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Abstract

One of the main strengths of online algorithms is their ability to adapt to arbitrary
data sequences. This is especially important in nonparametric settings, where
performance is measured against rich classes of comparator functions that are
able to fit complex environments. Although such hard comparators and complex
environments may exhibit local regularities, efficient algorithms, which can prov-
ably take advantage of these local patterns, are hardly known. We fill this gap by
introducing efficient online algorithms (based on a single versatile master algo-
rithm) each adapting to one of the following regularities: (i) local Lipschitzness
of the competitor function, (ii) local metric dimension of the instance sequence,
(iii) local performance of the predictor across different regions of the instance
space. Extending previous approaches, we design algorithms that dynamically
grow hierarchical ε-nets on the instance space whose prunings correspond to dif-
ferent “locality profiles” for the problem at hand. Using a technique based on tree
experts, we simultaneously and efficiently compete against all such prunings, and
prove regret bounds each scaling with a quantity associated with a different type of
local regularity. When competing against “simple” locality profiles, our technique
delivers regret bounds that are significantly better than those proven using the
previous approach. On the other hand, the time dependence of our bounds is not
worse than that obtained by ignoring any local regularities.

1 Introduction

In online convex optimization [34, 10], a learner interacts with an unknown environment in a sequence
of rounds. In the specific setting considered in this paper, at each round t = 1, 2, . . . the learner
observes an instance xt ∈ X ⊂ Rd and outputs a prediction ŷt for the label yt ∈ Y associated with the
instance. After predicting, the learner incurs the loss `t(ŷt). We consider two basic learning problems:
regression with square loss, where Y ≡ [0, 1] and `t(ŷt) = 1

2 (yt − ŷt)2, and binary classification
with absolute loss, where Y ≡ {0, 1} and `t(ŷt) = |yt − ŷt| (or, equivalently, `t(ŷt) = P(yt 6= Yt)
for randomized predictions Yt with P(Yt = 1) = ŷt). The performance of a learner is measured
through the notion of regret, which is defined as the amount by which the cumulative loss of the
learner predicting with ŷ1, ŷ2, . . . exceeds the cumulative loss —on the same sequence of instances
and labels— of any function f in a given reference class of functions F . Formally,

RT (f) =

T∑
t=1

(
`t(ŷt)− `t

(
f(xt)

))
∀f ∈ F . (1)

In order to capture complex environments, we focus on nonparametric classesF of Lipschitz functions
f : X → Y . The specific approach adopted in this paper is inspired by the simple and versatile
∗Work partly done while at the University of Milan, Italy.
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algorithm from [11], henceforth denoted with HM, achieving a regret bound of the form 2

RT (f)
O
=

{
(lnT )

(
LT
) d

d+1 (square loss)
L

d
d+2 T

d+1
d+2 (absolute loss)

∀f ∈ FL (2)

for any given L > 0. Here FL is the class of L-Lipschitz functions f : X → Y such that∣∣f(x)− f(x′)
∣∣ ≤ L ‖x− x′‖ (3)

for all x,x′ ∈ X , where X ,Y are compact.3 Although Lipschitzness is a standard assumption in
nonparametric learning, a function in FL may alternate regions of low variation with regions of high
variation. This implies that, if computed locally (i.e., on pairs x,x′ that belong to the same small
region), the value of the smallest L satisfying (3) would change significantly across these regions.
If we knew in advance the local Lipschitzness profile, we could design algorithms that exploit this
information to gain a better control on regret.

Although, for d ≥ 2, asymptotic rates T (d−1)/d improving on (2) can be obtained using different and
more complicated algorithms [4], it is not clear whether these other algorithms can be made locally
adaptive in a principled way as we do with HM.

Local Lipschitzness. Our first contribution is an algorithm for regression with square loss that
competes against all functions in FL. However, unlike the regret bound (2) achieved by HM, the
regret RT (f) of our algorithm depends in a detailed way on the local Lipschitzness profile of f . Our
algorithm operates by sequentially constructing a D-level hierarchical ε-net T of the instance space
X with balls whose radius ε decreases with each level of the hierarchy. The D levels are associated
with local Lipschitz constants L1 < L2 < · · · < LD = L, all provided as an input parameter to the
algorithm.

Figure 1: Matching functions to prunings. Profiles of local smoothness correspond to prunings so
that smoother functions are matched to smaller prunings.

If we view the hierarchical net as a D-level tree whose nodes are the balls in the net at each level, then
the local Lipschitzness profile of a function f translates into a pruning of this tree (this is visually
explained in Figure 1). By training a local predictor in each ball, we can use the leaves of a pruning
E to approximate a function whose local Lipschitz profile “matches” E. Namely, a function that
satisfies (3) with L = Lk for all observed instances x,x′ that belong to some leaf of E at level
k, for all levels k (since E is a pruning of the hierarchical net T , there is a one-to-one mapping
between instances xt and leaves of E). Because our algorithm is simultaneously competitive against
all prunings, it is also competitive against all functions whose local Lipschitz profile —with respect
to the instance sequence— is matched by some pruning. More specifically, we prove that for any
f ∈ FL and for any pruning E matching f on the sequence x1, . . . ,xT of instances,

RT (f)
Õ
= E

[
L

d
d+1

K

]
T

d
d+1 +

D∑
k=1

(Lk TE,k)
d

d+1 (4)

2We use f
O
= g to denote f = O(g) and f

Õ
= g to denote f = Õ(g).

3The bound for the square loss, which is not contained in [11], can be proven with a straightforward extension
of the analysis in that paper.
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where, from now on, TE,k always denotes the total number of time steps t in which the current
instance xt belongs to a leaf at level k of the pruning E. The expectation is with respect to the
random variable K that takes value k with probability equal to the fraction of leaves of E at level k.
The first term in the right-hand side of (4) bounds the estimation error, and is large when most of the
leaves of E reside at deep levels (i.e., f has just a few regions of low variation). The second term
bounds the approximation error, and is large whenever most of the instances xt belongs to leaves of
E at deep levels.
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Figure 2: The first row shows two target functions
with different Lipschitz profiles. The second row
shows the best pruning found by our algorithm,
expressed using the depth of the largest weights
along each tree-path. The last row show the re-
gret of our algorithm (LA) compared to that of HM,
which is given the true Lipschitz constant.

In order to compare this bound to (2), consider
Lk = 2k with L = LD = 2D. If f is matched
by some pruning E such that most instances
xt belong to shallow leaves of E, then our
bound on RT (f) becomes of order T d/(d+1),
as opposed to the bound of (2) which is of or-
der (2DT )d/(d+1). On the other hand, for any
f ∈ FL we have at least a pruning matching
the function: the one whose leaves are all at the
deepest level of tree. In this case, our bound on
RT (f) becomes of order (2DT )d/(d+1), which
is asymptotically equivalent to (2). This shows
that, up to log factors, our bound is never worse
than (2), and can be much better in certain cases.
Figure 2 shows this empirically in a toy one-
dimensional case.

Our locally adaptive approach can be general-
ized beyond Lipschitzness. Next, we present
two additional contributions where we show that
variants of our algorithm can be made adaptive
with respect to different local properties of the
problem.

Local dimension. It is well known that non-
parametric regret bounds inevitably depend ex-
ponentially on the metric dimension of the set
of data points [11, 27]. Similarly to local Lips-
chitzness, we want to take advantage of cases in
which most of the data points live on manifolds
that locally have a low metric dimension. In order to achieve a dependence on the “local dimension
profile” in the regret bound, we propose a slight modification of our algorithm, where each level k of
the hierarchical ε-net is associated with a local dimension bound dk such that d = d1 > · · · > dD.
Note that —unlike local Lipschitzness— the local dimension is decreasing as the tree gets deeper.
This happens because higher-dimensional balls occupy a larger volume than lower-dimensional ones
with the same radius, and so they occur at shallower levels of the tree.

We say that a pruning of the tree associated with the hierarchical ε-net matches a sequence x1, . . . ,xT
of instances if the number of leaves of the pruning at each level k is O

(
(LT )dk/(1+dk)

)
. For

regression with square loss we can prove that, for any f ∈ FL and for any pruning E matching
x1, . . . ,xT , this modified algorithm achieves regret

RT (f)
Õ
= E

[
(LT )

dK
1+dK

]
+

D∑
k=1

(LTE,k)
dk

1+dk (5)

where, as before, the expectation is with respect to the random variable K that takes value k with
probability equal to the fraction of leaves ofE at level k. If most xt lie in a low-dimensional manifold
of X , so that x1, . . . ,xT is matched by some pruning E with deeper leaves, we obtain a regret of
order (LT )dD/(1+dD). This is nearly a parametric rate whenever dD � d. In the worst case, when
all instances are concentrated at the top level of the tree, we still recover (2).

Local loss bounds. Whereas the local Lipschitz profile measures a property of a function with
respect to an instance sequence, and the local dimension profile measures a property of the instance
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sequence, we now consider the local loss profile, which measures a property of a base online learner
with respect to a sequence of examples (xt, yt). The local loss profile describes how the cumulative
losses of the local learners at each node (which are instances of the base online learner) change across
different regions of the instance space. To this end, we introduce the functions τk, which upper bound
the total loss incurred by the local learners at level k. We can use the local learners on the leaves of a
pruning E to predict a sequence of examples whose local loss profile matches that of E. By matching
we mean that the local learners run on the subsequence of examples (xt, yt) belonging to leaves at
level k of E incur a total loss bounded by τk(TE,k), for all levels k. In order to take advantage of
good local loss profiles, we focus on losses —such as the absolute loss— for which we can prove
“first-order” regret bounds that scale with the loss of the expert against which the regret is measured.
For the absolute loss, the algorithm we consider attains regret

RT (f)
O
= E

[
(LτK(T ))

d
d+2

]
+

D∑
k=1

(Lτk(TE,k))
d+1
d+2 +

√√√√E
[
(LτK(T ))

d
d+2

] D∑
k=1

τk(TE,k) (6)

for any f ∈ FL, where —as before— the expectation is with respect to the random variable K that
takes value k with probability equal to the fraction of leaves of E at level k. For concreteness, set
τk(n) = n

1
D−k+1 , so that deeper levels k correspond to loss rates that grow faster with time. When E

has shallow leaves and TE,k is negligible for k > 1, the regret becomes of order (LT
1
D )

d+1
d+2 , which

has significantly better dependence on T than L
d

d+2T
d+1
d+2 achieved by HM. Note that we always have

a pruning matching all sequences: the one whose leaves are all at the deepest level of the tree. Indeed,
τD(n) = n is a trivial upper bound on the absolute loss of any online local learner. In this case, our
bound on RT (f) becomes of order (LT )

d+1
d+2 , which is asymptotically equivalent in T compared

to (2). Note that our dependence on the Lipschitz constant is slightly worse than (2). This happens
because we have to pay an extra constant term for the regret in each ball, which is unavoidable in any
first-order regret bound.

Intuition about the proof. HM greedily constructs a net on the instance space, where each node
hosts a local online learner and the label for a new instance is predicted by the learner in the nearest
node. Balls shrinking at polynomial rate are centered on each node, and a new node is created at an
instance whenever that instance falls outside the union of all current balls. The algorithms we present
here generalize this approach to a hierarchical construction of ε-nets at multiple levels. Each ball
at a given level contains a lower-level ε-net using balls of smaller radius, and we view this nested
structure of nets as a tree. Radii are now tuned not only with respect to time, but also with respect
to the level k, where the dependence on k is characterized by the specific locality setting (i.e., local
smoothness, local dimension, or local losses). The main novelty of our proof is the fact that we
analyze HM in a level-wise manner, while simultaneously competing against the best pruning over the
entire hierarchy. Our approach is adaptive because the regret now depends on both the number of
leaves of the best pruning and on the number of observations made by the pruning at each level. In
other words, if the best pruning has no leaves at a particular level, or is active for just a few time steps
at that level, then the algorithm will seldom use the local learners hosted at that level.

Our main algorithmic technology is the sleeping experts framework from [8], where the local learner
at each node is viewed as an expert, and active (non-sleeping) experts at a given time step are those
along the root-to-leaf path associated with the current instance. For regression with square loss,
we use exponential weights (up to re-normalization due to active experts). For classification with
absolute loss, we avoid the tuning problem by resorting to a parameter-free algorithm (specifically,
we use AdaNormalHedge of [19] although other approaches could work as well). This makes our
approach computationally efficient: despite the exponential number of experts in the comparison
class, we only pay in the regret a factor corresponding to the depth of the tree.

All omitted proofs can be found in the supplementary material.

2 Definitions

Throughout the paper, we assume instances xt have a bounded arbitrary norm, ‖xt‖ ≤ 1, so that X
is the unit ball with center in 0. We use B(z, r) to denote the ball of center z ∈ Rd and radius r > 0,
and we write B(r) instead of B(0, r).
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Definition 1 (Coverings and packings). An ε-cover of a set X0 ⊆ X is a subset {x′1, . . . ,x′n} ⊂ X0

such that for each x ∈ X0 there exists i ∈ {1, . . . , n} such that ‖x− x′i‖ ≤ ε. An ε-packing of a set
X0 ⊆ X is a subset {x′1, . . . ,x′m} ⊂ X0 such that for any distinct i, j ∈ {1, . . . ,m}, ‖x′i−x′j‖ > ε.
An ε-net of a set X0 ⊆ X is any set of points in X0 which is both an ε-cover and an ε-packing.

Definition 2 (Metric dimension). A set X has metric dimension d if there exists C > 0 such that, for
all ε > 0, X has an ε-cover of size at most C ε−d.

We consider the following online learning protocol with oblivious adversary. Given an unknown
sequence (x1, y1), (x2, y2), . . . ∈ X × Y of instances and labels, for every round t = 1, 2, . . .

1. The environment reveals the instance xt ∈ X .
2. The learner selects an action ŷt ∈ Y and incurs the loss `

(
ŷt, yt).

3. The learner observes yt.

In the rest of the paper, we use `t(ŷt) as an abbreviation for `
(
ŷt, yt).

Hierarchical nets, trees, and prunings. A pruning of a rooted tree is the tree obtained after the
application of zero or more replace operations, where each replace operation deletes the subtree
rooted at an internal node without deleting the node itself (which becomes a leaf).

Recall that our algorithms work by sequentially building a hierarchical net of the instance sequence.
This tree-like structure is defined as follows.

Definition 3 (Hierarchical net). A hierarchical net of depth D of an instance sequence σT =
(x1, . . . ,xT ) is a sequence of nonempty subsets4 S1 ⊂ · · · ⊂ SD ⊆ {1, . . . , T} and radii ε1 >
· · · > εD > 0 satisfying the following property: For each level k = 1, . . . , D, the set Sk is a εk-net
of the elements of σT with balls {B(xs, εk)}s∈Sk

.

Any such hierarchical net can be viewed as a rooted tree T (conventionally, the root of the tree
is the unit ball X , i.e., S0 = {0} ,x0 = 0 and ε0 = 1) defined by the parent function, where
xs = PARENT(xt), if xt ∈ B(xs, εk) for s ∈ Sk (if there are more s such that xt ∈ B(xs, εk), then
take the smallest one), while t ∈ Sk+1 and k = 0, 1, . . . , D − 1. Given an instance sequence σT , let
TD(σT ) be the family of all trees T of depth D generated from σT by choosing the εk-nets at each
level in all possible ways given a fixed sequence {εk}Dk=1.

Given T and a pruning E of T , we use LEAVESk(T , E) to denote the subset of Sk containing
the nodes of T that correspond to leaves of E. When T is clear from the context, we abbreviate
LEAVESk(T , E) with Ek. For any fixed T ∈ TD(σT ) let also |E| = |E1| + · · · + |ED| be the
number of leaves in E.

3 Related work

In nonparametric prediction, a classical topic in statistics, one is interested in predicting well compared
to the best function in a large class, which typically includes all functions with certain regularities.
While standard approaches assume uniform regularity of the optimal function (such as Lipschitzness
or Hölder continuity), local minimax rates for adaptive estimation have been studied for nearly thirty
years [2, 7, 18] and several works have investigated nonparametric regression under local smoothness
assumptions [20, 28].

The nonstochastic setting of nonparametric prediction was investigated by [30, 31, 32], who analyzed
the regret of algorithms against Lipschitz function classes with bounded metric entropy. Later,
[26] used a non-constructive argument to establish minimax regret rates T (d−1)/d (when d > 2)
for both square and absolute loss. Inspired by their work, [9] devised the first online algorithms
for nonparametric regression enjoying minimax regret. In this work, we employ a nested packing
approach, which bears a superficial resemblance to the construction of [9] and to the analysis
technique of [26]. However, the crucial difference is that we hierarchically cover the input space,
rather than the function class, and use local no-regret learners within each element of the cover. Our
algorithm is conceptually similar to the one of [11], however their space packing can be viewed as
a “flat” version of the one proposed here, while their analysis only holds for a known time horizon
(see also [16] for extensions). Our algorithms adapt to the regularity of the problem in an online

4Here the net Sk is defined using the indices s of the points xs.
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fashion using the tree-expert variant [12] of prediction with expert advice —see also [5]. In this
setting, there is a tree-expert for each pruning of a complete tree with a given branching factor.
Although the number of such prunings is exponential, predictions and updates can be performed in
time linear in the tree depth D using the context tree algorithm of [33]. In this work, we consider a
conceptually simpler version, which relies on sleeping experts [8]. The goal is to compete against the
best pruning in hindsight, which typically requires knowledge of the pruning size for tuning purposes.
In case of prediction with absolute loss, we avoid the tuning problem by exploiting a parameter-free
algorithm. Local adaptivity to regularities of a competitor, as discussed in the current paper, can
be also viewed as automatic parameter tuning through hierarchical expert advice. A similar idea,
albeit without the use of a hierarchy, was explored by [29] for automatic step size tuning in online
convex optimization —see [25] for a detailed discussion on the topic. Adaptivity of k-NN regression
and kernel regression to the local effective dimension of the stochastic data-generating process was
studied by [14, 15], however they considered a notion of locality different from the one studied
here. The idea of adaptivity to the global effective dimension, combined with the net construction
of [11] in the online setting, were proposed by [16]. [17] investigated a stronger form of adaptivity to
the dimension in nonparametric online learning. Finally, adaptivity to local Lipschitzness was also
explored in optimization literature [21, 23].

4 Description of the algorithm

Recall that we identify a hierarchical net S1, . . . , SD with a tree T whose nodes correspond to the
elements of the net. Our algorithm predicts using a T evolving with time, and competes against the
best pruning of the tree corresponding to the final hierarchical net. A local online learner is associated
with each node of T except for the root. When a new instance xt is observed, it is matched with a
center xs ∈ Sk at each level k (which could be xt itself, if a new ball is created in the net) until a
leaf is reached. The local learners associated with these centers output predictions, which are then
aggregated using an algorithm for prediction with expert advice where the local learner at each node
is viewed as an expert. Since only a fraction of experts (i.e., those associated with the matched centers,
which form a path in a tree) are active at any given round, this can be viewed as an instance of the
“sleeping experts” framework of [8]. In the regression case, since the square loss is exp-concave for
bounded predictions, we can directly apply the results of [8]. In the classification case, instead, we
use a parameter-free approach.

One might wonder whether our dynamically evolving net construction could be replaced by a fixed
partition of the instance space chosen at the beginning. As this fixed partition would depend on
the time horizon, we would need to use a cumbersome doubling trick to periodically re-start the
algorithm from scratch. Moreover, identifying the elements of the partition could be computationally
challenging for certain choices of the underlying metric. On the other hand, our algorithm is locally
adaptive in any metric space, and does not require the knowledge of the time horizon.

Algorithm 1 contains the pseudocode for the case of exp-concave loss functions. As input, the
algorithm requires a radius-tuning function ρ(k, t) which provides the radius of balls at level k
and time t given the local regularity parameters (e.g., L1 < L2 < · · · < LD). In the following,
we consider specific application-dependent functions ρ. The algorithm invokes two subroutines
propagate and update. The former collects the predictions of the local learners along the path
of active experts corresponding to an incoming instance, allocating new balls whenever necessary;
the latter updates the active experts. We use πt to denote the root-to-leaf path in T of active experts
associated with the current instance xt. The vector πt is built by the subroutine propagate along
with the vector ŷt of their predictions. Both these vectors are then returned to the algorithm (line 4).
The sum Wt−1 of the current weight wv,t−1 of each active expert on the path πt is computed in
line 5, where v v πt is used to denote a node in T whose path is a prefix of πt. This sum is used to
compute the aggregated prediction on line 6. After observing the true label yt (line 7), the subroutine
update updates the active experts in πt. Finally, the weights of the active experts are updated
(lines 9 and 10).

We now describe a concrete implementation of propagate which will be used in Section 5. For
simplicity, we assume that all variables of the meta-algorithm which are not explicitly given as input
values are visible. The subroutine propagate finds in a tree T the path of active experts associated
with an instance xt.When invoked at time t = 1, the tree is created as a list of nested balls with
common center x1 and radii εk,1 for k = 1, . . . , D (lines 4–5). For all t > 1, starting from the root
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Algorithm 1 Locally Adaptive Online Learning (Hedge style)
Require: Depth parameter D, radius tuning function ρ : N× N 7→ R

1: S1 ← ∅, . . . , SD ← ∅ . Centers at each level
2: for each round t = 1, 2, . . . do
3: Receive xt . Prediction
4:

(
πt, ŷt

)
← propagate(xt, t) . Subroutine 2

5: Wt−1 ←
∑
vvπt

wv,t−1

6: Predict ŷt ←
1

Wt−1

∑
vvπt

wv,t−1ŷv,t

7: Observe yt . Update
8: update(πt,xt, yt)

9: Zt−1 ←
1

Wt−1

∑
vvπt

wv,t−1e
− 1

2 `t(ŷv,t)

10: For each v v πt, wv,t ←
1

Zt−1
wv,t−1e

− 1
2 `t(ŷv,t)

11: end for

node set as parent node (line 1), the procedure finds in each level k the center xs closest to the current
instance xt among those centers which belong to the parent node (line 8). Note that the parent node
is a ball and therefore there is at least one center in BPARENT. If xt is in the ball with center xs, then
the predictor located at xs becomes active (line 10). Otherwise, a new ball with center xt is created
in the net at that level, and a new active predictor is associated with that ball (line 13). The indices of

Subroutine 2 propagate.
Require: instance xt ∈ X , time step index t

1: BPARENT ← X . Start from root
2: for depth k = 1, . . . , D do
3: if Sk ≡ ∅ then
4: Sk ← {t} . Create initial ball at depth k
5: Create predictor at xt
6: end if
7: ε← ρ(k, t) . Get current radius
8: s← arg min

i∈Sk,xi∈BPARENT

‖xi − xt‖ . Find closest expert at level k

9: if ‖xt − xs‖ ≤ ε then
10: πk ← s . Closest expert becomes active and is added to path
11: else
12: Sk ← Sk ∪ {t} . Add new center to level k
13: Create predictor at xt
14: πk ← t . New expert becomes active and is added to path
15: end if
16: ŷπk,t ← prediction of active expert . Add prediction to prediction vector
17: BPARENT ← B(xs, ε) . Set ball of active expert as current element in the net
18: end for
Ensure: path π of active experts and vector ŷ of active expert predictions

active predictors are collected in a vector π, while their predictions are stored in a vector ŷ and then
aggregated using Algorithm 1. We use Ti to denote the subset of time steps on which the expert at
node i is active. These are the t ∈ {1, . . . , T} such that i occurs in πt.

5 Applications

Local Lipschitzness. We first consider the case of local Lipschitz bounds for regression with square
loss `t(ŷ) = 1

2 (yt − ŷ)
2, where yt ∈ [0, 1] for all t ≥ 1. Here we use Follow-the-Leader (FTL) as
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local online predictor. As explained in the introduction, we need to match prunings to functions with
certain local Lipschitz profiles. This is implemented by the following definition.
Definition 4 (Functions admissible with respect to a pruning). Given 0 < L1 < · · · < LD, a
hierarchical net T ∈ TD(σT ) of an instance sequence σT , and a time-dependent radius tuning
function ρ, we define the set of admissible functions with respect to a pruning E of T by

F(E, T ) ≡
{
f : X → [0, 1]

∣∣∣ ∀x ∈ B(xi, ρ(k, t)
)
, ∀i ∈ LEAVESk(T , E)∣∣f(xi)− f(x)

∣∣ ≤ Lk ρ(k, t), k = 1, . . . , D, t = 1, . . . , T
}
.

Now we establish a regret bound with respect to admissible functions. Recall that TE,k is the total
number of time steps t in which the current instance xt belongs to a leaf at level k of the pruning E.
Theorem 1. Given 0 < L1 < · · · < LD, suppose that Algorithm 1 using Subroutine 2 is run for T
rounds with radius tuning function ρ(k, t) = (Lkt)

− 1
d+1 , and let T be the resulting hierarchical net.

Then, for all prunings E of T the regret RT (f) satisfies

RT (f)
Õ
= E

[
L

d
d+1

K

]
T

d
d+1 +

D∑
k=1

(LkTE,k)
d

d+1 ∀f ∈ F(E, T ) .

The expectation is understood with respect to the random variableK that takes value k with probability
equal to the fraction of leaves of E at level k.

The prunings E and the admissible functions F(E, T ) depend on the structure of T . In turn, this
structure depends on the instance sequence σT only (except for the analysis of local losses, where it
also depends on the local learners). Importantly, the structure of T , and therefore the comparator
class used in our analyses, is not determined by the predictions of the algorithm, a fact that would
compromise the definition of regret.

Local dimension. We now look at a different notion of adaptivity, and demonstrate that Algorithm 1
is also capable of adapting to the local dimension of the data sequence. We consider a decreasing
sequence d = d1 > · · · > dD of local dimension bounds, where dk is assigned to the level k of the
hierarchical net maintained by Algorithm 1. We also make a small modification to Subroutine 2.
Namely, we add a new center at level k only if the designated size of the net (which depends on the
local dimension bound) has not been exceeded. The modified subroutine is propagateDim.

Subroutine 3 propagateDim.
Require: instance xt ∈ X , time step index t, C (see Def. 2)

1: BPARENT ← X . Start from root
2: for depth k = 1, . . . , D do
3: if Sk ≡ ∅ then
4: Sk ← {t} . Create initial ball at depth k
5: Create predictor at xt
6: end if
7: ε← ρ(k, t) . Get current radius
8: s← arg min

i∈Sk
xi∈BPARENT

‖xi − xt‖ . Find closest expert at level k

9: if |Sk| > C εdk or ‖xt − xs‖ ≤ ε then
10: πk ← s . Closest expert becomes active and is added to path
11: else if |Sk| ≤ C εdk then
12: Sk ← Sk ∪ {t} . Add new center to level k
13: Create predictor at xt
14: πk ← t . New expert becomes active and is added to path
15: end if
16: ŷπk,t ← prediction of active expert . Add prediction to prediction vector
17: BPARENT ← B(xs, ε) . Set ball of active expert as current element in the net
18: end for
Ensure: path π of active experts and vector ŷ of active expert predictions
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Since the local dimension assumption is made on the instance sequence rather than on the function
class, in this scenario we may afford to compete against the class FL of all L-Lipschitz functions,
while we restrict the prunings to those that are compatible with the local dimension bounds w.r.t. the
hierarchical net built by the algorithm.
Definition 5 (Prunings admissible w.r.t. local dimension bounds). Given d = d1 > · · · > dD and a
hierarchical net T ∈ TD(σT ) of an instance sequence σT , define the set of admissible prunings by

Edim(T ) ≡
{
E ∈ T :

∣∣LEAVESk(T , E)
∣∣ ≤ C (LT )

dk
1+dk , k = 1, . . . , D

}
.

Theorem 2. Given d = d1 > · · · > dD, suppose that Algorithm 1 using Subroutine 2 is run for T
rounds with radius tuning function ρ(k, t) = (Lt)

− 1
1+dk , and let T the resulting hierarchical net.

Then, for all prunings E ∈ Edim(T ) the regret satisfies

RT (f)
Õ
= E

[
(LT )

dK
1+dK

]
+

D∑
k=1

(LTE,k)
dk

1+dk ∀f ∈ FL .

Local loss bounds. The third notion of adaptivity we study is with respect to the loss of the local
learners in each node of a hierarchical net. The local loss profile is parameterized with respect to
a sequence τ1, . . . , τD of nonnegative and nondecreasing τk : {1, . . . , T} → R such that each τk
bounds the total loss of all local learners at level k of the hierarchical net. In order to achieve better
regrets when the data sequence can be predicted well by local learners in a shallow pruning we
assume τ1(n) < · · · < τD(n) = n for all n = 1, . . . , T , where the choice of τD(n) = n allows us to
fall back to the standard regret bounds if the data sequence is hard to predict.

Unlike our previous applications, focused on regression with the square loss, we now consider
binary classification with absolute loss `t(ŷt) = |ŷt − yt|, which —unlike the square loss— is not
exp-concave. As we explained in Section 1, using losses that are not exp-concave is motivated
by the presence of first-order regret bounds, which allow us to take advantage of good local loss
profiles. While the exp-concavity of the square loss dispensed us from the need of tuning Algorithm 1
using properties of the pruning, here we circumvent the tuning issue by replacing Algorithm 1 with
the parameter-free Algorithm 4 (stated in Appendix A.1), which is based on the AdaNormalHedge
algorithm of [19]. As online local learners we use self-confident Weighted Majority [5, Exercise 2.10]
with two constant experts predicting 0 and 1. In the following, we denote by Λi,T the cumulative loss
of a local learner at node i over the time steps Ti when the expert is active. Similarly to the previous
section, we compete against the class FL of all Lipschitz functions, and introduce the following:

Eloss(T ) ≡
{
E ∈ T :

∑
i∈LEAVESk(T ,E)

Λi,T ≤ τk(TE,k), k = 1, . . . , D
}
.

If E ∈ Eloss(T ), the total loss of all the leaves at a particular level behaves in accordance with (τ)Di=1.
Theorem 3. Suppose that the Algorithm 4 runs self-confident weighted majority at each node with
radius tuning function ρ(k, t) = (Lτk(t))−

1
2+d and let T the resulting hierarchical net. Then for all

pruning E ∈ Eloss(T ) and for all f ∈ FL the regret satisfies

RT (f)
Õ
= E

[
(LτK(T ))

d
2+d

]
+

D∑
k=1

(Lτk(TE,k))
1+d
2+d +

√√√√E
[
(LτK(T ))

d
2+d

] D∑
k=1

τk(TE,k) .

6 Future work

Our algorithm, based on prediction with tree experts, is computationally efficient: the running time
at each step is only logarithmic in the size of the tree. On the other hand, because the algorithm
constructs the tree dynamically, adding a new path of size O(D) in each round, space grows linearly
in time (note that the algorithm never allocates the entire tree, but only the paths corresponding to
active experts). An interesting avenue for future research is to investigate extensions of our algorithm
to bounded space prediction models, similarly to other online nonparametric predictors, e.g., budgeted
kernelized Perceptron [3, 6]. Beside regression, we also presented a locally-adaptive version of
our algorithm for randomized binary classification through absolute loss. Our proofs can be easily
extended to any exp-concave loss functions, as these do not require any tuning of learning rates in
local predictors (tuning local learning rates would complicate our analysis). We also believe that it is
possible to extend our approach to any convex loss through a parameter-free local learner, such as
those proposed in [13, 24].
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7 Broader impact

We believe that presented research should be categorized as basic research and we are not targeting
any specific application area. Theorems may inspire new algorithms and theoretical investigation.
The algorithms presented here can be used for many different applications and a particular use may
have both positive or negative impacts. We are not aware of any immediate short term negative
implications of this research and we believe that a broader impact statement is not required for this
paper.

Acknowledgments and Disclosure of Funding

We are grateful to András György, Sébastien Gerchinovitz, and Pierre Gaillard for many insightful
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