary (R5): The35

proposed method indeed outperforms Swish and Leaky-ReLU signif-36

icantly for tasks in section 6.2 and 6.3. This is because Swish and37

Leaky-ReLU suffer from the same problem as ReLU, which is guaran-38

teed by our theorem and by the discussion above. Therefore, we did39

not include them for visual clarity. Their performance on the tasks is40

now shown in Figure 2. We see that, for Swish and Leaky-ReLU, the41

learning is hard to mismatched inductive bias, and this leads to their42

inferior performance. We will add this plot to the appendix in the final43

version to avoid confusion.44

Strength of the claim (R5): 1. Applicability of the theorem. We45

agree that some qualifier is needed in this claim. On the one hand, the46

specific statement of the theorem applies to tanh and ReLU, but it is general as discussed in line 64-66. Since the proof47

is only based on the asymptotic property of activation function when x→ ±∞, one can prove the same theorem for any48

continuous activation function that asymptotically converges to a tanh or ReLU; for example, this would include Swish49

and Leaky-ReLU (and almost all the other ReLU-based variants), which converge to ReLU; one can follow exactly50

the same proving procedure to prove a similar theorem for each of these activation functions. On the other hand, we51

agree that this statement might be too strong, and we will state the above condition clearly for the applicability of our52

theory in the final version to avoid confusion. 2. Generality of Snake. Here, we say that Snake is more “general" in53

the sense that it is not only capable of approximating a function in the bounded region, but also capable of extrapolating54

beyond a bounded region (in a periodic way). This claim does need some qualification to clarify, and we will modify55

this claim in the final version. Some details. Some Problems in the Appendix (R1): We will add more details and56

correct grammatical errors to the Appendix sections.57


