A Appendix Section for Methodology

A.1 Proof of Proposition 4.1]

Denote the Lagrangian function by

GA(AQ) = F((gt + Ae) + A (S(Oégq_Ag, Oégt) —e—€7). 3D
We have the following inequality which characterize a lower bound of the solution to (9) (recall that
l1<ey<1b5,¢0<0.5and3¢c; —1=c¢9),

min F(6" + A6)
AfeR

St HA9|| < = HAIgIﬁlgneﬂ I}\lza(})( GA(AG) = I}\lg())( HAIOIﬁlgneﬁ G (AD). (32)

S(agtyng, apt) < €+ €
We now focus on the R.H.S. of the above inequality. Denote the second-order Taylor expansion of
the Lagrangian G by G :

_ 1 A
GA(A0) = F(0") + (Vo F(0"), AO) + §<V§F(9t)A9, AG) + §<H(9t)A9, Ay — Xe — e,
where we used the optimality condition of S(a, at) so that the first-order term of S(a, o)
vanishes. Besides, H(0) is defined in (I0). The error of such approximation can be bounded as
GA(AF) — GA(AF) = O((A + 1)[A0)°). (33)
Further, for any fixed A, denote AfY = argmingagj<cer GA(AD).

We can then derive the following lower bound on the minimization subproblem of the R.H.S. of (32):

. _ ~ A *|13
max min GA(A0) = max GA(AFX) — O((A + D AGX])

> I}\l&(}){é)\(Aﬁf) — O((A+ 1)e*)
>
> : ~ A _ 1 3¢y
max i GA(AG) = O((A + 1)e™),
Note that for sufficiently large A, H(6) + + V3 F(6") > 0 by recalling the positive definiteness of
H(0"). In this case, as a convex program, minjagj<ce: Ga(A0) admits the closed form solution:
Denote Af¥ = argmin G (A6). We have

-1
AB% = *i <H(9t) + ivgwm) VoF(0") and G(AG}) = F(0") — 5% — Ae — A, (34)

2)\
where we denote @:=([H(6") + %VgF(Ht)]_l VoF(0"),VeF(6")) > 0.

For sufficiently small €, by taking A = /2 with a:=([H(0")] " Vo F(6!), VoF(6')) > 0 (note

that [A0%| = O(y/e) < ¢t and is hence feasible for ¢; < 0.5), the R.H.S. of (32) has the following
lower bound (recall that we have 3c; — 1 > ¢»)

i Af) = 2709, 35
B ., O80) > FOY) (e 0™ .
This result leads to the following lower bound on (9):
. F(0" + AgY) — . . .
lim o > —\2A[H(0)] 7 Ve F(0r), VoF(01)), (36)

where A@? is the solution to (9). Finally, observe that the equality is achieved by taking Ag! =
_ V2e(H(6)) Vo F(6")
VXH(0)] 7 Ve F(04),VoF(6))

. F(6"+ A6 — F(0! 5 t ¢ ¢ t
lim (6" + ﬁ) F(6") _ \[WF(Q A6 = —/2[H(O)] " Vo F(81), Vo F (0 2;7)

and Af! is feasible for sufficiently small € (note that we have 2(H(6")A0!, AG!) = e):
1
S(agtJ’,Aaé’aet) < §<H(9t)A9§, A9§> + 0(61'5) <€+ €C27 (38)

and |AG!| = O(y/€) < € for ¢; < 0.5. This leads to our conclusion.
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A.2  Proof of Proposition d.2]

Our goal is to show that the continuous-time limit of ®(6;) satisfies the same differential equation as
¢s provided that ®(6y) = ¢¢. To do so, first compute the differential equation of ® ()

00(6s)
0s

where Vy®(0;) is the Jacobian matrix of ®(#) w.r.t. § at = 6. We then compute the differential
equation of ¢ (note that V,®~1(¢;) is the Jacobian matrix of ®~!(¢) w.r.t. ¢ at ¢ = ¢)

bs =~ [V3S(aa1(g) 00-1(6,))19=0.] VoF(@71(6))g—s,
= —[Vyo~ 1(¢s)TV(9 (019,049&)\9 0. Vo® (45 )]71V¢@71(¢5)TVF(9)|9=05 (40)

= Vo®(6,)8, = —V®(0,)H(0,) 'VF(6,), (39)

= — [V (¢ )] 35S (ag, <) 9=0, VF(0)9=0.

= —Vo®(0,)H(0,)~ 1VF(GS) (A1)
_ 0%(0s)

- 0s

Here we use the following lemma in (@0). We use @~ (¢5) = 0, and the inverse function theorem

Vo®(0s) = [V¢<I> ] in @T).
Lemma A.1.

V¢3(04<1> (8)) XB—1(¢.)) |d=s = V¢‘b71(¢s)TV33(a97aes)|0=osv¢‘bfl(¢s) (42)

Proof. This lemma can be proved with simple computations. We compute only for the terms in
V20T, (ag, ags) as example. The terms in VZOT., (ag, cg) can be computed similarly. Recall the
expression

V30T, (g, B) = D3 Hi(fo,0) 0 (Dfo, Dfg)+ DiyHi(fo,0) 0 (Dfo,Za)

2 2 (43)
+D21H1(f9, 9) o (Id, Df9)+ D22H1(f9, 9) o (Id7Id).
We compute
V20T, (ag-1(4), 8) = DI H1(fo-1(4), () © (D fo-1(s) © Ja-1(0), D fo-1(4) © Jo-1(9))
+ DY Hq (fo- 1(g), @ “1(¢)) o (Dfa- 1(¢) © Jo-1(9), Jo-1(9))
+ D5 H1(fo1(6): @71 (0) © (Jo-1(8), Dfo-1(g) © Jo-1(0))
+ D3y Ha(fo-1(4): @7 (9)) © (Jo-1(8), Jp-1(9)). )
Plugging ®~1(¢,) = 6, to the above equality, we have
V50T, (ap-1(4), B)js=s, = Vo@ ' (8s)  VEOT, (a9, B) 9=, Vo ' (¢5). (45)
O]
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B Appendix on SIM

B.1 Proof of Proposition 5.1]

We will derive the explicit expression of V20T, (av, gt )|g—g+ based on the dual representation
(T6). Recall the definition of the Fréchet derivative in Definition[2|and its chain rule D(f o g)(z) =
Df(g(x)) o Dg(x). We compute the first-order gradient by

VoOT(ap, B) = VoH1(fo,0) = Dit1(f9,0) o D fo + D2H1(f0,0), (46)
G1(fo,0) G2(f0,0)

where D;H; denote the Fréchet derivative of #; with respect to its i*" variable. Importantly, the
optimality condition of implies that D1H1(fp,0)[g] = 0,Vg € C(X).

Further, in order to compute the second order gradient of OT.,(cv, 5) with respect to 6, we first
compute the gradient of G;,¢ = 1,2:

VoG1(fo,0) = D1H1(fo,0) 0 D*fo + D}y H1(fo,0) o (Dfo, Dfg) + DiyHa(fo,0) 0 (Dfe,%z)v
)

V0Ga(fo,0) = D3 H1(fo,0) o (Za, Dfg) + DisHi(fo,0) © (Za, L4). (48)

Using the fact that Dy H1(fe,0)[g] = 0,Vg € C(X), we can drop the first term in the R.H.S. of 7).
Combining the above results, we have

V30T, (a9, B) = D3 Hi(fo,0) 0 (Dfs, Dfs)+ DiyHi(fo,0) 0 (Dfo,Za) 49)
+D3H1(f9,0) o (Za, Dfo)+ D3, H1(f,0) © (Za, Za).

Moreover, we can further simplify the above expression by noting that for any g € T'(R%,C(X)), i.e.
any bounded linear operators from R% to C(X),

Vo (D1H1(fo,0) 0 g) = DIy Hi(fe,0) © (9, Dfo) + DiyHi(fe,0) © (9,Za) = 0. (50)
Plugging in g = D fy in the above equality we have

D} H1(f0,0) © (Dfo, Dfg) = =DiyHi(fo.0) o (D fo, Ta)- (51)
Consequently we derive (we omit the identity operator (Z,4,Z4) for the second term)
V30T, (g, 5) = =D}y Hu(fe,0) © (Dfs, Dfo) + D3, Ha(fo,0), (52)

where we note that D%, H1 (f,0) o (D fs,Z,) is symmetric from (5T)) and

D3, H1(fo,0) o (Za, Dfg) = [DiyH1(fs,0) 0 (Dfe,Id)]T = DYH1(f0,0) o (Dfo, Ta). (53)

These two terms can be computed explicitly and involve only simple function operations like exp
and log and integration with respect to oy and f3, as discussed in the following.

B.1.1 Explicit Expression of VZOT., (g, )

Denote Ay = D% H1(fq,0) o (Dfg, Dfp) as the first term of (52). We note that A; € R¥*d
is a matrix and hence is a bilinear operator. If we can compute h{ A;hs for any two directions
hi, he € R?, we are able to compute entries of A by taking h; and hs to be the canonical bases. We
compute this quantity i A1hs as follows.

For a fixed y € X, denote 7, : X x C(X) — Rby
Ty(@, f):=exp(—c(z,y)/7) exp(f(2)/7).

Denote g1 = D fy[h1] € C(X) for some direction hy € RY (recall that D fy € T(R?,C(X)), where
T(V,W) is the family of bounded linear operators from set V' to set W). Use the chain rule of
Fréchet derivative to compute

_ S Ty(, fgi(z)dag ()
Sx Ty(z, fdag(z)

(D1 A(f, a)lg1]) (y) = (54)
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Let hy € R? be another direction and denote g» = D fy[h2] € C(X). We compute

(D%A(ﬁ aO)[QlaQZ]) (y)
_Ja Ty Ngr(@)ge(w)dag(x) — {xo Ty(@, /)Ty (', g1 (x)g2(2")dag (x)day (')
v Sx Ty(, f)dag(x) W[Sxﬁ(x,f)dag(x)]z .

Moreover, for any two directions hy, hy € RY, we compute D?, 1 (f,0)[D fo[h1], D fo[h2]] b

(55)

D}y H1(f,0)[Dfalh1], Dfolho]] = L (D3 A(fo, c9)[Dfo[h1], Dfalh2]]) (v)dB(y), (56)

which by plugging in (39) yields closed a form expression with only simple function operations like
exp and log and integration with respect to g and 3.

We then compute the second term of (32)). Using the change-of-variable formula, we have

AU Ty ) = —1ot [ e (icm(z), v+ ifm(z))) du(z). 57

For any f € C(X), the first-order Fréchet derivative of H;(f,6) w.r.t. its second variable is given by

Dy (£.6) f (VoTo(2), V£ (To())>du(2)

fSZ s (To(2), £){VoTo(2) vlc(Te()) V£ (To(2)) dpu(z)
SZ ( f)dﬂ()

Denote u. (0, f) = Vic(Ty(2),y) — Vf(Ty(2)). The second-order Fréchet derivative is given by
D3,H1(£,0) (58)
:J V2T (2) x1 VF(To(2)) + VoTp(2)TV2f (Tp(2)) VoTo(2)dp(2)

dﬁ(y)~

§2 T, (To(2), ) VoTo(=)T uzw Fu(60, f)TVoTp(2)dp(2)
f L7, (To(2), N)du(z) ()
SZ y T0 )V2T0( ) X1 Uz(e f)dlu’(z)
], SZ 7,0 (2), ) dn(z) W)

+f §2 Ty (To(2), )VeTe( )T [Vie(Ty(2), y) —V2f(T9(Z))]V9T9(Z)dM(Z)dﬁ(y)

§2 7y (To(2), f)du(z)
L1 f §2 7o (To(2), ) VoTo(2) Tu. (6, )dp(z [SZ U (To(2), £) Vo To(2) w0, f)du(=)]
[Sz ( f)d,“( )]

Here VTy(z) € R7*? and V2Ty(z) € R7*4*4 denote the first and second order Jacobian of Ty (%)
w.r.t. to f; x denotes the tensor product along the first dimension; Vf € R? and V2f € R*4
denote the first and second order gradient of f w.r.t. its input; Vic € R? and V¢ € R?*? denote the
first and second order gradient of ¢ w.r.t. its first input. By plugging in f = fy, we have the explicit
expression of the second term of (52)).

ds(y).

B.2 More details in Proposition [5.2]

First, we recall some existing results about the Sinkhorn potential fj.

Assumption B.1. The ground cost function c is bounded and we denote M.:= max, yex c(z,y).
It is known that, under the above boundedness assumption on the ground cost function ¢, fy is a
solution to the generalized DAD problem (eq. (7.4) in [Lemmens and Nussbaum) [2012])), which is
the fixed point to the operator B : C(X) x © — C(X') defined as

B(f,0):=A(A(f,ap),5). (59)
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Further, the Birkhoff-Hopf Theorem (Sections A.4 and A.7 in [Lemmens and Nussbaum, 2012])
states that exp(B3/7) is a contraction operator under the Hilbert metric with a contraction factor \?
exp(M./v)—1
exp(Mc/v)+1
functions u, u’ € C(X), define the Hilbert metric as

where \:= < 1 (see also Theorem B.5 in [Luise et al., [2019]): For strictly positive

e ul@)u'(y)
dp(u,u’):=log max @ (2)aly) (60)

For any measure o € M7 (X)), we have

dr (exp(A(f, a9)/7), exp(A(f', 9) /7)) < Adm(exp(f/7), exp(f'/7)). (61)
Consequently, by applying the fixed point iteration
Ft=B(1,0), (62)

also known as the Sinkhorn-Knopp algorithm, one can compute fy in logarithmic time: |f*! —
folloo = O(A) (Theorem. 7.1.4 in [Lemmens and Nussbaum, 2012]] and Theorem B.10 in [Luise
et all[2019]).

While the above discussion shows that the output of the Sinkhorn-Knopp algorithm well approximates
the Sinkhorn potential fy, it would be useful to discuss more about the boundedness property of the
sequence { f*} produced by the above Sinkhorn-Knopp algorithm. We first show that under bounded
initialization f°, the entire sequence {f*} is bounded.

Lemma B.1. Suppose that we initialize the Sinkhorn-Knopp algorithm with f° € C(X) such that
HfOHOO < Mc- One has HftHOC < Mc,fort = 17 2737 T

Proof. For | f|s < M, and any measure o € M (X), we have

IA(f; @)oo =] logf exp{—c(z,-)/v} exp{f(2)/y}da(z)]w < vlogexp(M./v) < M.
X
One can then check the lemma via induction. O

We then show that the sequence {f*} has bounded first, second and third-order gradients under the
following assumptions on the ground cost function c.
Assumption B.2. The cost function c is G -Lipschitz continuous with respect to one of its inputs:
Forallx,2' € X,

le(2,y) — c(@’,y)| < G|z — 2.

Assumption B.3. The gradient of the cost function c is L.-Lipschitz continuous: for all x,z’ € X,
IVic(@,y) = Vie(a',y)| < Lefa — 2.

Assumption B.4. The Hessian matrix of the cost function c is Lo .-Lipschitz continuous: for all
z,x' € X,

[VEie(z,y) = Vie(' )| < Lo
Lemma B.2. Assume that the initialization f° € C(X) satisfies | f°||so < M.
(i.) Under Assumptions|B.1|and|B.2| 3Gy such that |V |2, < Gy, ¥t > 0.
(ii.) Under Assumptions|B.1|-|B.3| 3L ¢ such that |V? f*(z)| < Ly, Vt > 0.
(iii.) Under Assumptions|B.1|-|B.4| 3Ly ¢ such that |V? f*(z) — V2 f1(y)|op < Lo.s
(iv). For |f|lcc < M., the function B(f,8)(x) is G s-Lipschitz continuous.

x—a.

| —y|, Vvt > 0.

Proof. We denote k(x,y):=exp{—c(x,y)/v} in this proof.

(i) Under Assumptions and k is [G./~]-Lipschitz continuous w.r.t. its first variable. For
f € C(X) such that || f||so < M., we bound

|A(f, @) (z) = A(f, @) (y)| = ~|log L[k(z, y) — k(z, 2)] exp{f(z)/7}da(z)|

< yexp(Me/v)Ge/v|r — yll2 = exp(Me/v)Ge |z — yll2-
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Using Lemmal[B.1] we know that { '} is M.-bounded and hence
IV 20 < G = exp(2M,/7)G2.

(i) Under Assumption[B.1] k(x,y) > exp(—M,/v). We compute

z,xz) exp{f(2)/7}Vic(z, z)da(z) x
V(A(f, ) (x) = Lkt : # a1(c)
§x k(z,2) exp{f(2)/7}da(z) 92()
Letg; : R? — R%and g5 : R? — R be the numerator and denominator of the above expression. If we

have () 912,00 < G, (0) [91(2) = 91(9)]| < Lale —y| and (©) g2 oo < Ga. (@) |g2(2) — g2(y)| <
Lo|z —yl|, (e) g2 = G2 > 0, we can bound

92(x)  g2(y) 92(7)92(y) a3
which means that V (A(f,a)) is L-Lipschitz continuous with L = ¢2L1£81L2 - We now prove
2

(a)-(e).

@) || §3 k(2 2) exp{f(2)/7}Vic(z, z)da(z) 2,0 < exp(M./7) - G. (Assumption.

(b) Note that for any two bounded and Lipschitz continuous functions h; : X — R and
ho : X — RY, their product is also Lipschitz continuous:

|hi (@) - ha(z) = ha(y) - ha(y)| < [|h1]o - Ghy + |2 Hlz—yl, (64
where G, denotes the Lipschitz constant of h;, ¢ = 1, 2. Hence for g1, we have

lg1(2) = g1(y)]| < exp(Me/7) - (Le + G2/7) - | =yl
since k(z,y) < 1, [Vik(z, y)| < Ge/7. [Vie(@,y)| < Ge. [Viie(,y)op < Le.

(©) [[§x k(2 ) exp{f(2)/7}de(2) ]| < exp(Mc/7y).
@ |§ylk(z,2) — k(z, y)] exp{f(2)/7}da(z)| < exp(Mc/v) - Ge/v - |z —y].
() §y k(2 2) exp{f(2)/v}da(z) = exp(—2M,/7) > 0.

|z =yl (63)

Combining the above points, we prove the existence of L.

For (iii), compute that

V2(A(f, ) (z)
IEVLCR exp{f( )NV ie(z, 2)Vie(z, 2) T da(z) "
§ ¢ k(z, z) exp{f(2)/7}da(z)
{ k(2 2) exp{£(2)/7}V3c(z, 2)da2)
T T k(s ) exp{f ()1} da(2) #2

SX z, @) exp{f(2)/7}Vic(z, z)da(2) [, k(z, z) exp{f(z )/W}Vlc(x,z)da(z)]T'

[§ k(2. 2) exp{f(2)/7}da(2)]”
We now analyze #1-#3 individually.

#3

#1 Note that for any two bounded and Lipschitz continuous functions h; : X — R and
hg @ X — R?*4, their product is also Lipschitz continuous:

Ihi(z) - ha(x) = h1(y) - ha(y)lop < [Ihaloo - Ghy + [h2llopoo - Gy Iz =yl (65)
where G, denotes the Lipschitz constant of h;, i = 1, 2.

Take hq(x) = k(2/, x)exp{f N/} § 4 k(2 @) exp{f(2)/v}da(z). hy is bounded since
k(z',x) < 1and §, k(z,2) exp{f(2)/v}da(z) = exp(—2M,/v) > 0. hy is Lipschitz
continuous since we additionally have k(z’, z) being Lipschitz continuous (see (63)).

Take ha(x) = Vic(z, 2)Vie(z, 2) . hg is bounded since |Vic(z, 2)| < G. (Assumption
[B2). hs is Lipschitz continuous due to Assumption B3]
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#2 Following the similar argument as #1, we have the result. Note that he(z) = V3, c(z, 2) is
Lipschitz continuous due to Assumption [B.4}

#3 We follow the similar argument as #1 by taking

k(2 ) exp{f(2") /7 k(2 @) exp{f (<) [}

h1 (1’) = 2
[§ k2, 2) exp{f(2)/v}da(2)]

and taking
ho(x) = Vie(z, 2)[Vie(z, 2)] T

Combining the above points, we prove the existence of Lo .

(iv) As a composition of A, we also have that B( f,6) is G ¢-Lipschitz continuous (see G in (i)). [

Moreover, based on the above continuity results, we can show that the first-order gradient V f§ (and

second-order gradient V2 f§) also converges to V fp (and V? fy) in time logarithmically depending
on 1/e.

Lemma B.3. Under Assumptions[B.INB.3]| the Sinkhorn-Knopp algorithm, i.e. the fixed point iteration
f = B(f",9), (66)

computes N fg in logarithm time: |V f*7 — ¥ fy 2,00 = € witht = O(log 1).

Proof. For a fix point € X and any direction h € R?, we have
2
T tn-h) = J'(2) = [V £ @) Th+ LRIV @ - B,

where 1 > 0 is some constant to be determined later and 0 < 7; < 7 is obtained from the mean value
theorem. Similarly, we have for 0 < 75 <7

2
Jolw +n-h) = fo(@) = [V fo(@)]Th + TV foe + 2 - ).
We can then compute
2
[V (z) = Vfo(2)]"h| < EHft — folloo + nLg|h*.
Take h = V ft(z) — V fo(z) and n = L% We derive from the above inequality

[Vf (@) = Vfo(@)|* < 2Ls £ — folleo-

Consequently, if we have 2L ¢ f* — fp|0 < €2, we can prove that |V f* — V fy|2.o < € since z is
arbitrary. This can be achieve in logarithmic time using the Sinkhorn-Knopp algorithm. O

Lemma B.4. Under Assumptions[B-IB4 the Sinkhorn-Knopp algorithm, i.e. the fixed point iteration
F=B(f",0), (67)

computes N fg in logarithm time: V2 '+ — V2 fo|op.co = e witht = O(log 1).

Proof. This follows a similar argument as Lemmaby noticing that the third order gradient of f?
(and fy) is bounded due to Assumption|[B.4] O
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B.3 Proof of Proposition[5.3]

We now construct a sequence {g'} to approximate the Fréchet derivative of the Sinkhorn potential
D fp such that for all ¢ > T'(e) with some integer function T'(¢) of the target accuracy €, we have
lgh — D foop < €. In particular, we show that such e-accurate approximation can be achieved using
a logarithmic amount of simple function operations and integrations with respect to ay.

For a given target accuracy ¢ > 0, denote € = ¢/L;, where L; is a constant defined in Lemma
First, Use the Sinkhorn-Knopp algorithm to compute fj, an approximation of fy such that
|f§ — folleo < € This computation can be done in O(log 1) from Proposition

Denote E(f,0) = B(f,0) = B(---B(f,0),--- ,0), the | times composition of 5 in its first variable.
Pick [ = [log, 1]/2. From the contraction of .4 under the Hilbert metric (61)), we have
IECF,0) = E(f,0)loc < ydm(exp(E(S,0)/7), exp(E(f',0)/7))
! ! 2 !
<N (exp(f/7), exp(f'/1) < 207N f = Flloo < S1F = 'l

where we use ||f — f'|o < dg(exp(f),exp(f’)) < 2|f — f'| in the first and third inequalities.
Consequently, £[f, 0] is a contraction operator w.r.t. f under the /5, norm, which is equivalent to

2

IDYECF 0)lop < 3 (68)

Now, given arbitrary initialization ¢ : © — T(R?,C(X ))ﬂ construct iteratively
géJrl = Dlg(f0€79)ogé +D25(f9€,9), (69)

where o denotes the composition of (linear) mappings. In the following, we show that

2
l96™" — Dfollop < 3¢ + (g)tHgg — D folop-
First, note that fy is a fixed point of £(, §)

fo =E(fo,0).

Take the Fréchet derivative w.r.t. 6 on both sides of the above equation. Using the chain rule, we
compute
Dfy = D1&(fo,0) © D fo + D2&(fo,0). (70)

For any direction h € R, we bound the difference of the directional derivatives by

lgg™ (1] = D fo[h]loo
< | D1E(fo.0)[Dfo[n]] — D1&(f5.0)[go[]]llcc + [ D2 (£5, O)[R] — D2E(fo, 0)[R]|oo
2 € €
< 5l Dfslh] = golMllo + La([1f5 = folloo + IV £5 =V folloo) |Rlloo
2
< 3100 = gslloplinlo + ellhleo,
where in the second inequality we use the bound on D& in and the L;-Lipschitz continuity of
D& with respect to its first argument (recall that f; is obtained from the Sinkhorn-Knopp algorithm
and hence | f§]. < M. from Lemma[B.1|and |V f§] 2,00 < Gy from (i) of Lemma[B.2). The above

inequality is equivalent to

2
“gngl = Dfglop — 3e < (HDf0 - 95”017 - 36) = Hgngl — Dfolop < 3¢+ (g)tHgg — Dfolop-

W N

Therefore, after T'(e) = O(log 1) iterations, we find 92 such that g 9 — D fy]op < 4e.

Assumption B.5 (Boundedness of VyTy(x)). There exists some Gt > 0 such that for any x € X
and f € ©, V@Tg(.%)Hop < Grp.

'Recall that T'(R?, C(X)) is the family of bounded linear operators from R? to C(X')
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Lemma B.5 (Lipschitz continuity of DoE). Under Assumptions|B.1|-[B.3|and[B.3] D2& is Lipschitz
continuous with respect to its first variable: For f, f' € C(X) such that || f||cc < M (|f]c0c < M¢)
and |V o < G (|Vf'|leo < Gy), and § € © there exists some L such that

|D2£(f,0) = D2E(f', Dlop < Li(If = f'llec

w)- (1)

Proof. Recall that £(-,0) = B!(-,0). Using the chain rule of Fréchet derivative, we compute

DoB'(f,0) = DiB(B''(£.0),0) o D2B'(£,0) + D2B(B(£,6),0). (72)
We bound the two terms on the R.H.S. individually.

Analyze the first term of (72). For a given f, use Ay and By to denote two linear operators
depending on f. We have |Af o By — Ap o By/op = (’)(Hf f’Hoo + |Vf = Vf'||2,50) if both
Ay and By are bounded, |4, ~ Ay, Yop = O = Pl IV =V 2.0 a0 [By = By =
ollf - 1. o)
|Afo By — Ay o By Hop |Ase By —AgoBplop+|Afo By — AproByllop

< [mx | Bylop - L+ mac|Asloy - Lo ][I = £l PARNCE)

where L 4 and Lp denote the constants of operators A and B¢ such that

[A; = Apl < Lallf = £l
|Br = Byl < Lp[If = [l

]
o)

As = DiB(B(f,6),0) and By = D,B(f,6).

| Af|op is bounded from the following lemma.

‘We now take

Lemma B.6. B(f,0) is 1-Lipschitz continuous with respect to its first variable.

Proof. We compute that for any measure x and any function g € C(X),

S exp{—3 (clz,y) — f(2))}g(x)dr(2)
SX eXp{_%(c(‘rﬂU) - f(a?))}dﬁ(l’) ’

A(f k)9l = (74)

Note that
§xexp{—7
SXeXp 7%(6(1'7?4) f(x))}d
<

and consequently we have | D1 A(f, k)|op < 1. Further, since B is the composition of A in its first
variable, we have that | D1 B(f, )Hop <1 O

c(z,y) — f(z))dr(z
(c(e.9) = (@)} E;|oo-|g|oo—|g|oo, 3)

IDLA(f, 5) gl < |

| B#|lop is bounded from the following lemma.
Lemma B.7. Assume that f € C(X) satisfies | f|loc < M and ||V f|2,00 < G¢. Under Assumptions
B.2|and[B.5| V1 > 1, DoBY(f,0)|op is My-bounded, with My = 1 - exp(3M./7) - Gr - (G + Gy).
Proof. In this proof, we denote A(f, 8):=A(f, ag) to make the dependence of A on 6 explicit. Using
the chain rule of Fréchet derivative, we compute

D2Bl(fa 9) = DIB(Bl_l(fa 9), 9) o D2Bl_1(fa 9) + DQB(Bl_l(f7 9), 9) . (76)
We will use M; to denote the upper bound of | DaB!( f,6)||op. Consequently we have

My < | D1B(B1(f,0),0) |op| D2B'(f,0)op + [ D2B(B'(£,6),6) | op

< M1 + | D2B(B1(£,6),0)] op,
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where we use Lemma in the second inequality. Recall that B(f,0) = A(A(f,0),5). Again
using the chain rule of the Fréchet derivative, we compute

D28(f79) :DIA(A(.ﬂQ)vﬁ) ODZA(fae)a (77)
and hence
|D2B(f, 0)lop < IDVACA(S,0), B)llop - [ D2A(S, O)lop < I D2 A Olop,  (78)
where we use (75) in the second inequality. We now bound || Do A( £, 0)] . Denote

wy (x):=exp(—c(z,y)/7) exp(f(x)/7).
We have exp(—2M./v) < wy(x) < exp(M./v) from | f| < M, and Assumption For any
direction h € R? (note that D2 A(f,0)[h] : X — R) and any y € X, we compute

_ Sawy(To(@)[VoTp ()] " [-Vie(Ty (), y) + VF(Tp(2))], hydu(z)
§20 wy(To(x))dp() ’
where VTp(x) denotes the Jacobian matrix of Ty(z) w.r.t. §. Consequently we bound

DA, O < expBM VTl - [1V1e(To(a),w)l + V7 (To(@)I] - I
< exp(3M./v) - Gr - (G + Gf)HhHa

(D2A(£,0)[1]) (9)

which implies 5
ID2A(f, 0)lop < exp(3Me/7) - Gr - (Ge + Gr). (79)
O

To show the Lipschitz continuity of Ay, i.e. [|[Af — Ap| < Lallf — f'[leo, we first establish the
following continuity lemmas of D1 B(-,6) and B~1(-, ).

Lemma B.8. For f € C(X) such | f|o < M., D1B(f,0) is L-Lipschitz continuous with respect to
its first variable with L = 2L 4.

Proof. Use the chain rule of Fréchet derivative to compute
D1B(f.0) = D1A(A(f, a0), B) o DL A(f, o) - (80)

Uf Vf

We analyze the Lipschitz continuity of | D1 B(f, 0)||,, following the same logic as (73):

e The 1-boundedness of Uy and V; is from LemmaB.6}
e The L 4-Lipschitz continuity of V} is from Lemma[B.TT}
e The L 4-Lipschitz continuity of Uy is from Lemmas[B.6]and [B.T1}

Consequently, we have that D1B(f, ) is 2L 4-Lipschitz continuous w.r.t. its first variable. O

Lemma B.9. VI, B'(f,0) is 1-Lipschitz continuous with respect to its first variable.

Proof. Use the chain rule of Fréchet derivative to compute

DlBl(f7 9) = DIB(Bl_l(f7 9)70) © Dlgl_l(fv 9) (81)

Consequently | D1 B'(f,0)]op < |D1B(f,0)]",. Further, we have | D1B(f,0)]op < 1 from Lemma
which leads to the result. O

We have that A is Lipschitz continuous since (i) Ay is the composition of Lipschitz continuous
operators D1B(-,0) and B'=1(f-,0) and (ii) for | fllc < M., VI = 0,|B'(f,0)]c < M, (the
argument is similar to Lemma [B.T].

We prove |By — By | < Li[[| f = f'llo + [Vf = Vf|2,50] via induction. The following lemma
establishes the base case for D2B(f, ) (when [ = 2). Note that the boundedness of || f{|o (|| f/[0)
and |V f|lx (|V f’|+) remains valid after the operator 53 (Lemma|[B.1]and (i) of Lemma (B-2)).
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Lemma B.10. There exists constant Ly such that for | f|lc < Me (| f'|e0 < Mc)and |V f|o < Gy
(Ve < Gy)

|D2B(£,0) = D2B(f',O)lop < La[lf = f'lloc + [V = V'

|2,00]- (82)

Proof. In this proof, we denote A(f,0):=A(f, ) to make the dependence of A on 6 explicit.

Recall that B(f,0) = A(A(f,8), 3). Use the chain rule of Fréchet derivative to compute

D23(f79) = DlA(A(f,OéQ),ﬂ)ODQA(f,e). (83)
Uy Vi

We analyze the Lipschitz continuity of | D2B(f, 6)|p following the same logic as (73):

e The 1-boundedness of Uy is from Lemma[B.6}
The exp(3M./v) - Gr - (G. + G)-boundedness of V is from (79).

The L 4-Lipschitz continuity of Uy is from Lemmas and [B.TT] and the fact that for
[ flloo < M, | A(f, 0)] 0o < M, (the argument is similar to Lemma|[B.1}).

Denote

Ty(x, f):=exp(—c(x,y)/v) exp(f(x)/7)-

We compute

v - §2 Ty (To(2), f)[VoTo(2)] " [~ Vie(To(2),y) + Vf(To(2))] dp(2) y B
§2 Ty(To(2), f)dpu(2) L@
Denote the numerator by Py and the denominator by @ y. Following the similar idea as (63)),
we show that both | Py |, and Q| are bounded, @ is Lipschitz continuous w.r.t. f, Q¢
is positive and bounded from below, and | Py — Py |op < Ly[|lf — f'co + |Vf =V ' |2,00]
for some constant L,,.

The boundedness of || Py |, is from the boundedness of f, Assumptions and
the boundedness of V f.

The boundedness of | Q s |« is from the boundedness of f.
Use D@ to denote the Fréchet derivative of )y w.r.t. f. For any function g € C(X),

DQslg) = L T, (2, )g(x)rdag(x), (84)

where we recall that vy = Tpyp. Further, we have | DQ¢[g]] < exp(Me/v)/7|g] o0
which implies the Lipschitz continuity of Q¢ (for || f]o < M.).

We prove that for | f||oc < M (| |0 < Me)and [V flo < G (|Vf']leo < Gy),
|Pr = Pprllop < Lo[llf = f'leo + [Vf =V |2,00]-

For a fixed z € Z, denote
p7=Ty (To(2), f)[VoTo(2)]" [-Vic(To(z),y) + V(To(2))] .

Note that Py = {, p7dpu(2). For any direction h € R4, we bound

[p7h] =P[Rl lop

<ID2Ty (To(2), P)llopllf = f'llo - max |[VoTy(2)h]" [=Vre(Th(2),9) + VF (To(2)] |

+ [max Ty (To(2), )] - [ V6To(RIVF (To(2) - V£ (Ta(2))]

<exp(Me/v)/v- Gr - (Ge+ Gg) - |f = 'l - [B] + exp(Me/) - G - [2] - [V f =V f

Consequently, we have that there exists a constant L,, such that

Ip7(h] = P [bllcc < Lo[lf = fllec + [V.f =V f

|2,oo] ! HhH
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O

The above lemma shows the base case for the induction. Now suppose that the inequality

| D2B¥(f,6) = DaB*(f',0)op < Li[|f = f'lloc + IV f = Vf']l2,60] holds.
For the case of k£ + 1, we compute the Fréchet derivative

DoBETY(f,0) = D1B(BF(£,6),0) o D2B*(f,0) + DoB(B (f,6),0),
and hence we can bound
| DoBE 1 (f,0) — DaB 1 (f,6)]0p
< |D1B(B*(f,6),0) o (D2B"(f,0) — DaB*(f',0)) op

+ (DlB(Bk(f, 0),0) — DlB(Bk(f’, 9), 9)) o DoBE(f',0)]op

+ | D2B(BY( f 0),0) — DaB(B*(f',0),0)|op
< |DaB*(f,0) — DaB*(f, 9)Hop (85)
I 0o | D2B(f,0) |op

+ LalB(f, ) - Bk(
+ La[|B*(f,0) = BE(f,0)lco + [VB*(f,0) = VB(£',0) 2,00 ]

< Lillf = oo + IV = Vi l200] + La- My - [f = [/l
+ Lillf = f'lloc + LI VB (f,0) = VB*(f'.0) 2,00

< (Li + Ly + LaM)[|f = f'lloo + IV f = V' |200] + L[ VB*(f,0) = VB*(f,6) 2,0 (86)

Here in the third inequality, we use the induction for the first term, Lemma [B.7)for the second term.
Notice that V.A(f, ) is Lipschitz continuous w.r.t. f: Denote k(z,y):=exp{—c(z,y)/v}. For any
fixed x € X,

N $a k(2 ) exp{f(2)/1}Vic(z, z)da(z) 91(f)
V(A @))(x) = § ¢ k(2 z) exp{f(2)/7}da(z) ' # 92(f)

where we denote the numerator and denominator of the above expression by g; : C(X) — R? and
g2 : C(X) — R. From the boundedness of ¢g; and g, the Lipschitz continuity of g; and go w.r.t. to
f, and the fact that g5 is positive and bounded away from zero, we conclude that there exists some
constant L 4 7 such that for any € X’ (this follows similarly as (63))

IV(A(f, ) (2) = V(A(f, @) ()] <
Recall that B* is the compositions of operators in the form of .A. Consequently, we have that
IVB*(f,0) = VB*(f,0) 2.0 <

Plugging this result into (86), we prove that the induction holds for k + 1:
| D2BH(f,0) = DB (f,0)lop < (Liv+ L+ LaMy+ Ly La )1 f = f'lloo + [V F =V ' 2,00].

Consequently, for any finite I, we have |By — By/| < Li[|f — f'|eo + [Vf — V.f'|2,50], where
Ly=1- (L1 + LMy + LlL_A’f).

Lemma B.11. Under Assumption for f € C(X) such || f|o < M., there exists constant L 4
such that D1 A(f, ) is L 4-Lipschitz continuous with respect to its first variable.

87)

Proof. Let g € C(X) any function. Denote 7T, (x, f):= exp(—c(z,y)/v) exp(f(x)/v). For a fixed
point y € X and any function g € C(X), we compute that

_ SX 7;($,f)g(f£)d019($) gl(f)
(DA = 25 = (@) ()

where we denote the numerator and denominator of the above expression by ¢; : C(X) — R? and
g2 : C(X) — R. From the boundedness of ¢g; and g, the Lipschitz continuity of g; and go w.r.t. to
f, and the fact that g5 is positive and bounded away from zero, we conclude that there exists some
constant L 4 such that for any = € X’ (this follows similarly as (63)).

#

O
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Analyze the second term of (72). We bound the second term of (72) using Lemma [B.10}
HDQB(Bl_l(fv 9)’ 6) - DQB(Bl_l(f/’ 9)7 G)HOP
< Li[IB7H(£,0) = BT 0o + [VB'TH(,0) = VBTN, 0) .0
< Lallf = Flloo + Laglf = ol = Lo U+ La ) f = Fllo,
where we use (§7) in the second inequality.

Combing the analysis for the two terms of (72)), we conclude the result.

B.4 Proof of Theorem 5.1

We prove that the approximation error of V20T, (g, 3) using the estimated Sinkhorn potential f§
and the estimated Fréchet derivative gg is of the order

O(f5 = folloo + V15 = Voll2.co + V215 = V2 follop.co + 95 — DSollop)-
The other term V20T, (ag, ) is handled in a similar manner.

Recall the simplified expression of VgOTﬂ, (ag, B) in (32). Given the estimator f§ (g§) of fo (D fo),
we need to prove the following bounds of differences in terms of the estimation accuracy: For any
hl, hg € Rd,

‘D 1H1(fo, )[Dfe[hl]nye[hz]] - D%IHI(fGEﬂe)[g;[hl] gg[hzm

= O ([Pl - [R2l - (115 = follo + g6 — D follop)) » (88)
| D3, H (fo,0) — D3 H1(f5,0)]op
= O (If§ = folo + 1V f§ = Voll2o + [V f5 =V follop,e0) - (89)

Note that from the definition of the operator norm the first results is equivalent to the bound in the
operator norm. Using Propositions [5.2] and@ and Lemmas B3] @ we know that we can compute
the estimators f§ and g§ such that | f§— foloo < €, |V 5=V fol2.00 < € and | V25—V fg|op.oo

and | g5 — D fglop < € in logarithm time O(log 1). Together with @ and (89) proved above we
can compute an e-accurate estimation of V0T, (ag, 3) (in the operator norm) in logarithm time

O(log 1).

Bounding (88). Recall the definition of D?,H1(fg,0)[D fo[h1], D fo[h2]] in (56). Denote

Ay = D} A(fo, p),v1 = Dfglh1],v2 = Dfolha],
A2 = D%lA(fgaae),ul = g;[hl]7u2 = 9§[h2]

Based on these definitions, we have
D}, H1(fo,0)[Dfo[h1], D folho]] J Aivr, v2](y)dB(y)

Dit (£, Ogi ). gilhel] = | Afur. we)(0)d4500).
Using the triangle inequality, we have
| Ar[v1, v2] —As[ur, us]fo (90)
< [Aifvr —ur, va]llo + | Ax[un, v2 — uz]fo + [|(Ar — A2)[us, uz] oo
We bound the three terms on the R.H.S. individually.
For the first term on the R.H.S. of (90), we recall the explicit expression of A;[v1, v2](y) in (B3) as

Afor,oa](y) — L T @ @dan(e) T, STyl fo)en (@)oo dev () da )

N AN ATTIED v [§ Ty (@, fo)dao(@)]’
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Here we recall T, (z, f):=exp(—c(z,y)/v) exp(f(z)/v). We bound using the facts that 7, (x, fp)
is bounded from above and bounded away from zero

BRACINICH ()—UJ@)()wm@M
3§ Ty (@, fo)dag(x)
+ (L T )Ty @' 1) (01() = 1 2) () o (@) o (@)
7 [Sx To (@, fo)dao(a)]”
= O([[vr — wa]lo - [02]co)-

Further, we have |u; — v1]o = O(|Dfo — ggllop - [|h1]) and |vi]|ec = O(||h2]). Consequently, the
first term on the R.H.S. of (90) is of order O(| D fo — g§|op - [h1] - | h2l])-

Following the same argument, we have the second term on the R.H.S. of (90) is of order O(|| D fy —

Gollop - [Pl - [[2)-

To bound the third term on the R.H.S. of (90), denote

S T2, fe)“1< Juz(x)dag(x) and Ao [u1, us]:= S Tyle, fe)ul( Juz(x)dag(x)
¥ $x Ty, fo)dap(z) ’ 7 $x Ty, f§)dag(v)

| A1 [v1 — ur, v2](y)]

Aqifur, us)i=

and denote

STy (=, fo)ua (w)day(x) §5 Ty (2", fo)ua(z')dag (2)
7 [§x Ty (=, fa)daa( )]

_Sa Ty(@, f§)ua (x)dag(x) §5 Ty (@', f5)ua(a")dag (2)
[SX y 33>f9)d049( )]2 '

We show that both (A1 — A21) [u1, us2]| and |(A12 — Ago) [u1, us]| are of order O(| D fo — g§]lop -
|ha] - [ hal). This then implies | (A1 — Ag)[u1, u2]| = O(IDfo = g§lop - I - [ h2l)-

With the argument similar to @) we obtain that |(A1; — Ag1)[u1,u2]| = O(|Dfo — g§lop -
[u1] - |luz|) using the boundedness and Lipschitz continuity of the numerator and denominator of
Aj1[u1, ug] wrt. to fy and the fact that the denominator is positive and bounded away from zero
(see the discussion following @)). Further, since both D fy and g§ are bounded linear operators,
we have that u; = O(hy) and up = O(hs). Consequently, we prove that | (A1 — Aoy ) [ug, ug]| =
O(fo — F5lop - Il - el

Similarly, we can prove that | (A2 — Ago) [u1,us]| = O(| fo — f§lop - [Pl - [R2l]).

AlZ[Ula Uz

)

and A22 [u1 y ’LLQ

Altogether, we have proved (88).

Boundmg (B9). Recall that the expression of D3,H1(f,6) in (58). For a fixed y € X and a fixed
7' € Z, denote (recall that u (6, f) = Vic(Ty(2),y) — V[ (Tp(2)))

Bi(f) = V5Ty(2") x1 Vf(Ty(2"))

Bs(f) = VeTy(z )TV2f( b(2"))VoTy(z')

§2 Ty (To(2), f) VoTo(2) "uz (0, flu=(0, )" VoTp(2)dpu(2)

Bsl) = §2Ty(To(2), f)du(z)
B SZ,Ty(T@(Z)’f)VgTM ) X1 uz(‘g f)dﬂ(z)
B = T 7, (). ) dn)
Bs(f) = §5 Ty (To(2), f)VoTy(z )TVMC(TG(Z%y)veTe(z)d,u(z)
’ Sz v(TH )du(z)
_ $2Ty(Te(2), £)VeTo(2) "V f(To(2)) VeTp(2)du(z)
Bell) = §= y(T9 )du(z
&m:&%m@ﬂwm>mehwzm o (To(2), ) VoTo(2) u. (0, f)du(z)]'

[§27(T(2) fﬁdu(ﬂ
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Based on these definitions, we have

2 7
D2,H,(f.6) = L S Bi(f)du() + L S Bi(f)dB().
i=1 =3

We bound the above seven terms individually.

Assumption B.6. For a fixed z € Z and 0 € O, use V3Ty(z) € T(R? x R? — ]Rq) to denote
the second-order Jacobian of Ty(z) w.rt. 0. Use x1 to denote the tensor product along the first
dimension. For any two vectors g,g' € R?, we assume that

[V3To(2) x19 = ViTy(2) 1 ¢'lop = Ollg — g'I)- o1

For the first term, using the boundedness of V2Tp(z") (Assumption , we have that
1B1(fo) = B1(f§)llop = OV fo = V f5l2.00)-

For the second term, using the boundedness of VTy(z'), we have that

| B2(fo) = Ba(f§)lop = OV fo = V2 fillop.co)-

For the third term, note that |u, (0, fo) — . (0, f§)|| = O(|V fo — Vf§l2,00). With the argument
similar to (63), we obtain that

|Bs(fo) — Bs(f§)llop = O(fo = filwo + IV fo — V fil2,0)- (92)

This is from the boundedness and Lipschitz continuity of 7, (Tg (2), f ) w.r.t. to f, the boundedness

and Lipschitz continuity of u. (6, f) w.r.t. V f, and the fact that T, (Ty(z), f) is positive and bounded
away from zero.

For the forth term, following the similar argument as the third term and using the boundedness of
V2Ty(z), we have that

|Ba(fo) — Ba(f§)llop = O fo = filwo + IV fo = Vfil2,00)- (93)

For the fifth term, following the similar argument as the third term and using the boundedness of
VoTp(z) and V11¢(Ty(z),y), we have that

|B5(fo) = Bs(f5)lop = O fo = folle0)- 94)

For the sixth term, following the similar argument as the third term and using the boundedness of
VoTy(z), we have that

|Bs(fo) = Bo(f§)lop = Ofo — filloo + [V fo =V f§op,c0)- ©5)

For the last term, following the similar argument as the third term and using the boundedness of
VoTy(z), we have that

|B7(fo) — Br(f§)llop = O fo = filwo + IV fo = V f5l2,0)- (96)
Combing the above results, we obtain (89).

ZRecall that T'(U, W) is the family of bounded linear operators from U to W.
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C eSIM appendix

C.1 Proof of Theorem

In this section, we use f)' to denote the Sinkhorn potential to OT.,(Tyy/u, 8). This allows us to
emphasize the continuity of its Fréchet derivative w.r.t. the underlying measure p. Similarly, we write
B, (f,0) and £,(f,0) instead of B(f,0) and E(f, #), which are used to characterize the fixed point
property of the Sinkhorn potential.

To prove Theorem[6.1] we need the following lemmas.
Lemma C.1. The Sinkhorn potential f} is Lipschitz continuous with respect to ji:

115 = 30 = Odui (s, ). 07

Lemma C.2. The gradient of the Sinkhorn potential f) is Lipschitz continuous with respect to ju:
IV £ =V 5 2.0 = O (11, 12)). (98)

Lemma C.3. The Hessian of the Sinkhorn potential f} is Lipschitz continuous with respect to .

IV2f5 = V2 £§ lopoo = Odui(m, 7). (99)
Lemma C.4. The Fréchet derivative of the Sinkhorn potential f}) w.r.t. the parameter 0, i.e. D f}, is
Lipschitz continuous with respect to .

IDf = DI§lop = Odu (1, 1)). (100)
Once we have these lemmas, we can prove[6.1]in the same way as the proof of[5.1]in Appendix [B-4]

C.2 Proof of Lemmal[C.1l

Note that from the definition of the bounded Lipschitz distance, we have
doi(a,@) = sup K& o) — (& apf = sup (o Ty, puy —(§oTh, 1)l

[l <1 [€llbe<1
< H Tlp 1€ 0 Tyllor - dua (1, 1) < G - i (e, ), (101)
o<1

where we use ||€ 0 Tp|1;p < Gr from Assumption

We have Lemma[C.I|by combining the above results with the following lemma.
Lemma C.5. Under Assumption|[B.1|and Assumption|B.2 the Sinkhorn potential is Lipschitz contin-
uous with respect to the bounded Lipschitz metric: Given measures o, o/ and 3, we have

| fap = farploo < Gudp (/@) and  |ga,p — gar o0 < Guidpi (e, ).

where Gy = 2yexp(2M./v)Gh, /(1 — N2) with G}, = max{exp(3M./7),2G. exp(3M./v)/v}

_ exp(Mc/v)—1
and A = exp(M./v)+1"

Proof. Let (f,g) and (f’, ¢') be the Sinkhorn potentials to OT.,(«, 3) and OT (¢, B) respectively.

Denote u:=exp(f/7), v:=exp(g/y) and u’:= exp(f’/7), v":= exp(g’ /7). From Lemma|C.7] u is
bounded in terms of the L* norm:

[ulon = max fu(z)] = maxexp(f/y) < exp(2Me/7),
which also holds for v, u’, v’. Additionally, from Lemma[C.8] Vu exists and | Vu/ is bounded:
1 1 G.exp(2M./v)
max [Vu(z)| = mgX;lU(l’)lHVf(fE)H < 5\\U($)Hoomgx IVf(@)] < B E—
Define the mapping A, p:=1/(Lop) with
Lo = | 16 n)u(wdaly),
x

where [(z,y):= exp(—c(z,y)/v). From Assumptio we have || < exp(M./v) and from
Assumption [B.2|we have |V, l(z,y)| < exp(M/7)==. From the optimality condition of f and g,
we have v = A,u and u = Agv. Similarly, v = Ay v’ and v’ = Agv’. Recall the definition of the
Hilbert metric in (60). Note that dg (u,v) = dp(1/p,1/v) if p(z) > 0and v(z) > 0 forall z € X

and hence dy (Lo, Lov) = di(Aap, Aav). We recall the result in (61)) using the above notations.
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Lemma C.6 (Birkhoff-Hopf Theorem |Lemmens and Nussbaum| [2012]], see Lemma B.4 in |Luise

et al.|[2019]). Let A = % and o € M{(X). Then for every u,v € C(X), such that

u(z) > 0,v(x) > 0 forall v € X, we have
di (Lo, Lov) < A (u,v).

Note that

|log pu —logv|ew < du(p,v) = |logu —logv|w + |logv — log il < 2| log it — log v .

In the following, we derive upper bound for dg (., v) and use such bound to analyze the Lipschitz
continuity of the Sinkhorn potentials f and g.

Construct 9:=A,u'. Using the triangle inequality (which holds since v(x),v’(z), o(x) > 0 for all
r € X), we have

dy(v,v") < dg(v,0) +dy(0,v") < Mg (u,u') + dg(0,v),

where the second inequality is due to Lemma Note that u’ = Agv’. Apply Lemma again to
obtain
dp(u,u") < Mg (v,0").

Together, we obtain
dp(v,v") < Ndg(v,v") + dg (0,0) + Mg (@,4") < XN2dg(v,v') + dg(9,7'),

which leads to

To bound dg (0, v"), observe the following:

dyg (v, 9) =dg (Lo, Lou') < 2|log Loy’ —log Lot |00
1
=2max [Vlog(as)([Lat](z) — [Lav'](2))| = 2max —[[Lou'](2) — [Law](2)]
rzeX Te€X Ay
<2max{|1/Lot| o, |1/Lot |0} | Lot — Lot |0, (102)

where a, € [[Lou'](2), [Louw'](x)]] in the second line is from the mean value theorem. Further, in
the inequality we use max{|1/Lot |w, |1/Lat|o0} = max{||Aat'|| oo, | Aat| o0} < exp(2M,/7).
Consequently, all we need to bound is the last term || Lo % — Lot/ |-

We first note that Vo € X, ||I(x, )/ ()|p < 00: In terms of || - ||

[, ' (Voo < (2, oot o0 < exp(3Me/y) < 0.

In terms of | - |4, we bound
[, )0 (lip < N2, ool Trip + 12, Yupl oo
G.exp(2M./~ G, 2G . exp(3M. /v
< exp(Mc/v)Ey/) + exp(MC/v)T exp(2M./v) = ”(Y/) <

2G. exp(3M. /v
Y

Together we have |I(z, y)u'(y)|o < max{exp(3M./7), ) }. From the definition of the

operator L., we have

Lot = Lot = max| | 1)/ (0)da’ (o) ~ | 1e.p)u'@)dan)] < 1w ) () ndu o ).
z X X
All together we derive

_ 2exp(2M./7) 11(z, y)u' (y) [[o
= 1— A2

exp(Mc/’Y) —1
exp(Mc/v) + 1
Further, since dg (v',v) = ||[log v’ —logv| e = %Hf’ — flleo» we have the result:

/ 27 exp(2Me /)| (z, y)u'(y) b
”f_fHOO< 1_)\2 ’

Similar argument can be made for ||¢’ — g| - O

dy (v, v) cdp(d,0) (A=

).

dbl(o/, Oé).
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Lemma C.7 (Boundedness of the Sinkhorn Potentials). Let (f,g) be the Sinkhorn potentials of
problem (6) and assume that there exists x, € X such that f(z,) = 0 (otherwise shift the pair by
f(x0)). Then, under Assumption[B1} | f|« < 2M, and ||g||lc < 2M..

Next, we analyze the Lipschitz continuity of the Sinkhorn potential f,, g(x) with respect to the input
x.

Assumption [B.2]implies that V,c(z, y) exists and for all z,y € X, [V,c(z,y)| < Ge. It further
ensures the Lipschitz-continuity of the Sinkhorn potential.

Lemma C.8 (Proposition 12 of [Feydy et al| [2019]]). Under Assumption [B.2] for a fixed pair of
measures («, 3), the corresponding Sinkhorn potential f : X — R is G.-Lipschitz continuous, i.e.
forxq,x0 € X

[fa,8(x1) = fa,p(22)] < Gelz1 — 22]. (103)
Further, the gradient NV f,, g exists at every point x € X, and ||V fo g(x)| < G¢,Vz € X.

|
Lemma C.9. Under Assumption for a fixed pair of measures («, B), the gradient of the corre-
sponding Sinkhorn potential f : X — R is Lipschitz continuous,

V(@) = V(2| < Lylar — 2], (104)

2
where Ly:= 4$C + L.

C.3 Proof of Lemmal[C.2]

We have Lemma [C.2] by combining (I0T)) with the following lemma.

Lemma C.10 (Lemma [C.2]restated). Under Assumption|[B.1)and Assumption[B.2] the gradient of
the Sinkhorn potential is Lipschitz continuous with respect to the bounded Lipschitz metric: Given
measures o, o' and 3, we have

IV fap = Viagleo =0(du(c, )

Proof. From the optimality condition of the Sinkhorn potentials, one have that
. 1
J ha,s(,y)dB(y) = 1, with by 5(z,y):= exp (,y(faﬁ(x) + 9o (y) — C(xay))) - (105)
x
Taking gradient w.r.t. = on both sides of the above equation, the expression of V f, g writes

S ha ﬁ(xa y)vxc(xa y)dﬂ(y)
V faple) = S0 = [ oo Vacle s, aos)
g § haus(2,9)dB(y) x
We have that Vz, y, h, g(x) is Lipschitz continuous w.r.t. a, which is due to the boundedness of
fa,5(%), ga,s(y) and the ground cost ¢, and Lemma [C.1] Further, since |V c(x,y)] is bounded from
Assumption@we have the Lipschitz continuity of V f, g w.r.t. o, i.e.

IV fa5(z) = Viws@)] = O(du(e’, @)

C.4 Proof of Lemmal[C.J3

We have Lemma[C.3|by combining (TOT)) with the following lemma.

Lemma C.11 (Lemma [C.3| restated). Under Assumptions [B_I{B.3| the Hessian of the Sinkhorn
potential is Lipschitz continuous with respect to the bounded Lipschitz metric: Given measures «, o
and 3, we have

IV fap = V2 for gllop.cc = O(dui(e, @)
Proof. Taking gradient w.r.t. z on both sides of (T06), the expression of V2 f,, 5 writes

V2 fap(x) = L %ha,ﬁ(x, Y)(V fa,5(x) = Vac(z,y)) [Vac(z, y)] " + has(z, y)Vacl, y)dB(y).
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From the boundedness of h g, V fo 3 and V¢, and the Lipschitz continuity of h g and V f,, g W.r.t.
«, we have that the first integrand of V2 f,, s is Lipschitz continuous w.r.t. a.. Further, combining the
boundedness of [V2_ c(z,y)| from Assumptionand the Lipschitz continuity of h, g W.r.t. o, we
have the Lipschitz continuity of V2 f,, (), i.e.

IV fap(@) = V2 far p()| = O(du(e, ).

O
C.5 Proof of Lemmal[C4
The optimality of the Sinkhorn potential f)’ can be restated as
fo = Bu(fy.9), (107)
where we recall the definition of B,, in (I8)
Bu(f.0) = A(A(f, Toz), B)- (108)

Note that it is possible that 3, depends on j, which is the case in OT (g, vt ) as B, = agr = Tpe gH-

Under Assumption let A = eMe/v_q

Sromgi- By repeating the above fixed point iteration (I07) I =
[log, 31/2 times, we have that

1 =E.015.0), (109)
where £,(f,0) = B.(f,0) = Bu(-- Bu(f,0)---,0) is the | times composition of B,, in its first
variable. We have from ©8)

2
DM Eu(f O)lop < 3 (110)

‘CHOP =MaXfec(x) HHffHHT

where we recall for a (linear) operator C : C(X) — C(X),

Let h € R? be any direction. Taking Fréchet derivative w.r.t. § on both sides of (T09), we derive
Dff[h] = Di&u(fy, 0)[Df[h]] + D2&u(f5, 0)[R]. (111)
Using the triangle inequality, we bound
IDf TR = DFF [hle
< D& (f5 O[D ' h]] = Di&a(fou: 0)[DF§ R0
+ | D€, (f3, 0)[1] — D2Ea(£5, 0)[h] oo

< IDW&(f O)[DFFTR]] = Da&(fy' O)[D 5 A] 1o ) (112)
+ HDlgxt(ff?,/ug)[ng[h]] - Dlg/t(f«‘),/u )[ 5[ ]]Hoo @
+ | DrEu(fo.5 O)[DFF (W] = Dr&s(fo [P0 B
+ D26, (f5', 0[] = D2Ea(f5, 0)[1] o ®
The following subsections analyze (I) to @) individually. In summary, we have
® < 2IDF 1]~ D} e (113)

and @), @, @ are all of order O(dy; (1, i) - ||h]|). Therefore we conclude
1 a _ i _
2D [h] = DfgThlllee = Odui(ps, ) - |B]) = | DS = Dfgllop = Oldui(ps, ) (114)
3

C.5.1 Bounding @
From the linearity of D1 &,,(f},0) and (T10), we bound
@ = [ Di&u(£5, O[DFyTh] — D[R]l
< | Dr&u(£5 0)lop|DFg Th] = Dff Rl < %HDfo“[h] = Dfg]]ec.
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C.5.2 Bounding 2
From Lemma B8] we know that D1,,(f, ) is Lipschitz continuous w.r.t. its first variable:

| D1B,u(f,6) = D1Bu(f,0)llop = O(If = f'll0)- (115)
Recall that £,,(f,0) = BL,(f, ). Using the chain rule of the Fréchet derivative, we have
Dlgu(fa 0) = DIBL(fa 9) = DIBu (Bz_l(fa 9), 0) o DlBL_l(f7 0) (116)

Consequently, we can bound ) in a recursive way: for any two functions f, f’ € C(X)

| D1B,,(f,8) — D1iB,,(f',6)]lop
= | D1B(Bi7(f,0),0) o D1B} " (f,0) — DiBu (B (f',6),0) 0 DiBI (f,6)op
< ”DlBH(B;liil(fa 0)7 6) © (DIBifl(f7 0) - Dllgifl(f/a 9)) Hop
+ | <D18,u (B ' (f,6),0) — DB, (B, (f',9), 9)) o DB (f",0) ] op
<[ D1Bu (B (£,0),0) [ op| D18y (£,6) = DBy (f,6) oo
+ OB, (f,0) = By (' 0) oo - [ D1B (f,60) lop)
= O(|f = f'lloo) + DB} (f,0) = DBy (f,6)] oo

where in the first inequality we use the triangle inequality, in the second inequality, we use the
definition of || - |, and (TT3), and in the last equality we use (TT3) and the fact that B* is Lipschitz
continuous with respect its first argument for any finite k£ (see Lemma . Besides, since f}' is
continuous with respect to x (see Lemma [C.I)), we have

|D1BI(f§'6) = D1B' (5, )llop = Oldia (11, 2)- (117)
We then show that | D f5'[][c = O(|hl«): Using (11}, we have that
IDfF [l < gHng[h]Hoo + D€, (f5, )[Rl = D5 [h]leo < 3| D2Eu(£5 0)lopI[A] oo
Lemmashows that | D2&,,(f),0)||op is bounded and therefore we have
IDF5 [h]lleo = O(IR]lo)- (118)
Combining the above results, we obtain
@ < |[D1B'(f§,60) = DiB'(f5.0) ol DS TH]lc0 = O (11, 1) - | ]cc)-

C.5.3 Bounding 3

Denote w, (z) = exp(—“LL) exp(f(x)/7). Assume that | f],, < M, and |V f]2.0 < Gy. Then
we have forany y € X,

lwylloo < exp(Me/7), [V,

2,00 S exp(Me/7)(Ge + Gf)/’)/- (119)

Therefore, |wy s = max{exp(M./7v),exp(M./v)(G. + G)/v} is bounded (recall the definition
of bounded Lipschitz norm in Theorem . Besides, for any y € X, w, () is positive and bounded
away from zero

wy(x) = exp(—2M. /7). (120)
For a fixed measure  and g € C(X), we compute that

_ §x wy(z)g(2)dr(z)
SX wy(z)dr(z)

D1 A(f,K)[g] (121)
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This expression allows us to bound for two measures ~ and &’

(DA, 7) = DyAGE /) gl = 3209y 0y (@)g(w)dr (@)

SX wy (z)dr(x) B SX wy(z)dr'(z) oo
[y @y (@)9@)dn()  Spwn@g(@)dn@),  pwy@g@dn(@)  fyw,(@)g@)ds (@)
< | ; loo + 1l ; ; lloo-
S;v wy (z)dr () S;c wy (z)dr! () SX wy (w)dr' () SX wy (2)dr’(z)

We now bound these two terms individually. For the first term, we have

I Sawy(@)g(@)dn(z) [, wy(@)g(x)dr(z)

§ v wy(z)dk(x) § 4 wy(z)dr'(z) oo
wy(z) [dr(z) — dr'(2)]
<1 et | e e T

< wylloo = lglo - lwy (@) - dui (5, 57) - exp(dMe/v) = O(lgleo - (5, £')),
where we use (TT9) and (T20) in the last equality. For the second term, we bound
I Sxwy(@)g(@)dr(z) [y wy(z)g(z)dr’(z) o < | Sawy(@)g(@)[dr(z) — dr'(x)] H
S wy(@)dr(2) §awy(@)dr(2) o S wy(@)dr(z) .
< exp(Me/7) - |wy (@) or - lgler - dui (5, ) = O(lgllur - dua(r, &)

Combining the above inequalities, we have

[(DLA(f, 5) = DLA(f, &) gl = Olgli - dua(s5, K7)). (122)

Denote a = Ty and & = Tpyji. From the chain rule of the Fréchet derivative, we compute
|(D1B,(f.6) ~ DiBy(f.6)) 9]
~ (DA @) 5) o DiAU ) - D1A<A< )75,) o DAl ) Il
<|D1A(A(f, @), B,) [(D1 (f, @) = DLA(f, ))
+] (DlA(A(f, ), Bu) — o), 8s) )

+ H (DlA(A(f7 ) BU) IBIL

We now bound these three terms one by one.
For the first term, use (TI0) to derive

| Dy A(AS. @), B:) [(DLA(f, ) = D1 A(f, ) (9]
< |D1A(f, @)lg] = D1 A(f, @)[g]llo = Ol gller - dui(e, @),
where we use | D1 A(A(f, @), B)|lop < 1 and (122) in the second equality.
Combining the above result with (TOT) gives
| DVA(A(f, @), B.) [ (DLA(f, @) = D1A(f, @) 9], = Olgl - duilp, i)

For the second term, use (122)) to derive

H (DIA(-A(fa Oé), ﬁu) - Dl-A(-A(f7 Oé), Bu)) [Dl-A(f’ d) [g]] Hoo

= O(|DLA(S, @)[glllbr - doi (B, Br))-

We now bound | D1 A(f, @)[g]||pi. From (73)), we have that | D1 A(f, @)[g]]x < |g]- Besides, note
that D1 A(f, @)[g] is a function mapping from X’ to R and recall the expression of D1.A(f, @)[g] in
(TZ1). To show that D1 A(f, @)[g](y) is Lipschitz continuous w.r.t. y, we use the similar argument
as (63): Under Assumption [B.1|and assume that || f| o, < M., the numerator and denominator of (63)
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are both Lipschitz continuous w.r.t. ¥ and bounded; the denominator is positive and bounded away
from zero. Consequently, we can bound for any y € X

IVyD1A(f, @) gl ()| < 2exp(4Me/7) |9l - Ge, (123)

and therefore

H (DlA(A(f, a), Bu) — D1A(A(f, a%m)) [DLA(F, @)lgl] |, = Olglee - dua(By: Ba))-
For the third term, first note that we can use (I0I)) and the mean value theorem to bound
I, @) = Af, @)oo = Olmass flwy o1 - dii(er, &) = Oldu(p, f1)). (124)

Hence, we use Lemma|[B.11]to derive

u (DlA(Ao: o), Ba) — DLA(A(f, ), m)) (DA a)ldl]],

= O(JA(f, @) = A(f, @)oo - [DLA(S, @)[g]llc) = Olglleo - dui(p, 12)),

where we use (124) and the fact that | D1.A(f, @)| ,p is bounded in the last equality.
Combing the above three results, we have

[(D1B,(f.0) = DiBu(f,0))[9)lec = Ogloi - dua(ps, ) (125)
Recall that £,,(f,0) = BL (f,0). Using the chain rule of the Fréchet derivative, we have

Eu(f,0) = D1B.(f,0) = D1B,. (B, (f,0),0) o D18, ' (f.6). (126)
Denote g = D f}'[h]. We can bound @) in the following way:

@ = |D1B. (B (£,0).0) [D1B 1 (£.0)[g]] — D1Ba (B (£.0),0)[DiB (f,0)[g]]]
< |D1Bu(B7(,0),0) [ (DB (£,0) — D1BL (f,0)) [9]]

+ (DlBH (BL'(£,0),0) — D1B, (B (£,0), 9)) (D18 (f,0)[9]] 1o
+ (DlBu (BL1(£.0),0) — DBy (BL(£,6), )) [D1BL(f,0)[9]] e

< |D1Bu(B}, " (£,0),0) opl (DlBﬁﬂoi 0) — D185 (£,0)) [9]]l o0 #1
+O(IBH(f,0) = B (f,0) oo - [D1BE (£, 0)[9] o) #2
+ O(| DB (£,0)[g) ot - dui (i, 7)), #3

where in the first inequality we use the triangle inequality, in the second inequality we use the
definition of | - ||op, (TT3) and (I23). We now analyze the R.H.S. of the above inequality one by one.
For the first term, use | D1 B, (B}, (f,0),0)]op < 1 and then use (T23). We have

1< [(D1Bu(f,0) = D1Bu(£,0)) (9]l = Olgler - o (1, 1))

For the second term, note that B¥ is the composition of the terms A(f, o) and A(f, 8,,). Using a
similar argument like (T24), for any finite k£, we have

|BLH(f.0) = BE H(f.0) o0 = Odui(p, 12))-
Together with the fact that | D1 B(f,)|op < 1, we have

#2 = O(|glloo - dui(pt; 1))

Finally, for the third term, note that 13, is the composition of the terms A( f, &) and A(f, 5,,). Using
a similar argument like (123) to bound

#3 = O(lglle - dun(p; 1))
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Combining these three results, we have

® = [(D1B,,(f.6) — DiB(£.0))[9lloc = Olgler - doa(p, 7). (127)

We now bound | D f}'[h]|s (g = Df}'[h]). From the fixed point definition of the Sinkhorn potential
in (I07), we can compute the Fréchet derivative D f} by

Dfli = DlA(A(fg,ae)aﬁu) ODlA( éia ae)ODf5L+D1A(A(f5L7a9)76M> OD?"Z(( ét’ 6), (128)
where we recall A(f,6):=A(f, ag). For any direction h € R% and any y € X, D f}[R] is a function

with its gradient bounded by

IV, DA < 1V, (DM(A% a0). 5,) [leuf;, ao)[ Dt [h]]]) Wl #

HIVy (DA, a0),5,) [D2AGE O W #2

‘We now bound the R.H.S. individually:
For #1, take f = A[f, ap], & = 8, and g = D1 A(f}, ag)[Df}[R]] in (I2I). Using (I23) and
(TT8), we have

#1 = O(|glle) = O(IDfy [R]l0) = O(IA]). (129)

For #2, take f = A[f, ap], k = B, and g = Do A(f},0)[h] in (I2I). Using (T23) and (79), we

have
#2 = O(|glc) = O(| D2A(f}, 0)[1]]0) = O(IR]). (130)

Combining these two bounds, we have
D3 [P]we = O(|[R]). (131)
By plugging the above result to (127), we bound

@ = [(D1B],(f.0) — D1B,(f,0))[g]l0 = O(dui(p, z) - | 1) (132)

C.5.4 Bounding @
We have from the triangle inequality
@ < | D2£,(f4 O)h] — D2Ea(f4,O)[M]|eo + [ D2Ep(f5' O)[h] — D2E(f§, O)[h] [0 (133)

We analyze these two terms on the R.H.S..

For the first term of (T33)), use the chain rule of Fréchet derivative to compute

Do&u(f,0)[h] = D1B,. (B, (£,6),6)[ DB, (f,0)[1]] + D2B (B, ' (f,6).6)[n].  (134)

Consequently, we can bound
[ (D2€,(f,0) — D2&(f,0))[R]]c
<”Dllgu (Bzil(fa 9)7 0) [D2Bi71(f7 6) [h]] - DIBﬂ (Bi’fl(.ﬂ 9)7 9) [DQBﬁjil(f7 9)[]7’]] ”OO #1
+ |1 D2B,u (B, (f,6),0) [h] — D2B (B (.6),0) []]oo- #2
We analyze #1 and #2 individually.
Bounding #1. We first note that A(f, «) is Lipschitz continuous w.r.t. « (see also (124)):
IA(f, @) = A(f, &)l oo < exp(2Me/v) - |wyllo - dui(a, @) = O(dpi(ex, )), (135)

where in the equality we use (TT9). As BZ is the composition of A, it is Lipschitz continuous with
respect to  for finite k. Note that the boundedness of | f| and ||V f|« remains valid after the
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operator B (Lemma[B.T|and (i) of Lemma (B.2)). We then bound
#1 < HDIBM (Bz_l(f7 9), 9) [(DQBL_l(fa 9) - D2Bﬁj_1(fa 9)) [h’]] ”OO

+||(D18/L(le(f70)a ) Dl [L(Bl 1(f7 )7 ))[DQBLI(faQ)[h]]OO

+ | (Dlsu (BL1(£,0),0) — DB (B5(f,6). 6)) [D2B(f,0)[h]] o

< |D1B (B (£,0),0) |op| DB (f,0)[h] — D2BL (f,0)[R]] oo
+O(|1BH(f,0) = B (0o - 1D2BY (0[] o0)
+ O(dyi (s 1) - | D2BL (£, 0)[] )

< | D2BLH(f,0)[h] — DB (F,0)[R] o + O(dui (i, 1) - | 2],

where in the second inequality we use the definition of || - [,,, (IT3) and (I23), and in the last
inequality we use the fact that | D1 B, (f,0)[op < 1, Bﬁ is Lipschitz continuous with respect to y for

finite & (see the discussion above) and that HDng{l (f,0)]op is bounded (see Lemma

Bounding #2. To make the dependences of A on # and p explicit, we denote

-’Zt(f7 07 IUJ) = A(f7 TQﬁHJ)

To bound the second term, we first establish that for any & > 0, VBE+1 (f, 0) is Lipschitz continuous
w.r.t. p, i.e.

VB (£,0) = VBt (f,0) 2,00 = Ol (1, 1), (136)
as follows: First note that V.A(f, 6, 1) is Lipschitz continuous w.r.t. 1, i.e.

This is because for any 3 € X (note that A(f,0, 11)(-) : X — R is a function of ¥),

iy SX Wy (m)Vlc(y, x)doy (35) SX Wy (m)Vlc(y, x)dag (35)

§ wy(z)dag(x) a § wy(z)dag(x)
< § ¢ wy(@)Vic(y, z)(dag(z) — dag(z)) I
b SX wy(z)dag()
1 [ e Vityeaidanto) | G — o)y
= O(dy(p, 1))

Here in the last equality, we use the facts that |w,(-)V1ic(y, )|s and |wy|s are bounded, and
§ . wy(z)dag(z) is strictly positive and bounded away from zero. Recall that B,(f,0) =

A(A(f,0, 1), B,). We can then prove (T36) by bounding

IVBETL(f,0) — VBET(£,0)]

= |[VA(A(BL(£,0),0, 1), Bu) — VA(ABE(£,0),0, 1), )|

<[ VA(ABL(f,0),0, 1), Bu) — VA(ABL(f,6),0, 1), B)] &1
+ [VACABE(f, > 0,1), Bu) — VA(ABL(f,6),0,10), Bu) | &2
+ [VAA(B(f,0),0, 1), Bu) — VACABE(S,6),6, 1), B &3

= O(du(p, 1))

Here we bound &1 using (137), the Lipschitz continuity of V.4 w.r.t. its second variable; we bound
&2 using the Lipschitz continuity of V.A w.rt. its first variable and (124), the Lipschitz continuity of
Awrt. w; we bound &3 using (124), the Lipschitz continuity of A w.rt. p, and the fact that BZ is
the composition of the terms A( f, ) and A(f, 5,.).

We then establish that D13, f, ) is Lipschitz continuous w.r.t. .
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Assumption C.1. |V,[V¢Ty(2)]|op is bounded

Lemma C.12. Assume that |f|e < M., |V f]2,0 < G, [V fllopoo < Ly Under Assumptions
[B3] [C-1|and[B.1} we have

|D2By(f,0) — DaBy(f,0)]op = O(dui(p, 1)) (138)
Proof. Denote w,(z) = exp (M) and
¢y (2) = [VoTo(2)]" [-Vie(To(2),y) + VI (To(2))]
where VyTy(z) denotes the Jacobian matrix of Tp(z) with respect to 6.

The Fréchet derivative Do A(f, 0, 1)[h] can be computed by

§a0wy (To(2)){8y(2), hydpu(2)
§20wy (To(2))du(z)
Recall that || f|c < M., |V f]2,00 < Gy. Using the above expression we can bound

| (D2 A(f,0, 1) — Do A(F, 0, 1)) [B] 0

DZA(fv 03 :U’) [h] =

(139)

_ H SX “‘)y(T9 )<¢y( ), hydp(z) SX Wy(Te(Z))<¢y(Z) hydp(z) ”
Sy (To(2))du(z) »wy(To(2))di(z) ©
<| §xwy (To(2)){py(2), h)du(2) SX wy(Te 2)){py(2), hydfi(z) I
S wy(To(2))dpu(2) S0 wy (To(2))dpu(2) OO
H SX Wy (T9 )<¢u( ), hydfi(x) B SX Wy (TO(Z))<¢y(Z),h>dﬂ(x) H
Sx wy(TB( ))du(z) S wy(Ta(z))dﬁ(x) ©

iy Sa0wy (T5(2))<2y (2), ) [dps(2) — dia(a)] H
§a0wy (To(2))du(z)
i §a0wy (To(2))<2y (2), h>dﬂ($) S0 wy (To(2 )) fi(z) — du(z)] H

o0

0

Sx wy (Ty(2))du(z ) §x wy (To(2))dia(z)
< exp(2Me/7) - lwy (To(2)) ¢y (2), B ot - dbi(p, 1)
+exp(5Me/7) - |dylloo - [Rlloo - lwy o1 - dor (g, 1)

For the first term, note that ||w,, (Tp(2)){(¢y (2), A)llor < [wyller - @y o - [l and [lwy [ is bounded

(see (TT9)). We just need to bound |¢y[s;. Under Assumption B.5that [ VyTp(z)]op < Gr. we
clearly have that | ¢, is bounded. For ||¢y|ip, compute that

V.oy(2) = Vo[VeTy(2)] x1 [-Vic(To(2),y) + Vf(T(2))]
+VoTy(2)" [-Viie(To(2),y) + V2 [(To(2))] VoTy(2).

Recall that | V2 f(x)]|op is bounded. Consequently, under Assumptlonn C.1} we can see that |V, ¢, ()
is bounded. Together, |¢, ||y is bounded. As a result, we have

|(D2A(f,6, 12) — D2 A(f,60, 1)) [1]| oo = O(dui (s, 1) - [[B])- (140)

Based on the above result, we can further bound

|(D2B,(f,60) — DaBy(f,6))[h]]lw
=| (DlA(A(f, 0,1),8) o Do A(f,0, 1) — DiA(A(f,0,0), B) o D2.A(f, 0, ﬂ)) [A]]|oo

< |D1A(A(F,0, 1), B) [ (D2A(f, 0, 1) — D2 A(F,0, 1)) [1]] oo ##1
+ (DlA(A(f, 0,1),8) — DiA(A(f.0, 1), B)) [D2A(f, 6, 1)[h]]]| #H#2
+ (DlA(/t(f, 0,1),8) — DIA(A(f.0, 1), 5)) [D2A(f, 0, 1)[R]] oo #H3
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For the first term, use | D1.A(A(f, 0, 12), 8)||op < 1 (73) and (T40) to bound

##1 < | D2 A(f,0,1)[h] — D2A(f,0, ) [] oo = Odui (1, 12) - [|1n])-

For the second term, recall the expression of Dg/l( 1,0, i1)[h] in (139). Under Assumption m and
assume that || ||, < M., one can see that | Do A(f, 6, @)[R]|er = O(|h]). Further, use (T22) and
dui (B, B) = O(dy (1, 12)) from (TOT) to bound

##2 = O(|D2A(f, 6, )[1]lt - du (B, B)) = O(|h] - dua(ps, 7).
For the third term, use Lemma [B.11]to bound
##3 = O(| Do A(f,0, 1) [1] oo - |A(S, 0, 1) = A(S, 0, ) o0) = O(dea (s, 3) - | o],
where we use | Do A(f, 60, i)[1] | = O(|h]) and (T24). Altogether, we have

1D2B,u(f,0)[h] = D2Ba(f, 0)[ 7] = Oldui(p, 1) - |1])- (141)
O

We are now ready to bound #2.

#2 < | D2B,u (B, (,0),0) [h] — D2B,. (B (f,0),0) [R]]o0
+ |1 D28y (B (f,6),0) [A] — D2By (B (,6),0) [0
= O(1B,(f,0) = B (f,0)|co + IVBLH(£,0) = VB (£,60)]2,00)
+ O(dpi (s ) - | A]))
= O(dyi(p, 1) - 1)),

where we use Lemma[B.T0]and (T38) (124) in the first equality.
Combining #1 and #2. Combining the above results, we yield
| D28, (f,0)[1]=D2By (£, ) [0 < | D28y (f, 0)[A]=D2Bj;* (f,0)[h] o +O(dua (1, ) [l0),
which, via recursion, implies that (recall that D2&,,(f, 0)[h] = D2B.,(f,0)[h])
| D2£,,(f, 0)[h] = D2&a(f, 0)[h] |0 = O(dui (1, 1) - |1])- (142)
To bound the second term of (I33)), compute the expression of D2&x(f, 0)[h] via the chain rule:
Do&(f,0)[h] = D1By(By ' (£,6),0)[ D28y (f,0)[R]] + DaBy (B ' (f£,6),0)[h].  (143)

Recall that £ (f,0) = BL(f,0). We then show in an inductive manner that the second term of (T33)
is of order O(dp; (1, i) - ||h||): For any finite k& > 1,

| DB (f, 0)[h] — DB (5, 0)[llleo = O(dua (s, 1) - [ n])- (144)

For the base case when [ = 1, we only have the second term of (T43)) in D& (f, 0)[h]. Consequently,
from Lemma[B.10} we have

1D2By (B (f4,6),0) — DB (B (f1,6),0) op

= O(|BS1(f4,0) = BE (5, 0o + VB (£4,0) — VB (f),0)]2,00) = O(dbl(;&@;,

37



where we use (T36)) in the second equality.
Now assume that for [ = k the statement (I44) holds. For any two function f, f’ € C(X), we bound

| D2BE(f,0)[h] — D2Bi(f,0)[1]] o
< ||D1Bg (Bifl(ﬁ 0),0) [DzBﬁ{l(fa 0)[h] — Dngfl(

+ (Dlrj'ﬁ (B (f,0),0) — D1Bu(B ' (f,6),0)

" 0)[R]] 0
(DB (f, 0)[1]] [l

SN—" —

i (DzBH (BL1(1,0),0) — DuBu(BL(1,6),6) ) (1]
< [(DoBLE(£,6) — DB (f,6)) [ IDAB(F.0)]op < 1
+ O(IBY(£,6) = B (F6) 1 - DB (£, 6) ] o) LemmalBE3
+ Odn(, 1) - [h1). @)
— O((1f = Fln + |V F = VF o) - [A]) LemmaB3

OIf = f'lle0) - [2])
O(dui (s, 1) - []))-

Plugin f = f} and f' = f}' and use Lemmas and We prove the statement (T44) holds for
l = k + 1. Consequently, we have that

| D25 (f5', 0)[h] = Da&i(fy', )Mo = O(dua(p, 1) - [h])- (146)

In conclusion, we have

@ = O(dui(p, 1) - [ 1])- (147)
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Table 1: Structure of the encoder

Layer (type) Output Shape Param #
Conv2d-1 [-1, 64, 32, 32] 4,800
LeakyReLU-2 [-1, 64, 32, 32] 0
Conv2d-3 [-1,128,16,16] 204,800
BatchNorm2d-4  [-1, 128, 16, 16] 256
LeakyReLU-5 [-1, 128, 16, 16] 0
Conv2d-6 [-1, 256, 8, 8] 819,200
BatchNorm?2d-7 [-1,256, 8, 8] 512
LeakyReLU-8 [-1, 256, 8, 8] 0
Conv2d-9 [-1,512,4,4] 3,276,800
BatchNorm2d-10  [-1, 512, 4, 4] 1,024
LeakyReLU-11 [-1,512, 4, 4] 0

Table 2: Structure of the generator

Layer (type) Output Shape  Param #
ConvTranspose2d-1 [-1,256,4,4] 262,144
BatchNorm2d-2 [-1, 256, 4, 4] 512

ReLU-3 [-1, 256, 4, 4] 0
ConvTranspose2d-4 [-1,128,8,8] 524,288
BatchNorm2d-5 [-1, 128, 8, 8] 256

ReLU-6 [-1, 128, 8, 8] 0
ConvTranspose2d-7  [-1, 64, 16,16] 131,072
BatchNorm2d-8 [-1, 64, 16, 16] 128
ReLU-9 [-1, 64, 16, 16] 0
ConvTranspose2d-10  [-1, 3, 32, 32] 3,072
Tanh-11 [-1, 3, 32, 32] 0

i

D Experiment Details
We use the generator from DC-GAN Radford et al|[2015]]. And the adversarial ground cost c¢ in the

form of
ce(z,y) = [de(x) — de(y)]3, (148)

where ¢¢ : R? — R? is an encoder that maps the original data point (and the generated image)
to a higher dimensional space (¢ > ¢). We pick ¢¢ to be an CNN with a similar structure as the
discriminator of DC-GAN except that we discard the last layer which was used for classification.
Specifically, the networks used are given in Table [[]and 2]

We set the step size 5 of SiNG to be 30 and set the maximum allow Sinkhorn divergence in each
iteration to be 0.1. Note that the step size is set after the normalization in (TT)). For Adam, RMSprop,
and AMSgrad, we set all of their initial step sizes to be 1.0 x e~3, which is in general recommended
by the GAN literature. The minibatch sizes of both the real images and the generated images
for each iteration are set to 3000. We uniformly set the v parameter in the objective (recall that
F(ag) = Se. (g, 8)) and the constraint to 100.

The code is in https://github.com/shenzebang/Sinkhorn_Natural_Gradient,
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E PyTorch Implementation

In this section, we focus on the empirical version of SiNG, where we approximate the gradient of
the function F' by a minibatch stochastic gradient and approximate SIM by eSIM. In this case, all
components involved in the optimization procedure can be represented by finite dimensional vectors.

It is known that the stochastic gradient admits an easy implementation in PyTorch. However, at the
first sight, the computation of eSIM is quite complicated as it requires to construct two sequences f°*
and g' to estimate the Sinkhorn potential and the Fréchet derivative. As we discussed earlier, it is well
known that we can solve the inversion of a p.s.d. matrix via the Conjugate Gradient (CG) method
with only matrix-vector-product operations. In particular, in this case, we no longer need to explicitly
form eSIM in the computer memory. Consequently, to implement the empirical version of SING
using CG and eSIM, one can resort to the auto-differential mechanism provided by PyTorch: First,
we use existing PyTorch package like geomlosf]to compute the tensor f representing the Sinkhorn
potential f§. Note the the sequence f* is constructed implicitly by calling geomloss. We then use
the ".detach()" function in PyTorch to maintain only the value of the f while discarding all of its
"grad_fn" entries. We then enable the "autograd" mechanism is PyTorch and run several loops of
Sinkhorn mapping A(f, ap) (A(f, aigt)) so that the output tensor now records all the dependence on
the parameter 6 via the implicitly constructed computational graph. We can then easily compute the
matrix-vector-product use the Pearlmutter’s algorithm (Pearlmutter, 1994).

*https://www.kernel-operations.io/geomloss/
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