
We thank the reviewers for their insightful comments. We address their interrogations and comments below.1

R1. - Practical/concrete motivation for why/when online OT computation is needed. Online OT estimation is useful for2

training generative models. In this case, the samples are renewed at each iteration of a training algorithm, and may be3

used to better evaluate the distance to minimize. Any applications that requires to estimate OT distances between large4

point clouds can benefit from online OT estimation, that accelerates training. We will better motivate our work.5

- No experiments on high-dimensional settings, arguably those for which a streaming setting would be most compelling.6

This is indeed a weakness in our experiments, as we have measured performance up to d = 10. Real-world ML7

applications would typically consider points in latent spaces, with typical dimension d = 128, with a certain "manifold"8

structure that makes OT estimation possible. We may consider the output of a trained CNN on CIFAR10 images.9

- In L62 it is claimed that the memory complexity increases lineraly on nt. Should this be O(n2t )? The memory10

complexity is linear in nt, as each potential is represented in memory by nt points and weights. We will clarify.11

- I’m not entirely convinced that using “number of computations” in the x-axis makes sense for Figs 1, 3 etc. We measure12

the number of computations needed to obtain a first estimate of the OT potentials, which is roughtly proportional to13

wall-clock time (see answer to R2). It is of course higher for batch method than online method. Our intent in Fig. 3 is14

to show that online Sinhkorn efficiently warms up OT computation. We will clarify.15

- I could not find a discussion or details on how the learning rate ηn is chosen in practice. We give practical16

recommendation regarding step-sizes and batch-sizes in Appendix B.3, and in particular Table 1. In experiments, we17

found that setting n(t) ∝ (1 + 0.1t)1/2, and ηt = 1 work best, although the range of usable exponents is rather wide.18

We will present Table 1 in the main text for clarification. See also App. C for details on hyper-parameters.19

- Further references. We thank the reviewer for his insightful refrences on streaming method for EMD estimation, that20

we will discuss in the related work section. In the batch or online setting, regularization permits a faster estimation of21

OT distances, relying only on matrix-vector products. [39] fixes a spatial grid for the estimated barycenter, unrelated to22

observed samples, while we define potentials based on observed samples. We will discuss this in details.23

R2. - How is convergence affected by [...] the distributions involved. We have tried to give more insight on this aspect24

in Appendix C. As predicted in the analysis, online Sinkhorn converges more slowly for lower ε (or equivalently, less25

regular C, Fig. 5). For Gaussians distributions, online Sinkhorn outperforms batch Sinkhorn in all cases (Fig. 7).26

- Could the authors comment on actual runtime? With proper GPU implementation of online Sinkhorn (using the27

pyKeops library), the C-transform wall-clock time is indeed roughly in O(n(t)2). We have compared online Sinkhorn28

to batch Sinkhorn in term of wall-clock time, and found similar curves as reported in the paper, using batch-sizes larger29

than 1000. Batch Sinkhorn remains faster for small problems (N < 104), for which C can be precomputed and held in30

GPU memory. We will add wall-clock time experiments to the appendix.31

- Confusion l.288-289. f and g are fit until C is formed, and we then run batch Sinkhorn. We will clarify.32

- "It behaves like exp(1/eps)." Any intuition as to whether this can be improved? This is a difficult open question.33

Entropic regularization improves the sample complexity of Optimal Transport, going from a rate in O(n−1/d) to a rate34

in O(1/
√
n). This improvement is not free: as noted in [18], the constants before these rates explodes as exp(1/ε) as35

ε→ 0. Both [18] and our work relies on the contractance modulus of the soft C-transform, hence the similar conclusion.36

R3. - The per-iteration cost of the classic Sinkhorn algorithm can be reduced [...]. We have been too elusive on this37

aspect. Online Sinkhorn proves most useful in the case where the pairwise cost matrix must be computed on the fly due38

to memory constraints (and serves as a sound warmup otherwise). We will recall and discuss this observation.39

- I find the Prop. 4 surprising. In Prop. 4, we assume that ι > 0, and therefore that the batch-size goes to infinity. This40

is sufficient to ensure convergence, as the variance terms introduced by sampling are summable. For fixed batch-sizes,41

convergence cannot be guaranteed, due to the fact that
∑

t
1
t is not summable. The proof of Prop. 4 established a42

classical recursion between error terms, and requires ι > 0 to conclude. We will discuss Prop. 4 more thoroughly.43

R4. - Experiments are performed in only simple cases. This is a limitation of our work. The lack of gold-standard44

for estimating continuous OT distances makes it hard to evaluate our method on hard settings, as we are forced to45

approximate this gold-standard with very long runs of Sinkhorn algorithm. See also answer to R1.46

- Soft C-transform. This term refers to Eq. (3). We will clarify.47

- Related work. Bercu and Bigot’s work is indeed relevant. It tackles the simpler problem of semi-discrete OT, that48

rewrites as a expected risk-minimization problem. A single finite dimensional potential must be estimated, which49

can be done through gradient descent. We will refer to Mena and Weed’s refined sample complexities. The E-step of50

Sinkhorn-EM could be implemented using online Sinkhorn, with potential gain from warm-starting.51


