
Proof of Theorem 1

To prove Theorem 1, we interpret graphon convolutions as generative models for graph convolutions.
Given the graphon W(u, v) =

∑
i∈Z\{0} λiϕi(u)ϕi(v) and a graphon convolution Y = THX

written as

(THX)(v) =
∑

i∈Z\{0}

h(λi)ϕi(v)

∫ 1

0

ϕi(u)X(u)du (1)

we can generate graph convolutions yn = Hn(Sn)xn by defining ui = (i− 1)/n for 1 ≤ i ≤ n and
setting

[Sn]ij = W(ui, uj)

[xn]i = X(ui)

Hn(Sn)xn = VH
nh(Λn)VH

nxn

(2)

where Sn is the GSO of Gn, the deterministic graph obtained from W as in Section 3.2.1, xn is the
deterministic graph signal obtained by evaluating the graphon signal X at points ui, and Λn and
Vn are the eigenvalues and eigenvectors of Sn respectively. It is also possible to define graphon
convolutions induced by graph convolutions. The graph convolution yn = Hn(Sn)xn induces a
graphon convolution Yn = THn

Xn obtained by constructing a partition I1 ∪ . . . ∪ In of [0, 1] with
Ii = [(i− 1)/n, i/n] and defining

Wn(u, v) = [Sn]ij × I(u ∈ Ii)I(v ∈ Ij)
Xn(u) = [xn]i × I(u ∈ Ii)

(THn
Xn)(v) =

∑
i∈Z\{0}

h(λni )ϕni (v)

∫ 1

0

ϕni (u)Xn(u)du
(3)

where Wn is the graphon induced by Gn, Xn is the graphon signal induced by the graph signal xn
and λni and ϕni are the eigenvalues and eigenfunctions of Wn.

Theorem 1 is a direct consequence of the following theorem, which states that graphon convolutions
can be approximated by graph convolutions on large graphs.
AS1. The graphon W is A1-Lipschitz, i.e. |W(u2, v2)−W(u1, v1)| ≤ A1(|u2 − u1|+ |v2 − v1|).

AS2. The convolutional filters h are A2-Lipschitz and non-amplifying, i.e. |h(λ)| < 1.

AS3. The graphon signal X is A3-Lipschitz.

Theorem 3. Consider the graphon convolution given by Y = THX as in (1), where h(λ) is constant
for |λ| < c. For the graph convolution instantiated from TH as yn = Hn(Sn)xn [cf. (2)], under
Assumptions 1 through 3 it holds

‖Y − Yn‖L2
≤
√
A1

(
A2 +

πnc
δc

)
n−

1
2 ‖X‖L2

+
2A3√

3
n−

1
2 (4)

where Yn = THnXn is the graph convolution induced by yn = Hn(Sn)xn [cf. (3)], nc is the
cardinality of the set C = {i | |λni | ≥ c}, and δc = mini∈C(|λi − λni+sgn(i)|, |λi+sgn(i) − λni |, |λ1 −
λn−1|, |λn1 −λ−1|), with λi and λni denoting the eigenvalues of W and Wn respectively. In particular,
if X = Xn we have

‖Y − Yn‖L2 ≤
√
A1

(
A2 +

πnc
δc

)
n−

1
2 ‖X‖L2 . (5)

Proof of Theorem 3. To prove Theorem 3, we need the following four propositions.

Proposition 1. Let W : [0, 1]2 → [0, 1] be an A1-Lipschitz graphon, and let Wn be the graphon
induced by the deterministic graph Gn obtained from W as in Section 3.2.1. The L2 norm of
W −Wn satisfies

‖W −Wn‖L2([0,1]2) ≤
√
‖W −Wn‖L1([0,1]2) ≤

√
A1√
n

.
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Proof. Partitioning the unit interval as Ii = [(i− 1)/n, i/n] for 1 ≤ i ≤ n (the same partition used
to obtain Sn, and thus Wn, from W), we can use the graphon’s Lipschitz property to derive

‖W −Wn‖L1(Ii×Ij) ≤ A1

∫ 1/n

0

∫ 1/n

0

|u|dudv +A1

∫ 1/n

0

∫ 1/n

0

|v|dvdu =
A1

2n3
+
A1

2n3
=
A1

n3
.

We can then write

‖W −Wn‖L1([0,1]2) =
∑
i,j

‖W −Wn‖L1(Ii×Ij) ≤ n
2A1

n3
=
A1

n

which, since W −Wn : [0, 1]2 → [−1, 1], implies

‖W −Wn‖L2([0,1]2) ≤
√
‖W −Wn‖L1([0,1]2) ≤

√
A1√
n

.

Proposition 2. Let T and T ′ be two self-adjoint operators on a separable Hilbert spaceH whose
spectra are partitioned as γ ∪ Γ and ω ∪ Ω respectively, with γ ∩ Γ = ∅ and ω ∩ Ω = ∅. If there
exists d > 0 such that minx∈γ, y∈Ω |x− y| ≥ d and minx∈ω, y∈Γ |x− y| ≥ d, then

‖ET (γ)− ET ′(ω)‖ ≤ π

2

‖T − T ′‖
d

Proof. See (Seelmann, 2014).

Proposition 3. Let X ∈ L2([0, 1]) be an A3-Lipschitz graphon signal, and let Xn be the graphon
signal induced by the deterministic graph signal xn obtained from X as in (2). The L2 norm of
X −Xn satisfies

‖X −Xn‖L2([0,1]) ≤
A3√
3n

.

Proof. Partitioning the unit interval as Ii = [(i− 1)/n, i/n] for 1 ≤ i ≤ n (the same partition used
to obtain xn, and thus Xn, from X), we can use the Lipschitz property of X to derive

‖X −Xn‖L2(Ii)
≤

√
A2

3

∫ 1/n

0

u2du =

√
A2

3

3n3
+

A3

n
√

3n
.

We can then write

‖X −Xn‖L2([0,1]) =
∑
i

‖X −Xn‖L2(Ii)
≤ n A3

n
√

3n
=

A3√
3n
.

Proposition 4. Let W : [0, 1]2 → [0, 1] and W′ : [0, 1]2 → [0, 1] be two graphons with eigenvalues
given by {λi(TW)}i∈Z\{0} and {λi(TW′)}i∈Z\{0}, ordered according to their sign and in decreasing
order of absolute value. Then, for all i ∈ Z \ {0}, the following inequalities hold

|λi(TW′)− λi(TW)| ≤ ‖TW′−W‖ ≤ ‖W′ −W‖L2 .

Proof. Let A := W′ −W and let Sk denote a k-dimensional subspace of L2([0, 1]). Using the
minimax principle (Kato, 2013, Chapter 1.6.10), we can write

λk(TW) = min
Sk−1

max
X∈S⊥k−1,‖X‖L2

=1
〈TWX,X〉 .
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Therefore, it holds that

λk(TW′) = λk(TW+A) = min
Sk−1

max
X∈S⊥k−1,‖X‖L2

=1
〈TW+AX,X〉 = min

Sk−1

max
X∈S⊥k−1,‖X‖L2

=1
〈TW + TAX,X〉

= min
Sk−1

max
X∈S⊥k−1,‖X‖L2

=1
(〈TWX,X〉+ 〈TAX,X〉)

≤ min
Sk−1

(
max

X∈S⊥k−1,‖X‖L2
=1
〈TWX,X〉+ max

X∈S⊥k−1,‖X‖L2
=1
〈TAX,X〉

)

≤ min
Sk−1

(
max

X∈S⊥k−1,‖X‖L2
=1
〈TWX,X〉+ max

`
λ`(TA)

)
= min
Sk−1

max
X∈S⊥k−1,‖X‖L2

=1
〈TWX,X〉+ max

`
λ`(TA) = λk(TW) + max

`
λ`(TA) .

where the first inequality follows from max(a+ b) ≤ max(a) + max(b) and the second from the
fact that 〈TAX,X〉 ≤ max` λ`(TA) for all unitary X . Rearranging terms and using the definition of
the operator norm, we get

λk(TW′)− λk(TW) ≤ max
`
λ`(TA) ≤ max

`
|λ`(TA)| = ‖TA‖ ≤ ‖A‖L2 . (6)

where we have also used the fact that the Hilbert-Schmidt norm dominates the operator norm.

To prove that this inequality holds in absolute value, let A′ = −A. Following the same reasoning as
before, we get

λk(TW) = λk(TW′+A′) ≤ λk(TW′) + ‖TA′‖ ≤ λk(TW) + ‖A′‖L2

and since ‖TA′‖ = ‖TA‖ and ‖A′‖L2 = ‖A‖L2 ,

λk(TW)− λk(TW′) ≤ ‖TA‖ ≤ ‖A‖L2 . (7)

Putting (6) and (7) together completes the proof.

We first prove the result of Theorem 3 for filters h(λ) satisfying h(λ) = 0 for |λ| < c. Using the
triangle inequality, we can write the norm difference ‖Y − Yn‖L2 as

‖Y − Yn‖L2
= ‖THX − THn

Xn‖L2
= ‖THX + THn

X − THn
X − THn

Xn‖L2

≤ ‖THX − THn
X‖L2

(1) + ‖THn
(X −Xn)‖L2

(2)
where the LHS is split between terms (1) and (2).

Writing the inner products
∫ 1

0
X(u)ϕi(u)du and

∫ 1

0
X(u)ϕni (u)du as X̂(λi) and X̂(λni ) for sim-

plicity, we can then express (1) as

‖THX − THnX‖L2
=

∥∥∥∥∥∑
i

h(λi)X̂(λi)ϕi −
∑
i

h(λni )X̂(λni )ϕni

∥∥∥∥∥
L2

=

∥∥∥∥∥∑
i

h(λi)X̂(λi)ϕi − h(λni )X̂(λni )ϕni

∥∥∥∥∥
L2

.

Using the triangle inequality, this becomes

‖THX − THnX‖L2
=

∥∥∥∥∥∑
i

h(λi)X̂(λi)ϕi − h(λni )X̂(λni )ϕni

∥∥∥∥∥
L2

=

∥∥∥∥∥∑
i

h(λi)X̂(λi)ϕi + h(λni )X̂(λi)ϕi − h(λni )X̂(λi)ϕi − h(λni )X̂(λni )ϕni

∥∥∥∥∥
L2

≤

∥∥∥∥∥∑
i

(h(λi)− h(λni )) X̂(λi)ϕi

∥∥∥∥∥
L2

(1.1)

+

∥∥∥∥∥∑
i

h(λni )
(
X̂(λi)ϕi − X̂(λni )ϕni

)∥∥∥∥∥
L2

(1.2)
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where we have now split (1) between (1.1) and (1.2).

Focusing on (1.1), note that the filter’s Lipschitz property allows writing h(λi)−h(λni ) ≤ A2|λi−λni |.
Hence, using Proposition 4 together with the Cauchy-Schwarz inequality, we get∥∥∥∥∥∑

i

(h(λi)− h(λni )) X̂(λi)ϕi

∥∥∥∥∥
L2

≤ A2‖W −Wn‖L2

∥∥∥∥∥∑
i

X̂(λi)ϕi

∥∥∥∥∥
L2

and, from Proposition 1,∥∥∥∥∥∑
i

(h(λi)− h(λni )) X̂(λi)ϕi

∥∥∥∥∥
L2

≤ A2

√
A1√
n
‖X‖L2 . (8)

For (1.2), we use the triangle and Cauchy-Schwarz inequalities to write∥∥∥∥∥∑
i

h(λni )
(
X̂(λi)ϕi − X̂(λni )ϕni

)∥∥∥∥∥
L2

=

∥∥∥∥∥∑
i

h(λni )
(
X̂(λi)ϕi + X̂(λi)ϕ

n
i − X̂(λi)ϕ

n
i − X̂(λni )ϕni

)∥∥∥∥∥
L2

≤

∥∥∥∥∥∑
i

h(λni )X̂(λi)(ϕi − ϕni )

∥∥∥∥∥
L2

+

∥∥∥∥∥∑
i

h(λni )ϕni 〈X,ϕi − ϕni 〉

∥∥∥∥∥
L2

≤ 2
∑
i

‖h(λni )‖L2
‖X‖L2

‖ϕi − ϕni ‖L2
.

Using Proposition 2 with γ = λi and ω = λni , we then get∥∥∥∥∥∑
i

h(λni )
(
X̂(λi)ϕi − X̂(λni )ϕni

)∥∥∥∥∥
L2

≤ ‖X‖L2

∑
i

‖h(λni )‖L2

π‖TW − TWn
‖

di

where di is the minimum between min(|λi− λni+1|, |λi− λni−1|) and min(|λni − λi+1|, |λni − λi−1|)
for each i. Since δc ≤ di for all i and ‖TW − TWn

‖ ≤ ‖W −Wn‖L2
(i.e., the Hilbert-Schmidt

norm dominates the operator norm), this becomes∥∥∥∥∥∑
i

h(λni )
(
X̂(λi)ϕi − X̂(λni )ϕni

)∥∥∥∥∥
L2

≤ π‖W −Wn‖L2

δc
‖X‖L2

∑
i

‖h(λni )‖L2

and, using Proposition 1,∥∥∥∥∥∑
i

h(λni )
(
X̂(λi)ϕi − X̂(λni )ϕni

)∥∥∥∥∥
L2

≤ π
√
A1

δc
√
n
‖X‖L2

∑
i

‖h(λni )‖L2 .

The final bound for (1.2) is obtained by noting that |h(λ)| < 1 and h(λ) = 0 for |λ| < c. Since there
are a total of nc eigenvalues λni for which |λni | ≥ c, we get∥∥∥∥∥∑

i

h(λni )
(
X̂(λi)ϕi − X̂(λni )ϕni

)∥∥∥∥∥
L2

≤ π
√
A1

δc
√
n
‖X‖L2

nc. (9)

A bound for (2) follows immediately from Proposition 3. Since |h(λ)| < 1, the norm of the operator
THn

is bounded by 1. Using the Cauchy-Schwarz inequality, we then have ‖THn
(X −Xn)‖L2

≤
‖X −Xn‖L2

and therefore

‖THn(X −Xn)‖L2 ≤
A3√
3n

(10)

which completes the bound on ‖Y − Yn‖L2
when h(λ) = 0 for |λ| < c. For filters in which h(λ) is

a constant for λ < c, we obtain a bound by observing that h(λ) can be constructed as the sum of two
filters: an A2-Lipschitz filter f(λ) with f(λ) = 0 for |λ| < c, and a bandpass filter g(λ) with g(λ)
constant for |λ| < c and 0 otherwise. Hence, by the triangle inequality

‖Y − Yn‖L2
= ‖THX − THn

‖L2
≤ ‖TFX − TFn

Xn‖L2
+ ‖TGX − TGn

Xn‖L2
.
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The bound on ‖TFX − TFn‖L2 is the one we have derived, and for ‖TGX − TGnXn‖L2 , we use
|g(λ)| ≤ 1 and the fact that g(λ) is constant in [0, c] with 0 < c ≤ 1 to obtain

‖TGX − TGn
Xn‖L2

≤ ‖X −Xn‖L2
≤ A3√

3n
(11)

where the last inequality follows from Proposition 3.

Putting together (8), (9), (10) and (11), we arrive at the first result of the theorem as stated in (4). The
second result [cf. (5)] is obtained by observing that, for X = Xn, bound (2) in (10) simplifies to
‖THn

(X −Xn)‖L2
= 0; and, similarly in (11), ‖TGX − TGn

Xn‖L2
≤ ‖X −Xn‖L2

= 0.

Proof of Theorem 1. To compute a bound for ‖Y − Yn‖L2 , we start by writing it in terms of the last
layer’s features as

‖Y − Yn‖2L2
=

FL∑
f=1

∥∥∥Xf
L −X

f
n,L

∥∥∥2

L2

. (12)

At layer ` of the WNN Φ(H; W;X), we have

Xf
` = ρ

F`−1∑
g=1

hfg` ∗W Xg
`−1

 = ρ

F`−1∑
g=1

THfg
`
Xg
`−1


and similarly for Φ(H; Wn;Xn),

Xf
n,` = ρ

F`−1∑
g=1

hfgn,` ∗W Xg
n,`−1

 = ρ

F`−1∑
g=1

THfg
n,`
Xg
n,`−1

 .

We can therefore write ‖Xf
` −X

f
n,`‖L2

as

∥∥∥Xf
` −X

f
n,`

∥∥∥
L2

=

∥∥∥∥∥∥ρ
F`−1∑
g=1

THfg
`
Xg
`−1

− ρ
F`−1∑
g=1

THfg
n,`
Xg
n,`−1

∥∥∥∥∥∥
L2

and, since ρ is normalized Lipschitz,

∥∥∥Xf
` −X

f
n,`

∥∥∥
L2

≤

∥∥∥∥∥∥
F`−1∑
g=1

THfg
`
Xg
`−1 − THfg

n,`
Xg
n,`−1

∥∥∥∥∥∥
L2

≤
F`−1∑
g=1

∥∥∥THfg
`
Xg
`−1 − THfg

n,`
Xg
n,`−1

∥∥∥
L2

.

where the second inequality follows from the triangle inequality. Looking at each feature g indepen-
dently, we apply the triangle inequality once again to get∥∥∥THfg

`
Xg
`−1 − THfg

n,`
Xg
n,`−1

∥∥∥
L2

≤
∥∥∥THfg

`
Xg
`−1 − THfg

n,`
Xg
`−1

∥∥∥
L2

+
∥∥∥THfg

n,`

(
Xg
`−1 −X

g
n,`−1

)∥∥∥
L2

.

The first term on the RHS of this inequality is bounded by (5) in Theorem 3. The second term can be
decomposed by using Cauchy-Schwarz and recalling that |h(λ)| < 1 for all graphon convolutions in
the WNN (Assumption 1). We thus obtain a recursion for ‖Xf

` −X
f
n,`‖L2 , which is given by

∥∥∥Xf
` −X

f
n,`

∥∥∥
L2

≤
F`−1∑
g=1

√
A1

(
A2 +

πnc
δc

)
n−

1
2 ‖Xg

`−1‖L2
+

F`−1∑
g=1

∥∥∥Xg
`−1 −X

g
n,`−1

∥∥∥
L2

(13)

and whose first term,
∑F0

g=1 ‖X
g
0 −X

g
n,0‖L2 =

∑F0

g=1 ‖Xg −Xg
n‖L2 , is bounded as

∑F0

g=1 ‖X
g
0 −

Xg
n,0‖L2

≤ F0A3/
√

3n by Proposition 3.
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To solve this recursion, we need to compute the norm ‖Xg
`−1‖L2 . Since the nonlinearity ρ is

normalized Lipschitz and ρ(0) = 0 by Assumption 2, this bound can be written as

∥∥Xg
`−1

∥∥
L2
≤

∥∥∥∥∥∥
F`−1∑
g=1

THfg
`
Xg
`−1

∥∥∥∥∥∥
L2

and using the triangle and Cauchy Schwarz inequalities,

∥∥Xg
`−1

∥∥
L2
≤
F`−1∑
g=1

∥∥∥THfg
`

∥∥∥
L2

∥∥Xg
`−1

∥∥
L2
≤
F`−1∑
g=1

∥∥Xg
`−1

∥∥
L2

where the second inequality follows from |h(λ)| < 1. Expanding this expression with initial condition
Xg

0 = Xg yields

∥∥Xg
`−1

∥∥
L2
≤

`−1∏
`′=1

F`′
F0∑
g=1

‖Xg‖L2
. (14)

and substituting it back in (13) to solve the recursion, we get∥∥∥Xf
` −X

f
n,`

∥∥∥
L2

≤ L
√
A1

(
A2 +

πnc
δc

)
n−

1
2

(
`−1∏
`′=1

F`′

)
F0∑
g=1

‖Xg‖L2
+
F0A3√

3
n−

1
2 . (15)

To arrive at the result of Theorem 1, we evaluate (15) with ` = L and substitute it into (12) to obtain

‖Y − Yn‖2L2
=

FL∑
f=1

∥∥∥Xf
L −X

f
n,L

∥∥∥2

L2

≤
FL∑
f=1

(
L
√
A1

(
A2 +

πnc
δc

)
n−

1
2

(
L−1∏
`=1

F`

)
F0∑
g=1

‖Xg‖L2
+
F0A3√

3
n−

1
2

)2

.

(16)

Finally, since F0 = FL = 1 and F` = F for 1 ≤ ` ≤ L− 1,

‖Y − Yn‖L2
≤ L

√
A1

(
A2 +

πnc
δc

)
n−

1
2FL−1 ‖X‖L2

+
A3√

3
n−

1
2 . (17)

Proof of Theorem 2

Theorem 2 follows directly from Theorem 1 via the triangle inequality.

Proof of Theorem 2. By the triangle inequality, we can bound ‖Yn1 − Yn2‖L2 as

‖Yn1
− Yn2

‖L2
= ‖Yn1

− Y + Y − Yn2
‖L2
≤ ‖Yn1

− Y ‖L2
+ ‖Y − Yn2

‖L2
.

Theorem 1 gives a bound for both ‖Yn1
−Y ‖L2

and ‖Y−Yn2
‖L2

. Setting n′c = maxj∈{1,2} |Cj |, Cj =

{i | |λnj

i | ≥ c}, and δ′c = mini∈Cj ,j∈{1,2}(|λi−λ
nj

i+sgn(i)|, |λi+sgn(i)−λ
nj

i |, |λ1−λ
nj

−1|, |λ
nj

1 −λ−1|),
we arrive at the theorem’s result.

Additional Numerical Results: Consensus

In this section, we provide a second set of experiments to illustrate the effect of the hyperparameters
F , K, and L (number of features, filter taps, and layers respectively) on GNN transferability. These
experiments are based on the consensus problem, in which the goal is to drive the signal values at
each node to the average of the graph signal over all nodes.
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(a) K = 4, L = 1 (b) F = 8, L = 1 (c) F = 8, K = 4

Figure 1: Relative difference between test rRMSEs achieved on the graphs Gn and GN (N = 2000)
for different configurations of F , K and L. Average and standard deviation over 3 graph realizations
and 3 data realizations per graph. Error bars have been scaled by 1.5. (a) Fixed K and L, varying
number of features F . (b) Fixed F and L, varying number of filter taps K. (c) Fixed F and K,
varying number of layers L.

The problem setup is as follows. Given a network Gn, the input data xn is generated by sampling a
graph signal xn = |x̃n| from a folded multivariate normal distribution with mean µ̃ and covariance
Σ̃. Explicitly, x̃n ∼ N (µ̃, Σ̃), where we set µ̃ = 0 and Σ̃ = 100I. The output data is given by

yn =

∑n
i=1[xn]i
n

1

which is also a graph signal on Gn. This data is split between 8400 input-output pairs for training,
200 for validation, and 200 for testing.

To analyze transferability, we train GNNs Φ(Hn; Sn; xn) on small networks of size n for multiple
values of n, and use the learned parameter sets Hn to define and test GNNs Φ(Hn; SN ; xN ) on
a network of size N � n. The networks are all stochastic block model graphs with 2 (balanced)
communities, intra-community probability pcici = 0.8 and inter-community probability pcicj = 0.2.
We set N = 2000 and vary n as n = 50, 250, 500, 1000.

The GNN parameters are learned by optimizing the L1 loss on the training set using ADAM
with learning rate 0.001 and decay factors β1 = 0.9 and β2 = 0.999. We keep the model with
smallest relative RMSE (rRMSE) on the validation set over 40 epochs. The performance metric
for transferability is the relative difference between the test rRMSEs achieved by the GNN on Gn

and the GNN on GN , i.e., the difference between the rRMSEs obtained by Φ(Hn; Sn; xn) and
Φ(Hn; SN ; xN ) on the test set relative to the test rRMSE for Φ(Hn; Sn; xn). This relative rRMSE
difference is reported in Figures 1a through 1c for 3 graph realizations and 3 data realizations per
graph, as well as different values of F , K, and L. In Figure 1a, K and L are fixed at K = 4 and
L = 1, and we vary F . In Figure 1b, F and L are fixed at F = 8 and L = 1, and we vary K. In
Figure 1c, we fix F = 8 and K = 4 and vary the number of layers L.

Note that, for all configurations of F , K and L, the average relative rRMSE difference and its
standard deviation decrease as n increases, agreeing with Theorem 2. In Figure 1a, we can also see
that for smaller values of n the error bars are smaller for F = 4 than they are for F = 8 and F = 16.
This illustrates the dependence of the transferability bound on the GNN width. In Figure 1b, varying
the number of filter taps K does not seem to have much of an effect on GNN transferability. In
contrast, in Figure 1c we can clearly see the size of the error bars increase with the number of layers
L, especially for small n. This is expected, since L exponentiates F in the transferability bound of
Theorem 2.
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