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Abstract

We consider the problem of minimizing a functional over a parametric family
of probability measures, where the parameterization is characterized via a push-
forward structure. An important application of this problem is in training generative
adversarial networks. In this regard, we propose a novel Sinkhorn Natural Gradient
(SiNG) algorithm which acts as a steepest descent method on the probability space
endowed with the Sinkhorn divergence. We show that the Sinkhorn information
matrix (SIM), a key component of SiNG, has an explicit expression and can be
evaluated accurately in complexity that scales logarithmically with respect to the
desired accuracy. This is in sharp contrast to existing natural gradient methods
that can only be carried out approximately. Moreover, in practical applications
when only Monte-Carlo type integration is available, we design an empirical
estimator for SIM and provide the stability analysis. In our experiments, we
quantitatively compare SiNG with state-of-the-art SGD-type solvers on generative
tasks to demonstrate its efficiency and efficacy of our method.

1 Introduction

Consider the minimization of a functional F over a parameterized family probability measures tαθu:

min
θPΘ

tF pθq:“Fpαθqu , (1)

where Θ Ď Rd is the feasible domain of the parameter θ. We assume that the measures αθ are defined
over a common ground set X Ď Rq with the following structure: αθ “ Tθ7µ, where µ is a fixed and
known measure and Tθ is a push-forward mapping. More specifically, µ is a simple measure on a
latent space Z Ď Rq̄ , such as the standard Gaussian measure µ “ N p0q̄, Iq̄q, and the parameterized
map Tθ : Z Ñ X transforms the measure µ to αθ. This type of push-forward parameterization
is commonly used in deep generative models, where Tθ represents a neural network parametrized
by weights θ [Goodfellow et al., 2014, Salimans et al., 2018, Genevay et al., 2018]. Consequently,
methods to efficiently and accurately solve problem (1) are of great importance in machine learning.

The de facto solvers for problem (1) are generic nonconvex optimizers such as Stochastic Gradient
Descent (SGD) and its variants, Adam [Kingma and Ba, 2014], Amsgrad [Reddi et al., 2019],
RMSProp [Hinton et al.], etc. These optimization algorithms directly work on the parameter space
and are agnostic to the fact that αθ’s are probability measures. Consequently, SGD type solvers suffer
from the complex optimization landscape induced from the neural-network mappings Tθ.

An alternative to SGD type methods is the natural gradient method, which is originally motivated
from Information Geometry [Amari, 1998, Amari et al., 1987]. Instead of simply using the Euclidean
structure of the parameter space Θ in the usual SGD, the natural gradient method endows the
parameter space with a “natural" metric structure by pulling back a known metric on the probability
space and then searches the steepest descent direction of F pθq in the “curved" neighborhood of θ. In
particular, the natural gradient update is invariant to reparametrization. This allows natural gradient to
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avoid the undesirable saddle point or local minima that are artificially created by the highly nonlinear
maps Tθ. The classical Fisher-Rao Natural Gradient (FNG) [Amari, 1998] as well as its many variants
[Martens and Grosse, 2015, Thomas et al., 2016, Song et al., 2018] endows the probability space with
the KL divergence and admits update direction in closed form. However, the update rules of these
methods all require the evaluation of the score function of the variable measure. Leaving aside its
existence, this quantity is in general difficult to compute for push-forward measures, which limits the
application of FNG type methods in the generative models. Recently, Li and Montúfar [2018] propose
to replace the KL divergence in FNG by the Wasserstein distance and propose the Wasserstein Natural
Gradient (WNG) algorithm. WNG shares the merit of reparameterization invariance as FNG while
avoiding the requirement of the score function. However, the Wasserstein information matrix (WIM)
is very difficult to compute as it does not attain a closed form expression when the dimension d of
parameters is greater than 1, rendering WNG impractical.

Following the line of natural gradient, in this paper, we propose Sinkhorn Natural Gradient (SiNG),
an algorithm that performs the steepest descent of the objective functional F on the probability space
with the Sinkhorn divergence as the underlying metric. Unlike FNG, SiNG requires only to sample
from the variable measure αθ. Moreover, the Sinkhorn information matrix (SIM), a key component
in SiNG, can be computed in logarithmic time in contrast to WIM in WNG. Concretely, we list our
contributions as follows:

1. We derive the Sinkhorn Natural Gradient (SiNG) update rule as the exact direction that
minimizes the objective functional F within the Sinkhorn ball of radius ε centered at the
current measure. In the asymptotic case ε Ñ 0, we show that the SiNG direction only
depends on the Hessian of the Sinkhorn divergence and the gradient of the function F , while
the effect of the Hessian of F becomes negligible. Further, we prove that SiNG is invariant
to reparameterization in its continuous-time limit (i.e. using the infinitesimal step size).

2. We explicitly derive the expression of the Sinkhorn information matrix (SIM), i.e. the
Hessian of the Sinkhorn divergence with respect to the parameter θ. We then show the
SIM can be computed using logarithmic (w.r.t. the target accuracy) function operations and
integrals with respect to αθ.

3. When only Monte-Carlo integration w.r.t. αθ is available, we propose to approximate SIM
with its empirical counterpart (eSIM), i.e. the Hessian of the empirical Sinkhorn divergence.
Further, we prove stability of eSIM. Our analysis relies on the fact that the Fréchet derivative
of Sinkhorn potential with respect to the parameter θ is continuous with respect to the
underlying measure µ. Such result can be of general interest.

In our experiments, we pretrain the discriminators for the celebA and cifar10 datasets. Fixing the
discriminator, we compare SiNG with state-of-the-art SGD-type solvers in terms of the generator
loss. The result shows the remarkable superiority of SiNG in both efficacy and efficiency.
Notation: Let X Ď Rq be a compact ground set. We useM`

1 pX q to denote the space of probability
measures on X and use CpX q to denote the family of continuous functions mapping from X to R.
For a function f P CpX q, we denote its L8 norm by }f}8:“maxxPX |fpxq| and its gradient by∇f .
For a functional on general vector spaces, the Fréchet derivative is formally defined as follows. Let
V and W be normed vector spaces, and U Ď V be an open subset of V . A function F : U ÑW is
called Fréchet differentiable at x P U if there exists a bounded linear operator A : V ÑW such that

lim
}h}Ñ0

}Fpx` hq ´ Fpxq ´Ah}W
}h}V

“ 0. (2)

If there exists such an operator A, it will be unique, so we denote DFpxq “ A and call it the
Fréchet derivative. From the above definition, we know that DF : U Ñ T pV,W q where T pV,W q
is the family of bounded linear operators from V to W . Given x P U , the linear map DFpxq takes
one input y P V and outputs z P W . This is denoted by z “ DFpxqrys. We then define the
operator norm of DF at x as }DFpxq}op:“maxhPV

}DFpxqrhs}W
}h}V

. Further, the second-order Fréchet
derivative of F is denoted as D2F : U Ñ L2pV ˆ V,W q, where L2pV ˆ V,W q is the family of all
continuous bilinear maps from V to W . Given x P U , the bilinear map D2Fpxq takes two inputs
y1, y2 P V and outputs z PW . We denote this by z “ D2Fpxqry1, y2s. If a function F has multiple
variables, we use Dif to denote the Fréchet derivative with its ith variable and use D2

ijF to denote
the corresponding second-order terms. Finally, ˝ denotes the composition of functions.
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2 Related Work on Natural Gradient

The Fisher-Rao natural gradient (FNG) [Amari, 1998] is a now classical algorithm for the functional
minimization over a class of parameterized probability measures. However, unlike SiNG, FNG as
well as its many variants [Martens and Grosse, 2015, Thomas et al., 2016, Song et al., 2018] requires
to evaluate the score function∇θ log pθ (pθ denotes the p.d.f. of αθ). Leaving aside its existence issue,
the score function for the generative model αθ is difficult to compute as it involves T´1

θ , the inversion
of the push-forward mapping, and detpJT´1

θ q, the determinant of the Jacobian of T´1
θ pzq. One can

possibly recast the computation of the score function as a dual functional minimization problem over
all continuous functions on X [Essid et al., 2019]. However, such functional minimization problem
itself is difficult to solve. As a result, FNG has limited applicability in our problem of interest.

Instead of using the KL divergence, Li and Montúfar [2018] propose to measure the distance between
(discrete) probability distributions using the optimal transport and develop the Wasserstein Natural
Gradient (WNG). WNG inherits FNG’s merit of reparameterization invariance. However, WNG
requires to compute the Wasserstein information matrix (WIM), which does not attain a closed form
expression when d ą 1, rendering WNG impractical [Li and Zhao, 2019, Li and Montúfar, 2020].
As a workaround, one can recast a single WNG step to a dual functional maximization problem via
the Legendre duality. While itself remains challenging and can hardly be globally optimized, Li
et al. [2019] simplify the dual subproblem by restricting the optimization domain to an affine space
of functions (a linear combinations of several bases). Clearly, the quality of this solver depends
heavily on the accuracy of this affine approximation. Alternatively, Arbel et al. [2019] restrict the dual
functional optimization to a Reproducing Kernel Hilbert Space (RKHS). By adding two additional
regularization terms, the simplified dual subproblem admits a closed form solution. However, in
this way, the gap between the original WNG update and its kernelized version cannot be properly
quantified without overstretched assumptions.

3 Preliminaries

We first introduce the entropy-regularized optimal transport distance and then its debiased version, i.e.
the Sinkhorn divergence. Given two probability measures α, β PM`

1 pX q, the entropy-regularized
optimal transport distance OTγpα, βq :M`

1 pX q ˆM
`
1 pX q Ñ R` is defined as

OTγpα, βq “ min
πPΠpα,βq

xc, πy ` γKLpπ||αb βq. (3)

Here, γ ą 0 is a fixed regularization parameter, Πpα, βq is the set of joint distributions over X 2

with marginals α and β, and we use xc, πy to denote xc, πy “
ş

X 2 cpx, yqdπpx, yq. We also use
KLpπ||αb βq to denote the Kullback-Leibler divergence between the candidate transport plan π and
the product measure αb β.

Note that OTγpα, βq is not a valid metric as there exists α PM`
1 pX q such that OTγpα, αq ‰ 0 when

γ ‰ 0. To remove this bias, consider the Sinkhorn divergence Spα, βq :M`
1 pX q ˆM

`
1 pX q Ñ R`

introduced in Peyré et al. [2019]:

Spα, βq:“OTγpα, βq ´
OTγpα, αq

2
´

OTγpβ, βq

2
, (4)

which can be regarded as a debiased version of OTγpα, βq. Since γ is fixed throughout this paper,
we omit the subscript γ for simplicity. It has been proved that Spα, βq is nonnegative, bi-convex and
metrizes the convergence in law for a compact X and a Lipschitz metric c Peyré et al. [2019].

The Dual Formulation and Sinkhorn Potentials. The entropy-regularized optimal transport prob-
lem OTγ , given in (3), is convex with respect to the joint distribution π: Its objective is a sum of a
linear functional and the convex KL-divergence, and the feasible set Πpα, βq is convex. Consequently,
there is no gap between the primal problem (3) and its Fenchel dual. Specifically, define

H2pf, g;α, βq:“xf, αy ` xg, βy ´ γxexpp
1

γ
pf ‘ g ´ cqq ´ 1, αb βy, (5)

where we denote
`

f ‘ g
˘

px, yq “ fpxq ` gpyq. We have

OTγpα, βq “ max
f,gPCpX q

 

H2pf, g;α, βq
(

“ xfα,β , αy ` xgα,β , βy, (6)

where fα,β and gα,β , called the Sinkhorn potentials of OTγpα, βq, are the maximizers of (6).
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Training Adversarial Generative Models. We briefly describe how (1) captures the generative
adversarial model (GAN): In training a GAN, the objective functional in (1) itself is defined through
a maximization subproblem Fpαθq “ maxξPΞ Gpξ;αθq. Here ξ P Ξ Ď Rd̄ is some dual adversarial
variable encoding an adversarial discriminator or ground cost. For example, in the ground cost
adversarial optimal transport formulation of GAN [Salimans et al., 2018, Genevay et al., 2018], we
have Gpξ;αθq “ Scξpαθ, βq. Here, with a slight abuse of notation, Scξpαθ, βq denotes the Sinkhorn
divergence between the parameterized measure αθ and a given target measure β. Notice that the
symmetric ground cost cξ in Scξ is no longer fixed to any pre-specified distance like `1 or `2 norm.
Instead, cξ is encoded by a parameter ξ so that Scξ can distinguish αθ and β in an adaptive and
adversarial manner. By plugging the above Fpαθq to (1), we recover the generative adversarial model
proposed in [Genevay et al., 2018]:

min
θPΘ

max
ξPΞ
Scξpαθ, βq. (7)

4 Methodology

In this section, we derive the Sinkhorn Natural Gradient (SiNG) algorithm as a steepest descent
method in the probability space endowed with the Sinkhorn divergence metric. Specifically, SiNG
updates the parameter θt by

θt`1 :“ θt ` η ¨ dt (8)
where η ą 0 is the step size and the update direction dt is obtained by solving the following problem.
Recall the objective F in (1) and the Sinkhorn divergence S in (4). Let dt “ limεÑ0

∆θtε?
ε

, where

∆θtε:“ argmin
∆θPRd

F pθt `∆θq s.t. }∆θ} ď εc1 ,Spαθt`∆θ, αθtq ď ε` εc2 . (9)

Here the exponent c1 and c2 can be arbitrary real satisfying 1 ă c2 ă 1.5, c1 ă 0.5 and 3c1´1 ě c2.
Proposition 4.1 depicts a simple expression of dt. Before proceeding to derive this expression, we
note that ∆θ “ 0 globally minimizes the non-negative function Spαθt`∆θ, αθtq, which leads to the
following first and second order optimality criteria:

∇θSpαθ, αθtq|θ“θt “ 0 and Hpθtq:“∇2
θSpαθ, αθtq|θ“θt ě 0. (10)

This property is critical in deriving the explicit formula of the Sinkhorn natural gradient. From
now on, the term Hpθtq, which is a key component of SiNG, will be referred to as the Sinkhorn
information matrix (SIM).
Proposition 4.1. Assume that the minimum eigenvalue of Hpθtq is strictly positive (but can be
arbitrary small) and that ∇2

θF pθq and Hpθq are continuous w.r.t. θ. The SiNG direction has the
following explicit expression

dt “ ´

?
2

a

xHpθtq´1∇θF pθtq,∇θF pθtqy
¨Hpθtq´1∇θF pθtq. (11)

Interestingly, the SiNG direction does not involve the Hessian of F . This is due to a Lagrangian-based
argument that we sketch here. Note that the continuous assumptions on ∇2

θF pθq and Hpθq enable us
to approximate the objective and the constraint in (9) via the second-order Taylor expansion.

Proof sketch for Proposition 4.1. The second-order Taylor expansion of the Lagrangian of (9) is

Ḡp∆θq “ F pθtq` x∇θF pθtq,∆θy`
1

2
x∇2

θF pθ
tq∆θ,∆θy`

λ

2
xHpθtq∆θ,∆θy´λε´λεc2 , (12)

where λ ě 0 is the dual variable. Since the minimum eigenvalue of Hpθtq is strictly positive, for a
sufficiently small ε, by taking λ “ Op 1?

ε
q, we have that Hpθtq ` 1

λ∇
2
θF pθ

tq is also positive definite.
In such case, a direct computation reveals that Ḡ is minimized at

Ě∆θ˚ “ ´
1

λ

ˆ

Hpθtq `
1

λ
∇2
θF pθ

tq

˙´1

∇θF pθtq. (13)

Consequently, the term involving∇2
θF pθ

tq vanishes when ε approaches zero and we obtain the result.

The above argument is made precise in Appendix A.1.
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Remark 4.1. Note that our derivation also applies to the Fisher-Rao natural gradient or the
Wasserstein natural gradient: If we replace the Sinkhorn divergence by the KL divergence (or the
Wasserstein distance), the update direction dt » rHpθtqs

´1∇θF pθtq still holds, where Hpθtq is the
Hessian matrix of the KL divergence (or the Wasserstein distance). This observation works for a
general functional as a local metric Thomas et al. [2016] as well.

The following proposition states that SiNG is invariant to reparameterization in its continuous time
limit (η Ñ 0). The proof is stated in Appendix A.2.
Proposition 4.2. Let Φ be an invertible and smoothly differentiable function and denote a re-
parameterization φ “ Φpθq. Define H̃pφ̄q:“∇2

φSpαΦ´1pφq, αΦ´1pφ̄qq|φ“φ̄ and F̃ pφ̄q:“F pΦ´1pφ̄qq.
Use 9θ and 9φ to denote the time derivative of θ and φ respectively. Consider SiNG in its continuous-time
limit under these two parameterizations:

9θs “ ´Hpθsq
´1∇F pθsq and 9φs “ ´H̃pφsq

´1∇F̃ pφsq with φ0 “ Φpθ0q. (14)

Then θs and φs are related by the equation φs “ Φpθsq at all time s ě 0.

The SiNG direction is a “curved" negative gradient of the loss function F pθq and the “curvature" is ex-
actly given by the Sinkhorn Information Matrix (SIM), i.e. the Hessian Hpθtq “ ∇2

θSpαθ, αθtq|θ“θt
of the Sinkhorn divergence. An important question is whether SIM is computationally tractable. In the
next section, we derive its explicit expression and describe how it can be efficiently computed. This is
in sharp contrast to the Wasserstein information matrix (WIM) as in the WNG method proposed in Li
and Montúfar [2018], which does not attain an explicit form for d ą 1 (d is the parameter dimension).

While computing the update direction dt involves the inversion of Hpθtq, it can be computed using
the classical conjugate gradient algorithm, requiring only a matrix-vector product. Consequently, our
Sinkhorn Natural Gradient (SiNG) admits a simple and elegant implementation based on modern
auto-differential mechanisms such as PyTorch. We will elaborate this point in Appendix E.

5 Sinkhorn Information Matrix

In this section, we describe the explicit expression of the Sinkhorn information matrix (SIM) and
show that it can be computed very efficiently using simple function operations (e.g. log and exp)
and integrals with respect to αθ (with complexity logarithmic in terms of the reciprocal of the target
accuracy). The computability of SIM and hence SiNG is the key contribution of our paper. In the case
when we can only compute the integration with respect to αθ in a Monte Carlo manner, an empirical
estimator of SIM (eSIM) is proposed in the next section with a delicate stability analysis.
Since Sp¨, ¨q is a linear combination of terms like OTγp¨, ¨q–see (4), we can focus on the term
∇2
θOTγpαθ, αθtq|θ“θt in Hpθtq and the other term∇2

θOTγpαθ, αθq|θ“θt can be handled similarly.
Having these two terms, SIM is computed as Hpθtq “ r∇2

θOTγpαθ, αθtq `∇2
θOTγpαθ, αθqs|θ“θt .

Recall that the entropy regularized optimal transport distance OTγ admits an equivalent dual concave-
maximization form (6). Due to the concavity of H2 w.r.t. g in (5), the corresponding optimal
gf “ argmaxgPCpX qH2pf, g;α, βq can be explicitly computed for any fixed f P CpX q: Given a
function f̄ P CpX q and a measure α PM`

1 pX q, define the Sinkhorn mapping as

A
`

f̄ , α
˘

pyq:“´ γ log

ż

X
exp

ˆ

´
1

γ
cpx, yq `

1

γ
f̄pxq

˙

dαpxq. (15)

The first-order optimality of gf writes gf “ Apf, αq. Then, (6) can be simplified to the following
problem with a single potential variable:

OTγpαθ, βq “ max
fPCpX q

 

H1pf, θq:“xf, αθy ` xA
`

f, αθ
˘

, βy
(

, (16)

where we emphasize the impact of θ toH1 by writing it explicitly as a variable forH1. Moreover, in
H1 the dependence on β is dropped as β is fixed. We also denote the optimal solution to the R.H.S.
of (16) by fθ which is one of the Sinkhorn potentials for OTγpαθ, βq.

The following proposition describes the explicit expression of ∇2
θOTγpαθ, αθtq|θ“θt based on the

above dual representation. The proof is provided in Appendix B.1.
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Proposition 5.1. Recall the definition of the dual-variable function H1 : CpX q ˆ Θ Ñ R in (16)
and the definition of the second-order Fréchet derivative at the end of Section 1. For a parameterized
push-forward measure αθ “ Tθ7µ and a fixed measure β PM`

1 pX q, we have

∇2
θOTγpαθ, βq “ ´D

2
11H1pfθ, θq ˝ pDfθ, Dfθq `D

2
22H1pfθ, θq, (17)

where Dfθ denotes the Fréchet derivative of the Sinkhorn potential fθ w.r.t. the parameter θ.
Remark 5.1 (SIM for 1d-Gaussian). It is in general difficult to give closed form expression of the
SIM. However, in the simplest case when αθ is a one-dimensional Gaussian distribution with a
parameterized mean, i.e. αθ “ N pµpθq, σ2q, SIM can be explicitly computed as ∇2

θSpαθ, βq “
2∇2

θµpθq due to the closed form expression of the entropy regularized optimal transport between
Gaussian measures [Janati et al., 2020].

Suppose that we have the Sinkhorn potential fθ and its the Fréchet derivative Dfθ. Then the terms
D2
ijH1pf, θq, i, j “ 1, 2 can all be evaluated using a constant amount of simple function operations,

e.g. log and exp, since we know the explicit expression ofH1. Consequently, it is sufficient to have
estimators f εθ and gεθ of fθ and Dfθ respectively, such that }f εθ ´ fθ}8 ď ε and }gεθ ´Dfθ}op ď ε
for an arbitrary target accuracy ε. This is because the high accuracy approximation of fθ and Dfθ
imply the high accuracy approximation of∇2

θOTγpαθ, βq due to the Lipschitz continuity of the terms
D2
ijH1pf, θq, i, j “ 1, 2. We derive these expressions and their Lipschitz continuity in Appendix B.

For the Sinkhorn Potential fθ, its estimator f εθ can be efficiently computed using the Sinkhorn-Knopp
algorithm Sinkhorn and Knopp [1967]. We provide more details on this in Appendix B.2.
Proposition 5.2 (Computation of the Sinkhorn Potential fθ – (Theorem 7.1.4 in [Lemmens and
Nussbaum, 2012] and Theorem B.10 in [Luise et al., 2019]). Assume that the ground cost function c
is bounded, i.e. 0 ď cpx, yq ďMc,@x, y P X . Denote λ:“ exppMc{γq´1

exppMc{γq`1 ă 1 and define

B
`

f, θ
˘

:“A
`

A
`

f, αθ
˘

, β
˘

. (18)

Then the fixed point iteration f t`1 “ B
`

f t, θ
˘

converges linearly: }f t`1 ´ fθ}8 “ Opλtq.

For the Fréchet derivative Dfθ, we construct its estimator in the following proposition.
Proposition 5.3 (Computation of the Fréchet derivative Dfθ). Let f εθ be an approximation of
fθ such that }f εθ ´ fθ}8 ď ε. Choose a large enough l, for instance l “ rlogλ

1
3 s{2. Define

E
`

f, θ
˘

“ B
`

¨ ¨ ¨B
`

f, θ
˘

¨ ¨ ¨ , θ
˘

, the l times composition of B in its first variable. Then the sequence

gt`1
θ “ D1E

`

f εθ , θ
˘

˝ gtθ `D2E
`

f εθ , θ
˘

(19)

converges linearly to a ε-neighborhood of Dfθ, i.e. }gt`1
θ ´Dfθ}op “ Opε` p 2

3 q
t}g0

θ ´Dfθ}opq.

We deferred the proof to the above proposition to Appendix B.3. The high-accuracy estimators f εθ
and gεθ derived in the above propositions can both be obtained usingOplog 1

ε q function operations and
integrals. With the expression of SIM and the two propositions discussing the efficient computation
of fθ and Dfθ, we obtain the following theorem.
Theorem 5.1 (Computability of SIM). For any given target accuracy ε ą 0, there exists an estimator
Hεpθq, such that }Hεpθq ´Hpθq}op ď ε, and the estimator can be computed using Oplog 1

ε q simple
function operations and integrations with respect to αθ.

This result shows a significantly broader applicability of SiNG than WNG, as the latter can only be
used in limited situations due to the intractability of computing WIM.

6 Empirical Estimator of SIM

In the previous section, we derived an explicit expression for the Sinkhorn information matrix (SIM)
and described how it can be computed efficiently. In this section, we provide an empirical estimator
for SIM (eSIM) in the case where the integration w.r.t. αθ can only be computed in a Monte-Carlo
manner. Moreover, we prove the stability of eSIM by showing that the Fréchet derivative of the
Sinkhorn potential with respect to the parameter θ is continuous with respect to the underlying
measure µ, which is interesting on its own.
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Recall that the parameterized measure has the structure αθ “ Tθ7µ, where µ PM`
1 pZq is some

probability measure on the latent space Z Ď Rq̄ and Tθ : Z Ñ X is some push-forward mapping
parameterized by θ P Θ. We use µ̄ to denote an empirical measure of µ with n Dirac measures:
µ̄ “ 1

n

řn
i“1 δzi with zi

iid
„ µ and we use ᾱθ to denote the corresponding empirical measure of αθ:

ᾱθ “ Tθ7µ̄ “
1
n

řn
i“1 δTθpziq. Based on the above definition, we propose the following empirical

estimator for the Sinkhorn information matrix (eSIM)

H̄pθtq “ ∇2
θSpᾱθ, ᾱθtq|θ“θt . (20)

The following theorem shows stability of eSIM. The proof is provided in Appendix C.
Theorem 6.1. Define the bounded Lipschitz metric of measures dbl :M`

1 pX qˆM
`
1 pX q Ñ R` by

dblpα, βq:“ sup
}ξ}blď1

|xξ, αy ´ xξ, βy|, (21)

where we denote }ξ}bl:“maxt}ξ}8, }ξ}Lipu with }ξ}Lip:“maxx,yPX
|ξpxq´ξpyq|
}x´y} . Assume that the

ground cost function is bounded and Lipschitz continuous. Then

}H̄pθtq ´Hpθtq}op “ Opdblpµ, µ̄qq. (22)

In the rest of this subsection, we analyze the structure of H̄pθtq and describe how it can be ef-
ficiently computed. Similar to the previous section, we focus on the term ∇2

θOTγpᾱθ, βq with
ᾱθ “

1
n

řn
i“1 δTθpziq and β “ 1

n

řn
i“1 δyi for arbitrary yi P X .

First, notice that the output of the Sinkhorn mapping (15) is determined solely by the function values
of the input f̄ at the support of α. Using f “ rf1, . . . , fns P Rn with fi “ f̄pxiq to denote the value
extracted from f̄ on supppᾱq, we define for a discrete probability measures ᾱ “ 1

n

řn
i“1 δxi the

discrete Sinkhorn mapping Ā
`

f , ᾱ
˘

: Rn ˆM`
1 pX q Ñ CpX q as

Ā
`

f , ᾱ
˘

pyq:“´ γ log
´ 1

n

n
ÿ

i“1

exp
´

´
1

γ
cpxi, yq `

1

γ
fi

¯¯

“ A
`

f̄ , ᾱ
˘

pyq, (23)

where the last equality should be understood as two functions being identical. Since both ᾱθ and β in
OTγpᾱθ, βq are discrete, (16) can be reduced to

OTγpᾱθ, βq “ max
fPRn

#

H̄1pf , θq “
1

n
fJ1n `

1

n

n
ÿ

i“1

Ā
`

f , ᾱθ
˘

pyiq

+

. (24)

Now, let fθ be the solution to the above problem. We can compute the first order gradient of
OTγpᾱθ, βq with respect to θ by

∇θOTγpᾱθ, βq “ JJfθ ¨∇1H̄1pfθ, θq `∇2H̄1pfθ, θq. (25)

Here Jfθ “
Bfθ
Bθ P R

nˆd denotes the Jacobian matrix of fθ with respect to θ and ∇iH̄1 denotes the
gradient of H̄1 with respect to its ith variable for i “ 1, 2. Importantly, the optimality condition of
fθ implies∇1H̄1pfθ, θq “ 0n. Further, we compute the second order gradient of OTγpᾱθ, βq with
respect to θ by (we omit the parameter pfθ, θq of H̄1)

∇2
θOTγpᾱθ, βq “ Tfθ ˆ1∇1H̄1`J

J
fθ
¨∇11H̄1 ¨Jfθ `J

J
fθ
¨∇12H̄1`∇21H̄J1 ¨Jfθ `∇22H̄1, (26)

where Tfθ “
B
2fθ
Bθ2 P R

nˆdˆd is a tensor denoting the second-order Jacobian matrix of fθ with respect
to θ andˆ1 denotes the tensor product along its first dimension. Using the fact that∇1H̄1pfθ, θq “ 0n,
we drop the first term and simplify∇2

θOTγpᾱθ, βq to (again we omit the parameter pfθ, θq of H̄1)

∇2
θOTγpᾱθ, βq “ JJfθ ¨∇11H̄1 ¨ Jfθ ` J

J
fθ
¨∇12H̄1 `∇21H̄J1 ¨ Jfθ `∇22H̄1. (27)

As we have the explicit expression of H̄1, we can explicitly compute ∇ijH̄1 given that we have the
Sinkhorn potential fθ. Further, if we can compute Jfθ , we are then able to compute ∇2

θOTγpᾱθ, βq.
The following propositions can be viewed as discrete counterparts of Proposition 5.2 and Proposition
5.3 respectively. Both fθ and Jfθ can be well-approximated using a number of finite dimensional
vector/matrix operations which is logarithmic in the desired accuracy. Besides, given these two
quantities, one can easily check that∇ijH̄1 can be evaluated withinOppn`dq2q arithmetic operations.
Consequently, we can compute an ε-accurate approximation of eSIM in time Oppn` dq2 log 1

ε q.
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Proposition 6.1 (Computation of the Sinkhorn Potential fθ). Assume that the ground cost function c
is bounded, i.e. 0 ď cpx, yq ďMc,@x, y P X . Denote λ:“ exppMc{γq´1

exppMc{γq`1 ă 1 and define

B̄
`

f , θ
˘

:“Ā
`

g, β
˘

with g “ rĀ
`

f , ᾱθ
˘

py1q, . . . , Ā
`

f , ᾱθ
˘

pynqs P Rn. (28)

Then the fixed point iteration f t`1 “ B̄
`

f t, θ
˘

converges linearly: }f t`1 ´ fθ}8 “ Opλtq
Proposition 6.2 (Computation of the Jacobian Jfθ ). Let fε be an approximation of fθ such that
}fε´fθ}8 ď ε. Pick l “ rlogλ

1
3 s{2. Define Ē

`

f , θ
˘

“ B̄
`

¨ ¨ ¨ B̄
`

f , θ
˘

¨ ¨ ¨ , θ
˘

, the l times composition
of B̄ in its first variable. Then the sequence of matrices

Jt`1 “ J1Ē
`

fε, θ
˘

¨ Jt ` J2Ē
`

fε, θ
˘

, (29)

converges linearly to an ε neighbor of Jfθ : }Jt`1 ´ Jfθ}op “ Opε` p 2
3 q
t}J0 ´ Jfθ}opq. Here JiĒ

denotes the Jacobian matrix of Ē with respect to its ith variable.

The SiNG direction dt involves the inversion of H̄pθtq. This can be (approximately) computed using
the classical conjugate gradient (CG) algorithm, using only matrix-vector products. Combining eSIM
and CG, we describe a simple and elegant PyTorch-based implementation for SiNG in Appendix E,

7 Experiment

In this section, we compare SiNG with other SGD-type solvers by training generative models. We
did not compare with WNG Li and Montúfar [2018] since WNG can only be implemented for
the case where the parameter dimension d is 1. We also tried to implement KWNG Arbel et al.
[2019], which however diverges in our setting. In particular, we encounter the case when the KWNG
direction has negative inner product with the euclidean gradient direction, leading to its divergence.
As we discussed in the related work, the gap between KWNG and WNG cannot be quantified with
reasonable assumptions, which explains our observation. In all the following experiments, we pick
the push-forward map Tθ to be the generator network in DC-GAN [Radford et al., 2015]. For more
detailed experiment settings, please see Appendix D.

7.1 Squared-`2-norm as Ground Metric

We first consider the distribution matching problem, where our goal is to minimize the Sinkhorn
divergence between the parameterized generative model αθ “ Tθ7µ and a given target distribution β,

min
θPΘ

F pθq “ Spαθ, βq. (30)

Here, Tθ is a neural network describing the push-forward map with
its parameter summarized in θ and µ is a zero-mean isometric Gaus-
sian distribution. In particular, the metric on the ground set X is set
to the vanilla squared-`2 norm, i.e. cpx, yq “ }x´ y}2 for x, y P X .
Our experiment considers a specific instance of problem (30) where
we take the measure β to be the distribution of the images in the
CelebA dataset. We present the comparison of the generator loss
(the objective value) vs time plot in right figure. The entropy regu-
larization parameter γ is set to 0.01 for both the objective and the
constraint. We can see that SiNG is much more efficient at reducing
the objective value than ADAM given the same amount of time.

7.2 Squared-`2-norm with an Additional Encoder as Ground Metric

We then consider a special case of problem (7), where the metric on the ground set X is set to
squared-`2-norm with a fixed parameterized encoder (i.e. we fix the variable ξ in the max part of
(7)): cξpx, yq “ }φξpxq ´ φξpyq}2. Here φξp¨q : X Ñ Rq̂ is a neural network encoder that outputs
an embedding of the input in a high dimensional space (q̂ ą q, where we recall q is the dimension of
the ground set X ). In particular, we set φξp¨q to be the discriminator network in DC-GAN without
the last classification layer [Radford et al., 2015]. Two specific instances are considered: we take
the measure β to be the distribution of the images in either the CelebA or the Cifar10 dataset. The
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Figure 1: Generator losses on CelebA (left) and Cifar10 (right).

parameter ξ of the encoder φ is obtained in the following way: we first use SiNG to train a generative
model by alternatively taking a SiNG step on θ and taking an SGD step on ξ. After sufficiently many
iterations (when the generated image looks real or specifically 50 epochs), we fix the encoder φξ.
We then set the objective functional (1) to be Fpαθq “ Scξpαθ, βq (see (7)), and compare SiNG
and SGD-type algorithms in the minimization of F under a consensus random initialization. We
report the comparison in Figure 1, where we observe the significant improvement from SiNG in
both accuracy and efficiency. Such phenomenon is due to the fact that SiNG is able to use geometry
information by considering SIM while other method does not. Moreover, the pretrained ground cost
cξ may capture some non-trivial metric structure of the images and consequently geometry-faithfully
method like our SiNG can thus do better.

7.3 Training GAN with SiNG

Figure 2: Comparison of the visual quality of the images generated by Adam (left) and SiNG (right).

Finally, we showcase the the advantage of training a GAN model using SiNG over SGD-based solvers.
Specifically, we consider the GAN model (7). The entropy regularization of the Sinkhorn divergence
objective is set to γ “ 100 as suggested in Table 2 of [Genevay et al., 2018]. The regularization for
the constraint is set to γ “ 1 in SiNG. We used ADAM as the optimizer for the discriminators (with
step size 10´3 and batch size 4000). The result is reported in Figure 2. We can see that the images
generated using SiNG are much more vivid than the ones obtained using SGD-based optimizers. We
remark that our main goal has been to showcase that SiNG is more efficient in reducing the objective
value compared to SGD-based solvers, and hence, we have used a relatively simpler DC-GAN type
generator and discriminator (details given in the supplementary materials). If more sophisticated
ResNet type generators and discriminators are used, the image quality can be further improved.
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8 Broader Impact

We propose the Sinkhorn natural gradient (SiNG) algorithm for minimizing an objective functional
over a parameterized family of generative-model type measures. While our results do not immediately
lead to broader societal impacts (as they are mostly theoretical), they can lead to new potential positive
impacts. SiNG admits explicit update rule which can be efficiently carried out in an exact manner
under both continuous and discrete settings. Being able to exploit the geometric information provided
in the Sinkhorn information matrix, we observe the remarkable advantage of SiNG over existing
state-of-the-art SGD-type solvers. Such algorithm is readily applicable to many types of existing
generative adversarial models and possibly helps the development of the literature.
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