
A Additional Experiments

A.1 Effect of using different a and More Periodic Function Regressions

It is interesting to study the behavior of the proposed method on different kinds of periodic functions
(continuous, discontinuous, compound periodicity). See Figure 10. We see that using different
a seems to bias model towards different frequencies. Larger a encourages learning with larger
frequency and vice versa. For more complicated periodic functions, see Figure 11 and 12.

(a) Snake, a = 5.5

(b) Snake, a = 10

(c) Snake, a = 30

Figure 10: Effect of using different a.

13



(a) a = 1

3 2 1 0 1 2 3
1.0

0.5

0.0

0.5

1.0

1.5

Gap: 2, Sample:1, Function: ceil
ground truth
predictions median
sampled ground truth

3 2 1 0 1 2 3

4

2

0

2

4

6

Gap: 2, Sample:4, Function: ceil

3 2 1 0 1 2 3
7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
Gap: 2, Sample:16, Function: ceil

(b) a = 16

3 2 1 0 1 2 3

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Gap: 2, Sample:1, Function: ceil
ground truth
predictions median
sampled ground truth

3 2 1 0 1 2 3

1.0

0.5

0.0

0.5

1.0

Gap: 2, Sample:4, Function: ceil

3 2 1 0 1 2 3

0.25

0.00

0.25

0.50

0.75

1.00

1.25

Gap: 2, Sample:16, Function: ceil

Figure 11: Regressing a rectangular function with Snake as activation function for different values of
a. For a larger value of a, the extrapolation improves.

(a) a = 1

3 2 1 0 1 2 3

3

2

1

0

1

2

3
Gap: 2, Sample:1, Function: sinPsin

ground truth
predictions median
sampled ground truth

3 2 1 0 1 2 3

8

6

4

2

0

2

4

6

8
Gap: 2, Sample:4, Function: sinPsin

3 2 1 0 1 2 3
8

6

4

2

0

2

4

6
Gap: 2, Sample:16, Function: sinPsin

(b) a = 16

3 2 1 0 1 2 3
4

3

2

1

0

1

2

3

4
Gap: 2, Sample:1, Function: sinPsin

ground truth
predictions median
sampled ground truth

3 2 1 0 1 2 3

1.0

0.5

0.0

0.5

1.0

1.5
Gap: 2, Sample:4, Function: sinPsin

3 2 1 0 1 2 3

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Gap: 2, Sample:16, Function: sinPsin

Figure 12: Regressing sin(x) + sin(4x)/4 with Snake as activation function for different values of a.
For a larger value of a, the extrapolation improves: Whereas the a = 1-model treats the high-frequency
modulation as noise, the a = 16-model seems to learn a second signal with higher frequency (bottom
centre).

14



(a) tanh

(b) ReLU

(c) Snake, a = 10

Figure 13: Regressing a simple sin function with tanh, ReLU, and Snake as the activation function.

A.2 Learning a Periodic Time Evolution
In this section, we try to fit a periodic dynamical system whose evolution is given by x(t) =
cos(t/2) + 2 sin(t/3), and we use a simple recurrent neural network as the model, with the standard
tanh activation replaced by the designated activation function. We use Adam as the optimizer. See
Figure 13. The region within the dashed vertical lines are the range of the training set.

15



(a) Prediction. Learning range is indicated by the blue vertical bars.

2010 2011 2012 2013 2014 2015 2016 2017
Year

1.0

1.2

1.4

EU
R-

US
D

Snake
Tanh
ReLU
ground truth

(b) Learning loss during training.

0 100 200 300 400 500
epoch

0.00

0.02

0.04

0.06

0.08

lo
ss

test, Tanh
test, ReLU
test, Snake
train, Tanh
train, ReLU
train, Snake

Figure 14: Comparison between Snake, tanh, and ReLU as activation functions to regress and predict
the EUR-USD exchange rate.

A.3 Currency exchange rate modelling

We investigate how Snake performs on one more financial data. The task is to predict the exchange
rate between EUR and USD. As in the main text, we use a two-hidden-layer feedforward network
with 256 neurons in the first and 64 neurons in the second layer. We train with SGD, with a learning
rate of 10−4, weight decay of 10−4, momentum of 0.99, and a mini-batch size of 164. For Snake,
we make a a learnable parameter. The result can be seen in Fig. 14. Only Snake can model the rate
on the training range and makes the most realistic prediction for the exchange rate beyond the year
2015. The better optimization and generalization property of Snake suggests that it offers the correct
inductive bias to model this task.

4Hyperparameter exploration performed with Hyperactive: https://github.com/SimonBlanke/
Hyperactive

16



Figure 15: Full Training set for Section 6.3

Figure 16: Learning trajectory of Snake. One notices that Snake firsts learns linear features, then low
frequency features and then high frequency features.

A.4 How does Snake learn?

We take this chance to study the training trajectory of Snake using the market index prediction task
as an example. We set a = 20 in this task. See Figure 15 for the full training set for this section
(and also for Section 6.3). See Figure 16 for how the learning proceeds. Interestingly, the model
first learns an approximately linear function (at epoch 10), and then it learns low frequency features,
and then learns the high frequency features. In many problems such as image and signal processing
[1], the high frequency features are often associated with noise and are not indicative of the task at
hand. This experiment explains in part the good generalization ability that Snake seems to offer. Also,
this suggests that one can also devise techniques to early stopping on Snake in order to prevent the
learning of high-frequency features when they are considered undesirable to learn.

17



(a) training loss (b) testing accuracy

Figure 17: Comparison on CIFAR10 with ResNet18. We see that for a range of
choice of a, there is no discernible difference between the generalization accuracy
of ReLU and Snake.

Figure 18: Grid Search
for Snake at different a on
ResNet18.

Figure 19: ResNet100 on CIFAR-10. We see that the proposed method achieves comparable
performance to the ReLU-style activation functions, significantly better than tanh and sin.

A.5 CIFAR-10 Figures

In this section, we show that the proposed activation function can achieve performance similar to
ReLU, the standard activation function, both in terms of generalization performance and optimization
speed. See Figure 17. Both activation functions achieve 93.5 ± 1.0% accuracy.

A.6 CIFAR-10 with ResNet101

To show that Snake can scale up to larger and deep neural networks, we also repeat the experiment
on CIFAR-10 with ResNet101. See Figure 19. Again, we see that the Snake achieves similar
performance to ReLU and Leaky-ReLU.

18



(a) training loss vs. epoch (b) testing accuracy vs. epoch

Figure 20: Effect of variance correction

A.6.1 Effect of Variance Correction

In this section, we show the effect of variance correction is beneficial. Since the positive effect of
correction is the most pronounced when the network is deep, we compare the difference between
having such correction and having no correction on ResNet101 on CIFAR-10. See Figure 20; we
note that using the correction leads to better training speed and better converged accuracy.

We also restate the proposition here.

Proposition 2. The variance of expected value of x + sin2
(ax)
a

under a standard normal distribution

is σ2
a = 1 + 1+e−8a

2
−2e−4a

2

8a2
, which is maximized at amax ≈ 0.56045.

Proof. The proof is straight-forward calculation. The second moment of Snake is 1 + 3+e−8a
2
−4e−2a

2

8a2
,

while the squared first moment is e−4a
2
(−1+e2a

2
)
2

4a2
, and subtracting the two, we obtain the desired

variance

σ2
a = 1 + 1 + e−8a2 − 2e−4a

2

8a2
. (6)

Solving for this numerically from a numerical solver (we used Mathematica) renders the maximum
at amax ≈ 0.56045. ◻

19



B Proofs for Section 2.2

We reproduce the statements of the theorems for the ease of reference.
Theorem 4. Consider a feed forward network fReLU(x), with arbitrary but fixed depth h and widths
d1, ..., dh+1. Then

lim
z→∞

∣∣fReLU(zu) − zWuu − bu∣∣2 = 0, (7)

where z is a real scalar, u is any unit vector of dimension d1, and Wu ∈ Rd1×dh is a constant matrix
only dependent on u .

We prove this by induction on h. We first prove the base case when h = 2, i.e., a simple non-linear
neural network with one hidden layer.
Lemma 1. Consider feed forward network fReLU(x) with h = 2. Then

lim
z→∞

∣∣fReLU(zu) − zWuu − bu∣∣2 = 0 (8)

for all unit vector u.

Proof. In this case,
fReLU(x) =W2σ(W1x + b1) + b2,

where σ(x) = ReLU(x), and let 1x>0 denote the vector that is 1 when x > 0 and zero otherwise, and
let Mx>0 ∶= diag(1x>0), then for any fixed u we have

fReLU(zu) =W2MW1zu+b1>0(W1zu + b1) + b2 = zWuu + bu (9)

where Wu ∶=W2MW1zu+b1>0W1 and bu =Wub1 + b2, and Wu is the desired linear transformation
and bu the desired bias; we are done. ◻
Apparently, due the self-similar structure of a deep feedforward network, the above argument can be
iterated over for every layer, and this motivates for a proof based on induction.

Proof of Theorem. Now we induce on h. Let the theorem hold for any h ≤ n, and we want to show
that it also holds for h = n + 1. Let h = n + 1, we note that any fReLU, h=n+1 can be written as

fReLU, h=n+1(zu) = fReLU, h=2(fReLU, h=n(zu)) (10)

then, by assumption, fReLU, h=n(x) approaches zWuu + bu for some linear transformation Wu, bu:

lim
z→∞

fReLU, h=n+1(zu) = fReLU, h=2(zWuu + bu) (11)

and, by the lemma, this again converge to a linear transformation, and we are done. ◻
Now we can prove the following theorem, this proof is much simpler and does not require induction.
Theorem 5. Consider a feed forward network ftanh(x), with arbitrarily fixed depth h and widths
d1, ..., dh+1, then

lim
z→∞

∣∣fReLU(zu) − vu∣∣2 = 0, (12)

where z is a real scalar, and u is any unit vector of dimension d1, and vu ∈ Rdh+1 is a constant vector
only depending on u.

Proof. It suffices to consider a two-layer network. Likewise, ftanh(zu) = (W2σ(W1zu + b1) + b2),
where σ(x) = tanh(x). As z →∞, W1zu + b1 approaches either positive or negative infinity, and so
σ(Wzzu + b1) approaches a constant vector whose elements are either 1 or −1, which is a constant
vector, and (Wzσ(Wzzu + b1) + b2) also approaches some constant vector vu.

Now any layer that are composed after the first hidden layer takes in an asymptotically constant vector
vu as input, and since the activation function tanh is a continuous function, ftanh(x) is continuous,
and so

lim
z→∞

ftanh, h=n(x) = ftanh, h=n−1(vu) = v′u. (13)

We are done. ◻

20



C Universal Extrapolation Theorems

Theorem 6. Let f(x) be a piecewise C1 periodic function with period L. Then, a Snake neural
network, fwN

, with one hidden layer and with width N can converge to f(x) uniformly as N →∞,
i.e., there exists parameters wN for all N ∈ Z+ such that

f(x) = lim
N→∞

fwN
(x) (14)

for all x ∈ R, i.e., the convergence is point-wise. If f(x) is continuous, then the convergence is
uniform.

We first show that using cos as activation function may approximate any periodic function, and then
show that Snake may represent a cos function exactly.
Lemma 2. Let f(x) be defined as in the above theorem and let fwN

(x) be a feedforward neural
network with cos as the activation function, then fwN

(x) can converge to f(x) point-wise.

Proof. It suffices to show that a neural network with sin as activation function can represent a Fourier
series to arbitrary order, and then apply the Fourier convergence theorem. By the Fourier convergence
theorem, we know that

f(x) = a0
2
+

∞

∑
m=1

[αm cos(mπx
L

) + βm sin(mπx
L

)] , (15)

for unique Fourier coefficients αm, βm, and we recall that our network is defined as

fwN
(x) =

D

∑
i=1

w2i cos(w1ix + b1i) + b2i (16)

then we can represent Eq. 15 order by order. For the m-th order term in the Fourier series, we let

w2,2m−1 = βm = ∫
L

−L
f(x) sin(mπx

L
)dx (17)

w1,2m−1 =
mπ

L
(18)

w2,2m = αm = ∫
L

−L
f(x) cos(mπx

L
)dx (19)

w1,2m = mπ
L

(20)

b1,2m−1 = −
π

2
(21)

(22)

and let the unspecified biases bi be 0: we have achieved an exact parametrization of the Fourier series
of m order with a sin neural network with 2m many hidden neurons, and we are done. ◻
The above proof is done for a cos(x) activation; we are still obliged to show that Snake can
approximate a cos(x) neuron.
Lemma 3. A finite number of Snake neurons can represent a single cos activation neuron.

Proof. Since the frequency factor a in Snake can be removed by a rescaling of the weight matrices,
we set a = 2, and so x + sin2(x) = x − cos(x) + 1

2
. We also reverse the sign in front of cos, and

remove the bias 1
2

, and prove this lemma for x + cos(x). We want to show that for a finite D, there
w1 and w2 such that

cos(x) =
D

∑
i=1

w2,i(w1,ix + b1,i) + b2,i +
D

∑
i=1

w2,i cos(w1,ix + b1,i) (23)

This is achievable for D = 2, let w1,1 = −w1,2 = 1, and let b1,i = b2,i = 0, we have:

cos(x) = (w2,1 −w2,2)x +
D

∑
i=1

w2,i cos(x) (24)

21



and set w2,1 = w2,2 = 1
2

achieves the desired result. Combining with the result above, this shows that
a Snake neural network with 4m many hidden neurons can represent exactly a Fourier series to m-th
order. ◻
Corollary 2. Let f(x) be a two layer neural network parametrized by two weight matrices W1 and
W2, and let w be the width of the network, then for any bounded and continuous function g(x) on
[a, b], there exists m such that for any w ≥m, we can find W1, W2 such that f(x) is ε−close to g(x).

Proof. This follows immediately by setting [a, b] to match the [−L, L] region in the previous
theorem. ◻

22


