
We thank the reviewers for their positive and valuable feedback. We recall that our paper proposes a general framework1

to learn ultrahyperbolic representations. The proposed representations lie on a pseudo-Riemannian manifold with2

constant nonzero curvature, they generalize both hyperbolic and spherical representations that are popular in machine3

learning. The main difficulty of learning such representations is that they lie on a manifold whose metric need not be4

positive definite, and the manifold is non-Riemannian in most cases (except for the hyperbolic and spherical cases as5

explained in the paper). We introduce the necessary differential geometry tools (e.g. geodesics, exponential/logarithm6

maps) to measure dissimilarity between points, and also propose optimizers for differentiable functions defined on such7

manifolds. In particular, we explain why the pseudo-Riemannian gradient is not a descent direction. We then propose a8

simple, efficient and non-trivial descent direction defined in the tangent space (see Eq. (12)).9

Improving readability: Our contributions are mainly theoretical, and we agree with most reviewers (R1,R3) that the10

pseudo-Riemannian optimizer introduced in Section 4.2 is a major contribution. Due to lack of space, we provided the11

detailed explanations with proofs in the supp. material. However, according to the NeurIPS 2020 website, camera-ready12

versions are allowed a ninth content page. To improve readability, we will include the extended version of the optimizer13

subsection in the main paper, if accepted. We will also account for the suggestions of the reviewers as follows.14

R1: Thank you for your suggestions. (1) We will indicate in Section 2 that for any β < 0, Qp,qβ is homothetic to15

Qp,q−1, β can then be considered to be −1. (2) We did not exploit the extrinsic distance in Eq. (4), except in the null16

geodesic case since the formulation is similar in this particular case. The goal of lines 83-88 was to explain that many17

machine learning approaches consider the extrinsic geometry (i.e. ambient space distance) of the spherical or hyperbolic18

manifold, or its intrinsic geometry (i.e. geodesic distance). Since both distances are increasing functions of each other19

in the Riemannian cases, choosing one or the other has no major impact. This is not the case in the ultrahyperbolic case,20

which is why we only consider the intrinsic geometry. (3) We explained in the paper how the hyperbolic and spherical21

cases are special cases of Qp,qβ (lines 87-88 and lines 68-70). We will make it more explicit as suggested. (4) Our code22

is in the supp. material and will be publicly available. We reported some training times in the supp. material (line 540).23

On Zachary’s dataset, the (Euclidean) optimizer in Section 4.1 is 10% faster than the optimizer in Section 4.2 (165 vs24

182 seconds) in the setup of line 540 since it requires less computations. We will report the comparisons. (5) Lastly, we25

will explicitly mention that ∀x ∈ Qp,qβ , gx(·, ·) = 〈·, ·〉q where gx : TxQp,qβ × TxQ
p,q
β → R.26

R3: (1) Thank you for mentioning Feragen’s work that was among the first to study tree-data in the CV and ML27

community. We will cite it in the introduction when we mention other machine learning works that were also heavily28

inspired by Gromov’s work. Nonetheless, Feragen et al. consider CAT(0) spaces (e.g. hyperbolic spaces). Our work29

generalizes both hyperbolic and spherical spaces, the latter is not CAT(0). (R4,R3) (2) Motivation of Eq. (9): As30

explained in the paper, there exist pairs of points x,y ∈ Qp,qβ for which logx(y) is not defined. Eq. (9) approximates the31

dissimilarity when logx(y) is not defined but other choices are possible. When a geodesic does not exist, a standard way32

in differential geometry to calculate curves (and distances) is to consider broken geodesics. One might then consider33

instead the dissimilarity dγ(x,−x) + dγ(−x,y) = π
√
|β|+ dγ(−x,y) if logx(y) is not defined (see line 422 of the34

supp. material) since −x ∈ Qp,qβ and log−x(y) is defined. (3) We disagree about the fact that we used hacks to create35

symmetric weights. Our second dataset has an undirected (hence symmetric) weight matrix by default. Moreover, in36

Zachary’s paper, C was constructed in an ad hoc manner and is almost identical to its transpose (i.e. almost symmetric).37

The weight matrix C is illustrated in Fig. 3 of Zachary’s paper. Our symmetrized matrix S = C + C> is very similar to38

2C, which is why we considered it. In conclusion, our approach can be applied to any undirected weighted graph.39

(R2,R3,R4) Motivation of ultrahyperbolic representations for graphs: The choice of geometry to represent graphs40

is still an open problem in general. It depends on the topology of the graph and the kind of relationships between41

nodes. For instance, hyperbolic geometry was mathematically shown to be appropriate for tree-like graphs, but not42

for other types of graphs. Ultrahyperbolic geometry has the advantage of generalizing both hyperbolic and spherical43

geometries and can describe relationships specific to those geometries. In particular, the geodesic distance can be44

written in the same way as the Poincaré and spherical distances as shown in Eq. (8); some parts of the manifold are45

hyperbolic or spherical as explained in the paper. The converse is not true. The framework might then automatically46

learn representations to be part of a same hyperbolic or spherical part of the manifold depending on the context. Those47

reasons led us to consider hierarchical graphs that were similar to trees, but where the presence of cycles in the graph48

limited the relevance of hyperbolic geometry. We experimentally validated our intuition. The choice of geometry with49

constant nonzero curvature (i.e. the optimal number of time and space dimensions q and p) then seems to depend on50

how much the graph is similar to a tree or to a graph where spherical geometry is appropriate, such as cycle graphs51

(or a mix of both). We would also like to emphasize that ultrahyperbolic geometry can describe some graph concepts52

differently, if not better, than hyperbolic and spherical geometries. For instance, it is known that triadic closure is a53

concept in social network theory that is too extreme to hold true across very large, complex networks. In other words, if54

(x,y) and (x, z) are strongly tied, triadic closure would induce that (y, z) are strongly tied. As explained in line 144,55

the fact that we can find triplets that satisfy dγ(x,y) = dγ(x, z) = 0 but dγ(y, z) > 0 avoids triadic closure.56


