Proof of Theorem 1

To prove Theorem 1, we interpret graphon convolutions as generative models for graph convolutions.
Given the graphon W (u,v) = Zz’eZ\{O} Aiwi(u)p;(v) and a graphon convolution Y = Ty X
written as 1
TuxX)e) = Y b)) [ o)X n
i€Z\{0} 0
we can generate graph convolutions y,, = H,,(S,,)x,, by defining u; = (¢ — 1)/nfor 1 < i < n and
setting
[Snlij = W (ui, uy)
[xni = X (u;) 2)
H, (S,)x, = VIh(A,)VEx,
where S,, is the GSO of G,,, the deterministic graph obtained from W as in Section 3.2.1, x,, is the
deterministic graph signal obtained by evaluating the graphon signal X at points u;, and A,, and
V., are the eigenvalues and eigenvectors of S,, respectively. It is also possible to define graphon
convolutions induced by graph convolutions. The graph convolution y,, = H,,(S,,)x,, induces a
graphon convolution Y,, = Ty, X,, obtained by constructing a partition I; U ... U I,, of [0, 1] with
I; =[(i — 1)/n,i/n] and defining
W (u,v) = [Sn]i; x I(u € I;)I(v € I)
Xn(uw) = [xp)i X W(u € I;)

(T, X)) = 3 hOD)" (v) / 1 () X ()

1€Z\{0}

3)

where W, is the graphon induced by G,,, X,, is the graphon signal induced by the graph signal x,,
and A} and ¢} are the eigenvalues and eigenfunctions of W,,.

Theorem 1 is a direct consequence of the following theorem, which states that graphon convolutions
can be approximated by graph convolutions on large graphs.

AS1. The graphon W is A;-Lipschitz, i.e. [W (ug,v2) — W (ug,v1)| < Ay (Jug — up| + |va — v1]).
AS2. The convolutional filters h are As-Lipschitz and non-amplifying, i.e. |h()\)| < 1.

AS3. The graphon signal X is As-Lipschitz.

Theorem 3. Consider the graphon convolution given by Y = T X as in (I)), where h(\) is constant
for |A| < c. For the graph convolution instantiated from Ty as y, = H,,(S,)x,, [cf. )], under

Assumptions [T] through 3]it holds
e\ 1 1
IV = Yolles < VAT (424 T2 n 1K, + 2 @

where Y,, = Ty, X, is the graph convolution induced by y,, = H, (S,,)x, [cf. ()], n. is the
cardinality of the set C = {i | |A}| = c}, and 0c = minjec(|Ai — A} (i) [Aisbsgn(iy — AT L (A1 —
A, AT — A—1]), with \; and A" denoting the eigenvalues of W and W, respectively. In particular,
if X = X,, we have
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TN,

IV~ Yl < VAT (A2+ i )n-%||XL2. )

Proof of Theorem 3. To prove Theorem 3, we need the following four propositions.

Proposition 1. Let W : [0,1]2 — [0, 1] be an A;-Lipschitz graphon, and let W, be the graphon
induced by the deterministic graph G,, obtained from W as in Section 3.2.1. The Lo norm of
W — W, satisfies

VAL
i

W — Wl L,(o,12) < \/||W = WallL, o) <



Proof. Partitioning the unit interval as I; = [(¢ — 1)/n,i/n] for 1 < i < n (the same partition used
to obtain S,,, and thus W ,, from W), we can use the graphon’s Lipschitz property to derive

1/n 1/n 1/n 1/n A A A
1 1 1
W =Wl q,x1,) < Al/o /0 |u|dudv + A1/0 /o |v|dvdu = 75 T 58 = 3
We can then write
W= WnHLl([O’l]Q) - Z W — Wn”Ll(IiXIj) <nfg=—
,J

which, since W — W, : [0,1]> — [—1, 1], implies

5

IW = Wallzaoa) < IW = Wallzy o < ¥ 2
O

Proposition 2. Let T and T' be two self-adjoint operators on a separable Hilbert space H whose
spectra are partitioned as v U T and w U Q respectively, with yNT = () and w N Q = (. If there
exists d > 0 such that minge~, yeq | — y| > d and minge,, yer | — y| > d, then

|

|Er(v) — Er(w)|| < 5 =

Proof. See (Seelmann, 2014). O

Proposition 3. Let X € L([0,1]) be an As-Lipschitz graphon signal, and let X, be the graphon
signal induced by the deterministic graph signal x,, obtained from X as in @). The Ly norm of
X — X, satisfies

As
X - X, < —
H L||L2([0,1]) \/3771

Proof. Partitioning the unit interval as I; = [(¢ — 1)/n,i/n] for 1 < i < n (the same partition used
to obtain x,,, and thus X, from X'), we can use the Lipschitz property of X to derive

o M7 [43 A
X -X, < AQ/ 2dy = 3 4 3
| ety < * Jo e 33 n3n

A3 AS
X - X, =2 X = Xallpyy s =
| Il L2(0,17) Z | 2y n3n  V3n

We can then write

O

Proposition 4. Let W : [0,1]? — [0, 1] and W' : [0,1]? — [0, 1] be two graphons with eigenvalues
given by {\i(Tw ) }iez\ {0y and { \i(Tw) }iez)\ {0}, ordered according to their sign and in decreasing
order of absolute value. Then, for all i € Z \ {0}, the following inequalities hold

Ai(Twr) = Xi(Tw)| < [Tw—wll < [W' = W], .

Proof. Let A := W’ — W and let S), denote a k-dimensional subspace of Ly([0, 1]). Using the
minimax principle (Kato, 2013} Chapter 1.6.10), we can write

M (Tw) = min max (TwX, X) .

Sk—1 XeSE | IX|lLy=1



Therefore, it holds that

Me(Tw) = M (Twa) = min max (TwaX,X) = min max
Sk-1 X€SE X[, =1 Sk-1 XeSE |1 X p,=1
= min max (TwX,X) + (TaX, X))
Sk—1 XeSE L IX|L,=1
< min max (TwX, X) + | max (Ta X, X)
Sk—1 \ X€Si_ 1,1 X||L,=1 X€Si 4.1 X]l,=1

< min
Sk—1

max

<Xes,j1,||X|L2—1

= min max
Sk—1 XeSE L IX|L,=1

(TwX, X))+ max )\g(TA)>

<TwX,X> + mzax )\z(TA) = )\k(TW) + m?X )\[(TA) .

where the first inequality follows from max(a + b) < max(a) 4+ max(b) and the second from the
fact that (Ta X, X) < maxy A¢(Ta) for all unitary X . Rearranging terms and using the definition of

the operator norm, we get
Me(Twr) = Ae(Tw) < max Ae(Ta)

< m?X|/\g(TA)‘ = |Tall < [|AllL,-

(6)

where we have also used the fact that the Hilbert-Schmidt norm dominates the operator norm.

To prove that this inequality holds in absolute value, let A’ =

before, we get
Ak (Tw)
and since | Ta/|| = || Tal| and ||A"||L, =
Ae(Tw) —
Putting (6) and (7)) together completes the proof.

Az,

= Me(Twrpar) < Ae(Twr) + [ Tar || < M(Tw) + (1A'l 2,

Ae(Twr) < [ITall < | Allz, -

—A. Following the same reasoning as

(7
O

We first prove the result of Theorem 3 for filters k() satisfying h(A\) = 0 for |A| < ¢. Using the

triangle inequality, we can write the norm difference ||Y —
Yollp, = 1TaX — Tu, Xullp, = [TaX + Ta, X — Tu, X — Ta, Xall,

1y —
< |TaX —Ta, X, (D
where the LHS is split between terms (1) and (2).

Writing the inner products fol X
plicity, we can then express (1) as

u)p;(u)du and fol X

Yallz, as

+ ||THn (X - Xn)HL2 2)

I TaX — Ta, X, = ‘ Zh AMX (A
Lo
Z h(A — RN XA}
Lo
Using the triangle inequality, this becomes
I1TeX — Tor, X, = || D hODX )i — hA) X (A}
i Lo
= Z h(A)X (A)gi +hA) X (Ao)pi — hAT) X (A @i — BAY)
<D0 (A) =) X (N)ei| QD
7 Lo
D (X00ei - XONer)|| a2)
Lo

w)? (u)du as X (\;) and X (A}) for sim-

X (e

Lo



where we have now split (1) between (1.1) and (1.2).

Focusing on (1.1), note that the filter’s Lipschitz property allows writing h(A;) —h(A) < Az|A;— AT
Hence, using Proposition [4] together with the Cauchy-Schwarz inequality, we get

3 (h(h) = h) X PR (Y

%

< A2||W = W, ||,
Lo

Lo

and, from Proposition|[I]

For (1.2), we use the triangle and Cauchy-Schwarz inequalities to write

S hOW (X - X(A?)w?)

Azr
7

XL, ®)

D (h(A) = BOA)) X (A

i

Lo

= [ H00) (X006 + Xt = Xt - X0t

Lo

+ (D RODHX, i — )

%

D> ThANX (A (@i — ¢})
i Lo

<2 IO lza I Xz les — @F 2.

Lo

Using Proposition 2] with v = A; and w = A}, we then get
| ) (XOw)ei = XO0e?)

where d; is the minimum between min(|\; — A [, [\ — AP ]) and min(|A} — X1, [N} — Xi—1])
for each 4. Since §. < d; for all ¢ and | Tw — Tw,, || < ||W — W,,||1, (i.e., the Hilbert-Schmidt
norm dominates the operator norm), this becomes

SO0 (K (A)er - XD
and, using Proposition|[I]
n % AN AYRD 7'('\/7 n
D HOY) (XOw)wi = KO0 Sam I, 3RO

The final bound for (1.2) is obtained by noting that |h(A)| < 1 and A(A) = 0 for |A\| < c. Since there
are a total of n. eigenvalues A? for which |A\?| > ¢, we get

. . A
SO0 (X = X0l )|| < T2 X e ©)
% L

oy TlITw — Tw, ||
<Xz, Y (N, )”LzT

Lo

T|W — W, || n
< T X RO s
: ,

2

o/t

A bound for (2) follows immediately from Proposition[3] Since [1()\)| < 1, the norm of the operator
Tw, is bounded by 1. Using the Cauchy-Schwarz inequality, we then have ||Tg, (X — X,,)||1, <
|| X — X, ||, and therefore
As

1Te, (X — Xn) |z, < 3n
which completes the bound on ||Y" — Y, ||, when ~A(A) = 0 for |\| < c. For filters in which h()) is
a constant for A < ¢, we obtain a bound by observing that 2(\) can be constructed as the sum of two
filters: an As-Lipschitz filter f(A) with f(A\) = 0 for || < ¢, and a bandpass filter g(\) with g(\)
constant for |A| < ¢ and 0 otherwise. Hence, by the triangle inequality

1Y =Yoo, = [1TaX — Ta, ||, < [T X — T, Xollr, + [|[Te X — Ta, XullL,-

(10)



The bound on || T¢ X — T¥, | 1, is the one we have derived, and for ||[Tg X — Ta, Xnl||L,, We use
|g(M\)| < 1 and the fact that g(A) is constant in [0, ¢] with 0 < ¢ < 1 to obtain

A
ITeX — Te, Xallr, < X — Xallz, < o

— 11
S 7 Y

where the last inequality follows from Proposition 3]

Putting together (8), (9), (I0) and (TT)), we arrive at the first result of the theorem as stated in (d). The
second result [cf. (§)] is obtained by observing that, for X = X, bound (2) in (T0) simplifies to
|Ta, (X — X,,)||z, = 0; and, similarly in (TI), |Tc X — Ta, Xallz, < | X — Xullz, = 0. O

Proof of Theorem 1. To compute a bound for ||Y — Y,,||,, we start by writing it in terms of the last
layer’s features as

2 o 2
Iy = Yalf, = > ||xXE - XL, - (12)
Ll g,
f=1
At layer ¢ of the WNN ®(#H; W; X), we have
Fo_q Fp_q
Xg:/’ Zhgg ww X[, | =p Z f-‘?Xzzg—l
g=1
and similarly for ®(H; W,,; X,,),
Fo_1 Fpq

ro_ Y —
Xie=p | 2 mhsw X,y | =p| 2T
g=1 g=1
We can therefore write || X/ — X7 ||, as
Fpq
f f
HXZ _XnZ

Fpq
: ’LQZ P ZTH,{HXEJA S DIRTR
g=1 g=1

and, since p is normalized Lipschitz,

Lo

Foq
HXZ - Xr]:,z ‘LQ < Z THlnggfl - THg[Xi,zfl
g=1 Lo
Fo_1
< Z H ngz 1 Hf9 Xﬁ,m‘ I
2

where the second inequality follows from the triangle inequality. Looking at each feature g indepen-
dently, we apply the triangle inequality once again to get

g, (2 - x|
; Lo
The first term on the RHS of this inequality is bounded by () in Theorem 3. The second term can be

decomposed by using Cauchy-Schwarz and recalling that |A(\)| < 1 for all graphon convolutions in
the WNN (Assumption . We thus obtain a recursion for || X; — X f: o|lL.» which is given by

and whose first term, 2521 1 X5 — X3 ol
X olle, < FoAs/+/3n by Proposition

g
H HngZ 1 Hfg ne 1H H HngZ 1 Hfg Xe%‘

Fo_q Fo1

Zf(Aﬁ””C) nhx7 1||L2+ZHX31 X, 09

|xi-xL.,

L2 = g2 1X9 — X2 L, is bounded as 370, || XE -



To solve this recursion, we need to compute the norm ||X7 ,|,. Since the nonlinearity p is
normalized Lipschitz and p(0) = 0 by Assumption [2} this bound can be written as

Fy_q
g g
||X1€—1 ||L2 = Z TH§9XZ—1
g=1 Lo
and using the triangle and Cauchy Schwarz inequalities,

Fo_1 Fo_1
X7, < Z [ o X, < Z X741,

where the second inequality follows from |A(\)| < 1. Expanding this expression with initial condition
X§ = X9 yields

X7, < H Fe'ZIIX L, - (14)

=1

and substituting it back in (T3)) to solve the recursion, we get

HXf X.. H <Lr( >5<HFE’>ZIIX*‘JIIL2 Ff/é?’ n"E . (15)

=1

To arrive at the result of Theorem 1, we evaluate (I3) with £ = L and substitute it into (I2) to obtain

2 ok Ik
Iy -l = ~xL,
f=1
, (16)
s ™ 1 FoAg 1
< J;l L/ Ay <A2+ 3. ) 2 H Fy ZHXQHL2 \[ 2
Finally, since Fp = Fp =1and Fy = Ffor1 </ <L -1,
T™Me\ 1,51 Az 1
||Y—Yn||L2 < L/ A ( 5 )n 2 F ||XHL2+ﬁ” 2, 17
O

Proof of Theorem 2
Theorem 2 follows directly from Theorem 1 via the triangle inequality.

Proof of Theorem 2. By the triangle inequality, we can bound ||Y,,, — Y;,, ||z, as
Yo, =Yoo llp, = Vo, =Y +Y = Yo ||, <[Ya, =Y, + 1Y = Yol -

Theorem 1 gives a bound for both ||Y,,, —=Y|| 1, and ||Y' =Y., || ,- Setting n., = maxje{l 23 ICj \ C; =
{i | IN;”] > ¢}, and 6, = minec, jeq1,23 (| A /\z+§gn(L)| [Nitsen(iy = Ai? L 1A = AT [ IAT = Aq]),
we arrive at the theorem’s result. O

Additional Numerical Results: Consensus

In this section, we provide a second set of experiments to illustrate the effect of the hyperparameters
F, K, and L (number of features, filter taps, and layers respectively) on GNN transferability. These
experiments are based on the consensus problem, in which the goal is to drive the signal values at
each node to the average of the graph signal over all nodes.
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Figure 1: Relative difference between test rRMSEs achieved on the graphs G,, and Gy (N = 2000)
for different configurations of F', K and L. Average and standard deviation over 3 graph realizations
and 3 data realizations per graph. Error bars have been scaled by 1.5. (a) Fixed K and L, varying
number of features F'. (b) Fixed F' and L, varying number of filter taps K. Fixed F' and K,
varying number of layers L.

The problem setup is as follows. Given a network G,,, the input data x,, is generated by sampling a
graph signal x,, = |X,,| from a folded multivariate normal distribution with mean f& and covariance

3. Explicitly, X, ~ N(fz, X), where we set & = 0 and 3 = 1001 The output data is given by
Ele [xn]i

Yn=="—"1
n
which is also a graph signal on G,,. This data is split between 8400 input-output pairs for training,

200 for validation, and 200 for testing.

To analyze transferability, we train GNNs ®(#,,; S;,; X,,) on small networks of size n for multiple
values of n, and use the learned parameter sets H,, to define and test GNNs ®(H,,; Sy;x ) on
a network of size N >> n. The networks are all stochastic block model graphs with 2 (balanced)
communities, intra-community probability p.,., = 0.8 and inter-community probability p.,.; = 0.2.
We set N = 2000 and vary n as n = 50, 250, 500, 1000.

The GNN parameters are learned by optimizing the L1 loss on the training set using ADAM
with learning rate 0.001 and decay factors 81 = 0.9 and 52 = 0.999. We keep the model with
smallest relative RMSE (rRMSE) on the validation set over 40 epochs. The performance metric
for transferability is the relative difference between the test IRMSEs achieved by the GNN on G,
and the GNN on Gy, i.e., the difference between the rRMSEs obtained by ®(#,,; S,,; x,,) and
®(H,,; Sn;x ) on the test set relative to the test IRMSE for ®(H,,; S,,; X, ). This relative rRMSE
difference is reported in Figures [Ia] through [Ic|for 3 graph realizations and 3 data realizations per
graph, as well as different values of F', K, and L. In Figure K and L are fixed at K = 4 and
L =1, and we vary F. In Figure[Tb| " and L are fixed at F' = 8 and L = 1, and we vary K. In
Figure[Ic| we fix F' = 8 and K = 4 and vary the number of layers L.

Note that, for all configurations of F', K and L, the average relative rRMSE difference and its
standard deviation decrease as n increases, agreeing with Theorem 2. In Figure [Tl we can also see
that for smaller values of n the error bars are smaller for F' = 4 than they are for /' = 8 and F' = 16.
This illustrates the dependence of the transferability bound on the GNN width. In Figure[Tb] varying
the number of filter taps K does not seem to have much of an effect on GNN transferability. In
contrast, in Figure [Ic|we can clearly see the size of the error bars increase with the number of layers
L, especially for small n. This is expected, since L exponentiates [ in the transferability bound of
Theorem 2.
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