
Locally-Adaptive Nonparametric Online Learning:
Supplementary Material

Ilja Kuzborskij
DeepMind

iljak@google.com

Nicolò Cesa-Bianchi
Dept. of Computer Science & DSRC

University of Milan, Italy
nicolo.cesa-bianchi@unimi.it

A Omitted algorithms

A.1 Algorithm for nonparametric classification with local losses

Instead of the standard exponential weights on which the updates of Algorithm 1 are based, AdaNor-
malHedge performs update using the function

ψ(r, c) =
1

2

(
exp

(
[r + 1]2+
3(c+ 1)

)
− exp

(
[r − 1]2+
3(c+ 1)

))
.

Algorithm 4 Locally Adaptive Online Learning (AdaNormalHedge style)
Require: Depth parameter D, radius tuning function ρ : N× N 7→ R

1: S1 ← ∅, . . . , SD ← ∅ . Centers at each level
2: for each round t = 1, 2, . . . do
3: Receive xt . Prediction
4:

(
πt, ŷt

)
← propagate(xt, t) . Algorithm 2

5: for each v v πt do
6: if t = 1 then
7: wv,t ← ψ(0, 0)
8: else
9: wv,t ← ψ(r̄v,t−1, Cv,t−1)

10: end if
11: end for
12: Predict ŷt ←

1

Zt

∑
vvπt

wv,t ŷv,t where Zt =
∑
vvπt

wv,t

13: Observe yt . Update
14: update(πt,xt, yt)

15: ¯̀
t ←

∑
vvπt

wv,t`t(ŷv,t)

16: for each v v πt do
17: rv,t ← ¯̀

t − `t(ŷv,t), r̄v,t ← r̄v,t−1 + rv,t, Cv,t ← Cv,t−1 + |rv,t|
18: end for
19: end for

B Learning with expert advice over trees

In order to prove the regret bounds in our locally-adaptive learning setting, we start by deriving
bounds for prediction with expert advice when the competitor class is all the prunings of a tree whose
each node hosts an expert, a framework initially investigated by [12]. Our analysis uses the sleeping

experts setting of [8], in which only a subset Et of the node experts are active at each time step t. In
our locally-adaptive setting, the set of active experts at time t corresponds to the active root-to-leaf
path πt selected by the current instance xt —see Section 4. The inactive experts at time t neither
output predictions nor get updated. The prediction of a pruning E at time t, denoted with fE,t is the
prediction ŷi,t of the node expert corresponding to the unique leaf i of E on πt.

Algorithm 5 Learning over trees through sleeping experts
Require: Tree T and initial weights for each node of the tree

1: for each round t = 1, 2, . . . do
2: Observe predictions of active experts Et (corresponding to a root-to-leaf path in the tree)
3: Predict ŷt and observe yt
4: Update the weight of each active expert
5: end for

Next, we consider two algorithms for the problem of prediction with expert advice over trees. In
order to be simultaneously competitive with all prunings, we need algorithms that do not require
tuning of their parameters depending on the specific pruning against which the regret is measured. In
case of exp-concave losses (like the square loss) tuning is not required and Hedge-style algorithms
work well. In case of generic convex losses, we use the more complex parameterless algorithm
AdaNormalHedge.

We start by recalling the algorithm for learning with sleeping experts and the basic regret bound of
[8]. The sleeping experts setting assumes a set of M experts without any special structure. At every
time step t only an adversarially chosen subset Et of the experts provides predictions and gets updated
—see Algorithm 6. The regret bound is parameterized in terms of the relative entropy KL(u ||w1)

Algorithm 6 Exponential weights with sleeping experts for η-exp-concave losses
Require: Initial nonnegative weights {wi,1}i=1,...,M

1: for each round t = 1, 2, . . . do
2: Receive predictions ŷi,t of active experts i ∈ Et

3: ŷt =

∑
i∈Et wi,t ŷi,t∑
i∈Et wi,t

. Prediction

4: Observe yt

5: For i ∈ Et wi,t+1 =
wi,t e

−η`t(ŷi,t)∑
j∈Et wj,t e

−η`t(ŷj,t)

∑
j∈Et

wj,t . Update

6: end for

between the initial of distribution over experts w1 and any target distribution u. The following
theorem states a slightly more general bound that holds for any η-exp-concave loss function (for
completeness, the proof is given in Appendix D).
Theorem 4 ([8]). If Algorithm 6 is run on any sequence `1, . . . , `T of η-exp-concave loss functions,
then for any sequence E1, . . . , ET ⊆ {1, . . . ,M} of awake experts and for any distribution u over
{1, . . . ,M}, the following holds

T∑
t=1

Ut `t(ŷt)−
T∑
t=1

∑
i∈Et

ui `t(ŷi,t) ≤
1

η
KL

(
u

∥∥∥∥ w1

‖w‖1

)
(7)

where Ut =
∑
i∈Et ui.

By taking w1 to be uniform over the experts, the above theorem implies a bound with a lnM factor.
However, since we predict and perform updates only with respect to awake experts, this can be
improved to lnMT , where MT is the number of distinct experts ever awake throughout the T time
steps. The following lemma (whose proof is deferred to Appendix D) formally states this fact.

Fix a sequence E1, . . . , ET ⊆ {1, . . . ,M} of awake experts such that
∣∣E1 ∪ · · · ∪ ET ∣∣ = MT . Let the

uniform distribution supported over the awake experts, denoted withwE1 , be defined by wEi,1 = 1/MT

if i ∈ E1 ∪ · · · ∪ ET and 0 otherwise.

13

Lemma 1. Suppose Algorithm 6 is run with initial weights wi,1 = 1 for i = 1, . . . ,M and with a
sequence E1, . . . , ET ⊆ {1, . . . ,M} of awake experts. Then the regret of the algorithm initialized
with w1 matches the regret of the algorithm initialized with wE1 .

We use Theorem 4 and Lemma 1 to derive a regret bound for Algorithm 5 when predictions and
updates are provided by Algorithm 6. The same regret bound can be achieved through the analysis
of [22, Theorem 3], albeit their proof follows a different argument.
Theorem 5. Suppose that Algorithm 5 is run using predictions and updates provided by Algorithm 6.
Then, for any sequence `1, . . . , `T of η-exp-concave losses and for any pruning E of the input tree T ,

T∑
t=1

(
`t(ŷt)− `t(fE,t)

)
≤ |E|

η
ln
MT

|E|
.

Proof. Let u be the uniform distribution over the |E| terminal nodes of E. At each round, exactly
one terminal node of E is in the active path of T . Therefore `t(fE,t) =

∑
i∈Et ui`t(ŷi,t), and also

Ut = 1
|E| for all t because only one expert in Et is awake in the support of u. Now note that although

the algorithm is actually initialized with w1,i = 1, Lemma 1 shows that the regret remains the
same if we assume the algorithm is initialized with wE1 . The choice of the competitor u gives us
KL(u || wE1) = ln

(
MT /|E|

)
. By applying Theorem 4 we finally get

T∑
t=1

Ut`t(ŷt)−
T∑
t=1

∑
i∈Et

ui`t(ŷi,t)

=
1

|E|

T∑
t=1

(
`t(ŷt)− `t(fE,t)

)
(only one expert awake in the active path)

≤ 1

η
ln
MT

|E|
concluding the proof.

In case of general convex losses, we simply apply the following theorem where ΛE = `1(fE,1) +
· · ·+ `T (fE,T) is the cumulative loss of pruning E.
Theorem 6 (Section 6 in [19]). Suppose that Algorithm 5 is run using predictions and updates
provided by AdaNormalHedge. Then, for any sequence `1, . . . , `T of convex losses and for any
pruning E of the input tree T ,

T∑
t=1

(
`t(ŷt)− `t(fE,t)

) Õ
=

√
|E|ΛE ln

MT

|E|
.

C Proofs for nonparametric prediction

We start by proving a master regret bound that can be specialized to various settings of interest. Recall
that the prediction of a pruning E at time t is fE,t = ŷi,t, where ŷi,t is the prediction of the node
expert sitting at the unique leaf i of the pruning E on the active path πt. Recall also that xi is the
center of the ball in the hierarchical net corresponding to node i in the tree. As in our locally-adaptive
setting node experts are local learners, ŷi,t should be viewed as the prediction of the local online
learning algorithm sitting at node i of the tree. Let Ti be the subset of time steps when i is on the
active path πt. We now introduce the definitions of regret for the tree expert

Rtree
T (E) =

T∑
t=1

(
`t(ŷt)− `t(fE,t)

)
and for node expert i

Rloc
i,T =

∑
t∈Ti

(
`t(ŷi,t)− `t(y?i)

)

14

whereH is either [0, 1] (regression with square loss) or {0, 1} (classification with absolute loss), and

y?i = arg min
y∈H

∑
t∈Ti

`t(y) .

Note that, for all f : X → [0, 1] and for y?i defined as above,∑
t∈Ti

(
`t(y

?
i)− `t

(
f(xi)

))
≤ 0 . (8)

Lemma 2. Suppose that Algorithm 1 (or, equivalently, Algorithm 4) is run on a sequence `1, . . . , `T
of convex and L′-Lipschitz losses and let T be the resulting hierarchical net. Then for any pruning E
of T and for any f : X → Y ,

RT (f) ≤ Rtree
T (E) +

D∑
k=1

∑
i∈LEAVESk(E)

Rloc
Ti

+ L′
D∑
k=1

∑
i∈LEAVESk(E)

∑
t∈Ti

∣∣f(xi)− f(xt)
∣∣ .

Proof. We decompose regret into two terms: one capturing the regret of the algorithm with respect to
a pruning E, and one capturing the regret of E against the competitor f ,

RT (f) =

T∑
t=1

(
`t(ŷt)− `t

(
f(xt)

))
= Rtree

T (E) +

T∑
t=1

(
`t(fE,t)− `t

(
f(xt)

))
.

We now split the second term into estimation and approximation error. Define the prediction of a
local learner at node i and time step t as ŷi,t,

T∑
t=1

(
`t(fE,t)− `t

(
f(xt)

))
=

D∑
k=1

∑
i∈LEAVESk(E)

∑
t∈Ti

(
`t(ŷi,t)− `t

(
f(xt)

))

=

D∑
k=1

∑
i∈LEAVESk(E)

∑
t∈Ti

(
`t(ŷi,t)− `t(y?i)

)

+

D∑
k=1

∑
i∈LEAVESk(E)

∑
t∈Ti

(
`t(y

?
i)− `t

(
f(xt)

))

≤
D∑
k=1

∑
i∈LEAVESk(E)

Rloc
i,T (regret of local predictors)

+

D∑
k=1

∑
i∈LEAVESk(E)

∑
t∈Ti

(
`t
(
f(xi)

)
− `t

(
f(xt)

))

≤ L′
D∑
k=1

∑
i∈LEAVESk(E)

∑
t∈Ti

∣∣f(xi)− f(xt)
∣∣

using (8) and the fact that `t is L′-Lipschitz. Combining terms completes the proof.

The next key lemma bounds the number of leaves in a pruning E for different settings of the ball
radius function.
Lemma 3. For any instance sequence σT , for any T ∈ TD(σT), and for any pruning E of T , let the
random variable K be such that P(K = k) = |Ek|

|E| for k = 1, . . . , D. Then the following statements
hold for each k,

|E| ≤ E
[
L

d
1+d

K

]
T

d
1+d for εk,t = (Lkt)

− 1
1+d (Local Lipschitzness)

|E| ≤ E
[
(LT)

dK
1+dK

]
for εk,t = (Lt)

− 1
1+dk (Local dimension)

|E| ≤ E
[
(LτK(T))

d
2+d

]
for εk,t = (Lτk(t))−

1
1+d (Local losses)

15

Proof. We first recall that leaves of a pruning E correspond to balls in a εk,T -packing. Thus, to give
a bound on the number of leaves at level k, that is |Ek|, we estimate the size of the packing formed at
level k. However, instead of directly bounding size of the packing, we use a more careful volumetric
argument. In particular, at level k w only pack the volume that is not occupied yet by previous levels
—this helps to avoid gross overestimates, since we take into account the fact that we can only pack a
limited volume. Denote volume of a set in an Euclidean space by vol(·), and let packk stand for the
collection of balls at level k of the packing.

Local Lipschitzness. Pick any k = 1, . . . , D. Recalling that X is the unit ball,

|Ek| ≤
vol(X)− vol

(⋃k−1
s=1 packs

)
vol(B(εk,T))

=
1−

∑k−1
s=1 |Es|εds,T
εdk,T

= (LkT)
d

1+d −
k−1∑
s=1

|Es|
(
Lk
Ls

) d
1+d

(using the definition of εk,t.)

Dividing both sides by L
d

1+d

k we get
k∑
s=1

|Es|

L
d

1+d
s

≤ T
d

1+d

Since k is chosen arbitrarily, we can set k = D and write
D∑
s=1

|Es|

L
d

1+d
s

≤ T
d

1+d

or, equivalently,

1 ≤

(
D∑
s=1

|Es|

L
d

1+d
s

)−1
T

d
1+d .

Multiplying both sides by |E| gives

|E| ≤

(
D∑
s=1

|Es|/|E|

L
d

1+d
s

)−1
T

d
1+d .

Now observe that the factor in the right-hand side is a weighted harmonic mean with weights
|E1|
|E| , . . . ,

|ED|
|E| . Therefore the HM-GM-AM inequality (between Harmonic, Geometric, and Arith-

metic Mean) implies that

|E| ≤ E
[
L

d
1+d

K

]
T

d
1+d

where the expectation is with respect to P(K = k) = |Ek|
|E| . This proves the first statement.

Local dimension. Using again the volumetric argument and the appropriate definition of εk,t

|Ek| ≤
1−

∑k−1
s=1 |Es|ε

ds
s,T

εdkk,T
= (LT)

dk
1+dk −

k−1∑
s=1

|Es|(LT)
dk

1+dk
− ds

1+ds .

Dividing both sides by (LT)
dk

1+dk and rearranging gives

|E| ≤

(
D∑
s=1

|Es|/|E|
(LT)

ds
1+ds

)−1
.

Once again, observing that the factor in the right-hand side is a weighted harmonic mean with weights
|E1|
|E| , . . . ,

|ED|
|E| , by the HM-GM-AM inequality we get

|E| ≤ E
[
(LT)

dK
1+dK

]
where the expectation is with respect to P(K = k) = |Ek|

|E| .

16

Local losses. Using once more the volumetric argument and the appropriate definition of εk,t,

|Ek| ≤
1−

∑k−1
s=1 |Es|εds,T
εdk,T

= (Lτk(T))
d

2+d −
k−1∑
s=1

|Es|
(
τk(T)

τs(T)

) d
2+d

.

Dividing both sides by (Lτk(T))
d

2+d and multiplying by |E| we get

|E| ≤

(
D∑
s=1

|Es|/|E|
(Lτs(T))

d
2+d

)−1
≤ E

[
(LτK(T))

d
2+d

]
where —as before— the expectation is with respect to P(K = k) = |Ek|

|E| . The proof is concluded.

C.1 Proof of Theorem 1

We start from Lemma 2 with the square loss `t(y) = 1
2 (y − yt)2 and Y ≡ H ≡ [0, 1]. As `t is

η-exp-concave for η ≤ 1
2 and 1-Lipschitz in [0, 1], we can apply Theorem 5 with L′ = 1. This gives

us

RT (f) ≤ Rtree
T (E) +

D∑
k=1

∑
i∈LEAVESk(E)

Rloc
i,T +

D∑
k=1

∑
i∈LEAVESk(E)

∑
t∈Ti

|f(xi)− f(xt)| .

Using Theorem 5 combined with MT ≤ DT , and then using the first statement of Lemma 3, we get
that

Rtree
T (E)

Õ
= |E| Õ= E

[
L

d
1+d

K

]
T

d
1+d .

Bounding the estimation error. Using the regret bound of Follow the Leader (FTL) with respect
to the square loss [5, p. 43], we get

D∑
k=1

∑
i∈LEAVESk(E)

Rloc
i,T ≤ 8 ln(eT)|E| ≤ 8 ln(eT)E

[
L

d
1+d

K

]
T

d
1+d

where we used Lemma 3 to obtain the second inequality.

Bounding the approximation error. By hypothesis, f ∈ F(E, T). Using Definition 4 and the
fact that at time t ball radii at depth k are εk,t,

D∑
k=1

∑
i∈LEAVESk(E)

∑
t∈Ti

∣∣f(xi)− f(xt)
∣∣ ≤ D∑

k=1

Lk
∑

i∈LEAVESk(E)

∑
t∈Ti

εk,t

≤
D∑
k=1

Lk
∑

i∈LEAVESk(E)

|Ti|∑
t=1

εk,t

=

D∑
k=1

L
d

1+d

k

∑
i∈LEAVESk(E)

|Ti|∑
t=1

t−
1

1+d

≤
D∑
k=1

L
d

1+d

k

∫ TE,k

0

τ−
1

1+d dτ

≤ 2

D∑
k=1

(LkTE,k)
d

1+d .

Combining the bound on Rtree
T (E) with the bounds on the estimation and approximation errors, we

get that

RT (f)
Õ
= E

[
L

d
1+d

K

]
T

d
1+d +

D∑
k=1

(LkTE,k)
d

1+d ∀f ∈ F(E, T) (9)

which completes the proof.

17

C.2 Proof of Theorem 2

Similarly to the proof of Theorem 1, we use the properties of the square loss and Lemma 2. This
gives us

RT (f) ≤ Rtree
T (E) +

D∑
k=1

∑
i∈LEAVESk(E)

Rloc
i,T +

D∑
k=1

∑
i∈LEAVESk(E)

∑
t∈Ti

∣∣f(xi)− f(xt)
∣∣ .

Using Theorem 5 combined with MT ≤ DT (the largest number of traversed distinct paths), and
then using Lemma 3 (second statement), we get that

Rtree
T (E)

Õ
= |E| Õ= E

[
(LT)

dK
1+dK

]
.

Bounding the estimation error. Using —as before— the regret bound of FTL with respect to the
square loss we immediately get

D∑
k=1

∑
i∈LEAVESk(E)

Rloc
Ti
≤ 8 ln(eT)|E| ≤ 8 ln(eT)E

[
(LT)

dK
1+dK

]
where the last inequality uses Lemma 3.

Bounding the approximation error. For all f ∈ FL and for all E ∈ Edim(T), since at time t the
ball radii at depth k are εk,t,

D∑
k=1

∑
i∈LEAVESk(E)

∑
t∈Ti

∣∣f(xi)− f(xt)
∣∣ ≤ L D∑

k=1

∑
i∈LEAVESk(E)

∑
t∈Ti

εk,t (10)

≤ L
D∑
k=1

∑
i∈LEAVESk(E)

|Ti|∑
t=1

εk,t (11)

≤
D∑
k=1

L
1− 1

1+dk

∫ TE,k

0

τ
− 1

1+dk dτ (12)

≤ 2

D∑
k=1

(LTE,k)
dk

1+dk . (13)

Combining the bound on Rtree
T (E) with the bounds on the estimation and approximation errors, we

get that

RT (f)
Õ
= E

[
(LT)

dK
1+dK

]
+

D∑
k=1

(LTE,k)
dk

1+dk ∀f ∈ FL . (14)

The proof is complete.

C.3 Proof of Theorem 3

Here we use the 1-Lipschitz absolute loss function `t(y) = |y − yt| and run self-confident Exponen-
tially Weighted Average (EWA) [1] at every node of the tree withH ≡ {0, 1}. Lemma 2 gives us the
decomposition

RT (f) ≤ Rtree
T (E) +

D∑
k=1

∑
i∈LEAVESk(E)

Rloc
i,T +

D∑
k=1

∑
i∈LEAVESk(E)

∑
t∈Ti

∣∣f(xi)− f(xt)
∣∣ .

Theorem 6 gives us

Rtree
T (fE)

Õ
=

√
|E|ΛE ln

(
MT

|E|

)
.

18

Using once more MT ≤ DT , the fact that any pruning E has at least one leaf, and Lemma 3 (third
statement), we get

1 ≤ |E| ≤ E
[
(LτK(T))

d
1+d

]
.

Recall that ŷi,t is the output at time t of the local predictor at node i. By definition of τk,

ΛE =

D∑
k=1

∑
i∈LEAVESk(E)

∑
t∈Ti

`t(ŷi,t) ≤
D∑
k=1

τk(TE,k) .

This gives us

Rtree
T (E)

Õ
=

√√√√(D∑
k=1

τk(TE,k)

)
E
[
(LτK(T))

d
2+d

]
.

Bounding the estimation error. Let the cumulative loss of the best expert for and node i be defined
by

Λ?i,T =
∑
t∈Ti

`t(y
?
i) where y?i = arg min

y∈{0,1}

∑
t∈Ti

`t(y)

Then, [5, Exercise 2.11] implies that for a positive constant c (independent of the number of experts
and Λ?i,T), Rloc

i,T ≤ 2
√

2 ln(2)Λ?i,T + c ln(2). We can thus write

D∑
k=1

∑
i∈LEAVESk(E)

Rloc
i,T ≤

D∑
k=1

∑
i∈LEAVESk(E)

(
2
√

2 ln(2)Λ?i,T + c ln(2)
)

≤ 2
√

2 ln(2)

D∑
k=1

√
|Ek|

∑
i∈LEAVESk(E)

Λ?i,T + c ln(2)|E|

≤ 2
√

2 ln(2)

D∑
k=1

√
|Ek|τk(TE,k) + c ln(2)|E|

since, according to the definition of τκ,∑
i∈LEAVESk(E)

Λ?i,T ≤ τk(TE,k) .

Next, using the Cauchy-Schwartz inequality,

D∑
k=1

√
|Ek|τk(TE,k) ≤

√√√√ D∑
k=1

|Ek|

√√√√ D∑
k=1

τk(TE,k) ≤

√√√√(D∑
k=1

τk(TE,k)

)
E
[
(LτK(T))

d
2+d

]
where the last inequality is a consequence of Lemma 3 (third statement). This gives us the following
bound on the estimation error

D∑
k=1

∑
i∈LEAVESk(E)

Rloc
i,T
O
=

√√√√(D∑
k=1

τk(TE,k)

)
E
[
(LτK(T))

d
2+d

]
+ E

[
(LτK(T))

d
2+d

]
.

19

Bounding the approximation error. Since we are competing against the class of L-Lipschitz
functions,

D∑
k=1

∑
i∈LEAVESk(E)

∑
t∈Ti

|f(xi)− f(xt)| ≤ L
D∑
k=1

∑
i∈LEAVESk(E)

∑
t∈Ti

εk,t

≤ L
D∑
k=1

∑
i∈LEAVESk(E)

|Ti|∑
t=1

εk,t

= L1− 1
2+d

D∑
k=1

∑
i∈LEAVESk(E)

|Ti|∑
t=1

τk(t)−
1

2+d

≤ L
1+d
2+d

D∑
k=1

∫ τk(TE,k)

0

θ−
1

1+d dθ

(since τk is non-decreasing)

≤ 3

2
L

1+d
2+d

D∑
k=1

τk(TE,k)
1+d
2+d .

Combining all terms together, the final regret bound is

RT (f)
Õ
=

√√√√(D∑
k=1

τk(TE,k)

)
E
[
(LτK(T))

d
2+d

]
+ E

[
(LτK(T))

d
2+d

]
+

D∑
k=1

(Lτk(TE,k))
1+d
2+d .

D Additional Proofs

Proof of Theorem 4. Recall that by definition of η-exp-concavity of `t, e−η`t(x) is concave for all
x. Observe that the relative entropy satisfies

KL(u || wt)−KL(u || wt+1)

=

M∑
i=1

ui ln
wi,t+1

wi,t

=
∑
i∈Et

ui ln
wi,t+1

wi,t

= −η
∑
i∈Et

ui `t(µi,t)− Ut ln

∑
j∈Et wj,t e

−η`t(ŷj,t)∑
j∈Et wj,t

(update step in Alg. 6)

≥ −η
∑
i∈Et

ui `t(ŷi,t) + η Ut `t

(∑
j∈Et wj,t ŷj,t∑
j∈Et wj,t

)
(exp-concavity and Jensen’s)

= −η
∑
i∈Et

ui `t(ŷi,t) + η Ut `t(ŷt)

Summing both sides over t = 1, . . . , T we get

KL(u || w1) ≥ KL(u || w1)−KL(u || wT) = −η
T∑
t=1

∑
i∈Et

ui `t(ŷi,t) + η

T∑
t=1

Ut `t(ŷt) .

The proof is now complete.

Proof of Lemma 1. The proof exploits the fact that whenever the weights are initialized uniformly
over a subset of the experts, the sequence of predictions remains the same as if the weights were
initialized uniformly over all experts. In particular, we show that the predictions obtained assuming

20

weights are initialized with wi,1 = 1/MT for i ∈ E1 ∪ · · · ∪ ET with
∣∣E1 ∪ · · · ∪ ET ∣∣ = MT are the

same as the predictions obtained with wi,1 = 1 for all i. We use an inductive argument to prove that
the factor 1/MT introduced by the initialization wi,1 = 1/MT is preserved after each update. Fix a
round t > 1 and assume that all wi,t−1 contain the initialization factor 1/MT . Split the set of awake
experts into observed ones Eot ⊆ E1 ∪ · · · ∪ Et−1 (that is experts which were awake at least once
before), and unobserved ones Eut ≡ Et \ Eot . Clearly wi,t = 1/MT for every i ∈ Eut , as they were
never updated. For i ∈ Eot , the update rule

wi,t =
wi,t−1e

−η`i,t−1∑
j∈Et−1

wj,t−1e−η`j,t−1

∑
j∈Et−1

wj,t−1

shows that the initialization factors that occur in the terms wj,t−1 contained in the two sums cancel
out, whereas the one contained in wi,t−1 remains unchanged.

We can now write the prediction at round t as

ŷt =

∑
i∈Et wi,t ŷi,t∑
i∈Et wi,t

=

∑
i∈Eot

wi,t ŷi,t +
∑
i∈Eut

wi,1 ŷi,t∑
i∈Eot

wi,t +
∑
i∈Eut

wi,1
=
MT

∑
i∈Eot

wi,t ŷi,t +
∑
i∈Eut

ŷi,t

MT

∑
i∈Eot

wi,t + |Eut |

=

∑
i∈Et w

′
i,t ŷi,t∑

i∈Et w
′
i,t

where in the last step we canceled the initialization factor 1/MT from wi,t and introduced w′i,t which
differs from wi,t only due to the initialization w′i,1 = 1. This completes the proof.

21

