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Abstract

We study the structure of regret-minimizing policies in the many-armed Bayesian
multi-armed bandit problem: in particular, with k the number of arms and T the
time horizon, we consider the case where k ≥

√
T . We first show that subsampling

is a critical step for designing optimal policies. In particular, the standard UCB
algorithm leads to sub-optimal regret bounds in the many-armed regime. However,
a subsampled UCB (SS-UCB), which samples Θ(

√
T ) arms and executes UCB

only on that subset, is rate-optimal. Despite theoretically optimal regret, even
SS-UCB performs poorly due to excessive exploration of suboptimal arms. In
particular, in numerical experiments SS-UCB performs worse than a simple greedy
algorithm (and its subsampled version) that pulls the current empirical best arm
at every time period. We show that these insights hold even in a contextual
setting, using real-world data. These empirical results suggest a novel form of
free exploration in the many-armed regime that benefits greedy algorithms. We
theoretically study this new source of free exploration and find that it is deeply
connected to the distribution of a certain tail event for the prior distribution of
arm rewards. This is a fundamentally distinct phenomenon from free exploration
as discussed in the recent literature on contextual bandits, where free exploration
arises due to variation in contexts. We use this insight to prove that the subsampled
greedy algorithm is rate-optimal for Bernoulli bandits when k >

√
T , and achieves

sublinear regret with more general distributions. This is a case where theoretical
rate optimality does not tell the whole story: when complemented by the empirical
observations of our paper, the power of greedy algorithms becomes quite evident.
Taken together, from a practical standpoint, our results suggest that in applications
it may be preferable to use a variant of the greedy algorithm in the many-armed
regime.

1 Introduction

We consider the standard stochastic multi-armed bandit (MAB) problem, in which a decision-maker
takes actions sequentially over T time periods (the horizon). At each time period, the decision-maker
chooses one of k arms, and receives an uncertain reward. The goal is to maximize cumulative rewards
attained over the horizon. Crucially, in the typical formulation of this problem, the set of arms k is
assumed to be “small” relative to the time horizon T ; in particular, in standard asymptotic analysis
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of the MAB setting, the horizon T scales to infinity while k remains constant. In practice, however,
there are many situations where the number of arms is large relative to the time horizon of interest.
For example, drug development typically considers many combinations of basic substances; thus
MABs for adaptive drug design inherently involve a large set of arms. Similarly, when MABs are
used in recommendation engines for online platforms, the number of choices available to users is
enormous: this is the case in e-commerce (many products available); media platforms (many content
options); online labor markets (wide variety of jobs or workers available); dating markets (many
possible partners); etc.

Formally, we say that an MAB instance is in the many-armed regime where k ≥
√
T . In our

theoretical results, we show that the threshold
√
T is in fact the correct point of transition to the

many-armed regime, at which behavior of the MAB problem becomes qualitatively different than the
regime where k <

√
T . Throughout our paper, we consider a Bayesian framework 2, i.e., where the

arms’ reward distributions are drawn from a prior.

In §3, we first use straightforward arguments to establish a fundamental lower bound of Ω(
√
T )

on Bayesian regret in the many-armed regime. We note that prior Bayesian lower bounds for the
stochastic MAB problem require k to be fixed while T →∞ (see, e.g., 16, 18, 19), and hence, are
not applicable in the many-armed regime.

Our first main insight (see §4) is the importance of subsampling. The standard UCB algorithm can
perform quite poorly in the many-armed regime, because it over-explores arms: even trying every arm
once leads to a regret of Ω(k). Instead, we show that the Ω(

√
T ) bound is achieved (up to logarithmic

factors) by a subsampled upper confidence bound (SS-UCB) algorithm, where we first select
√
T

arms uniformly at random, and then run a standard UCB algorithm [17, 5] with just these arms.

However, numerical investigation reveals interesting behaviors. In Figure 1, we simulate several
different algorithms over 400 simulations, for two pairs of T, k in the many-armed regime. 3Notably,
the greedy algorithm (Greedy) — i.e., an algorithm that pulls each arm once, and thereafter pulls
the empirically best arm for all remaining times – performs extremely well. This is despite the
well-known fact that Greedy can suffer linear regret in the standard MAB problem, as it can fixate too
early on a suboptimal arm. Observe that in line with our first insight above, subsampling improves the
performance of all algorithms, including UCB, Thompson sampling (TS), and Greedy. In particular,
the subsampled greedy algorithm (SS-Greedy) outperforms all other algorithms.

The right panel in Figure 1 shows that Greedy and SS-Greedy benefit from a novel form of free
exploration, that arises due to the availability of a large number of near-optimal arms. This free
exploration helps the greedy algorithms to quickly discard sub-optimal arms that are substantially
over-explored by algorithms with “active exploration” (i.e., UCB, TS, and their subsampled versions).
We emphasize that this source of free exploration is distinct from that observed in recent literature
on contextual bandits (see, e.g., 6, 15, 20, 14), where free exploration arises due to diversity in the
context distribution. Our extensive simulations in Section 6 and in the longer version of paper [7]
show that these insights are robust to varying rewards and prior distributions. Indeed, similar results
are obtained with Bernoulli rewards and general beta priors. We refer the interested reader to this
longer version of the paper. Further, using simulations, we also observe that the same phenomenon
arises in the contextual MAB setting, via simulations with synthetic and real-world data.

Motivated by these observations, in §5 and §7 we embark on a theoretical analysis of Greedy in the
many-armed regime to complement our empirical investigation. We show that with high probability,
one of the arms on which Greedy concentrates attention is likely to have a high mean reward (as also
observed in the right panel of Figure 1). Our proof technique uses the Lundberg inequality to relate the
probability of this event to distribution of the ruin event of a random walk, and may be of independent
interest in studying the performance of greedy algorithms in other settings. Using this result we
show that for Bernoulli rewards, the regret of Greedy is Õ(max(k, T/k)); in particular, for k ≥

√
T

SS-Greedy is optimal (and for k =
√
T , Greedy is optimal). For more general reward distributions

we show that, under a mild condition, an upper bound on the regret of Greedy is Õ(max[k, T/
√
k]).

Thus theoretically, for general reward distributions, in the many-armed regime Greedy achieves
sublinear, though not optimal, regret.

2While our focus is on the Bayesian setting, our analysis can be extended to the frequentist setting.
3Our code is available at http://github.com/khashayarkhv/many-armed-bandit.
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Figure 1: Distribution of the per-instance regret (on left) and profile of pulls in logarithmic scale based on
arms index (on right). Rewards are generated according toN (µi, 1), with µi ∼ U [0, 1]. The list of algorithms
included is as follows. (1) UCB: Algorithm 1, (2) SS-UCB: Algorithm 2 with m =

√
T , (3) Greedy: Algorithm

3, (4) SS-Greedy: Algorithm 4 with m = T 2/3 (see Theorem 5), (5) UCB-F: UCB-F algorithm of [27] with the
choice of confidence set Et = 2 log(10 log t), (6) TS: Thompson Sampling algorithm [26, 22, 2], and (7) SS-TS:
subsampled TS with m =

√
T .

Our theoretical results illuminate why Greedy and SS-Greedy perform well in our numerical experi-
ments, due to the novel form of free exploration we identify in the many-armed regime. Although our
theoretical results do not establish universal rate optimality of SS-Greedy, this is clearly a case where
regret bounds do not tell the whole story. Indeed, given the robust empirical performance of Greedy
and SS-Greedy, from a practical standpoint the combination of our empirical and theoretical insights
suggests that in applications it may be preferable to use greedy algorithms in the many-armed regime.
This advice is only amplified when one considers that in contextual settings, such algorithms are
likely to benefit from free exploration due to context diversity as well (as noted above).

Details of the proofs are all deferred to the longer version of the paper [7].

1.1 Related Work

The literature on stochastic MAB problems with a finite number of arms is vast; we refer the reader
to recent monographs by [19] and [25] for a thorough overview. Much of this work carries out a
frequentist regret analysis. In this line, our work is most closely related to work on the infinitely
many-armed bandit problem, first studied by [8] for Bernoulli rewards. They provided algorithms
with O(

√
T ) regret, and established a

√
2T lower-bound in the Bernoulli setting (a matching upper

bound proved by [9]). In [27], the authors studied more general reward distributions and proposed an
optimal (up to logarithmic factors) algorithm called UCB-F that is constructed based on the UCB-V
algorithm of [4]. In fact, our results in §3 and §4 also leverage ideas from [27]. The analysis of the
infinitely many-armed bandit setting was later extended to simple regret [10] and quantile regret
minimization [11]. In a related work, [24] proposed using a variant of Thompson Sampling for
finding “satisficing” actions in the complex settings where finding the optimal arm is difficult.

Our results complement the existing literature on Bayesian regret analysis of the stochastic MAB.
The literature on the Bayesian setting goes back to index policies of [13] that are optimal for the
infinite-horizon discounted reward setting. Bayesian bounds for a similar problem like ours, but when
k is fixed and T →∞ were established in [16]; their bounds generalized the earlier results of [18],
who obtained similar results under more restrictive assumptions.

Several other papers provide fundamental bounds in the fixed k setting. Bayesian regret bounds for
the Thompson Sampling algorithm were provided in [22] and information-theoretic lower bounds on
Bayesian regret for fixed k were established in [23]. Finally, [21] proposed to choose policies that
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maximize information gain, and provided regret bounds based on the entropy of the optimal action
distribution.

2 Problem Setting

We consider a Bayesian k-armed stochastic bandit setting where a decision-maker sequentially pulls
from a set of unknown arms, and aims to maximize the expected cumulative reward generated. In
this section we present the technical details of our model and problem setting. Throughout, we use
the shorthand that [n] denotes the set of integers {1, . . . , n}.
Time. Time is discrete, denoted by t = 1, . . . , T ; T denotes the time horizon.

Arms. At each time t, the decision-maker chooses an arm at from a set of k arms.

Rewards. Each time the decision maker pulls an arm, a random reward is generated. We assume a
Bayesian setting, i.e., that arm rewards have distributions with parameters drawn from a common
prior. Let F = {Pµ : µ ∈ [0, 1]} be a collection of reward distributions, where each Pµ has mean µ.
Further, let Γ be a prior distribution on [0, 1]; we assume Γ is absolutely continuous w.r.t. Lebesgue
measure in R, with density g. For example, F might be the family of all binomial distributions with
parameters µ ∈ [0, 1], and Γ might be the uniform distribution on [0, 1].4 The following definition
adapted from the infinitely-many armed bandit literature (see, e.g. 27, 10) is helpful in our analysis.

Definition 1 (β-regular distribution). Distribution Q defined over [0, 1] is called β-regular if PQ[µ >
1− ε] = Θ(εβ) when ε→ 0. Equivalently, there exists 0 < c0 < C0 such that

c0ε
β ≤ PQ(µ > 1− ε) ≤ PQ(µ ≥ 1− ε) ≤ C0ε

β .

For simplicity throughout the paper, we assume that Γ is 1-regular. 5

Assumption 1. The distribution Γ is 1-regular.

Assumption 1 is central in our analysis. As shown in §7, our results slightly change for more general
β-regular priors. This definition puts a constraint on P[µ ≥ 1− ε], which quantifies how many arms
are ε-optimal. The larger number of ε-optimal arm means it is more likely that Greedy concentrates
on an ε-optimal arm which is one of main components of our theoretical analysis (see Lemma 1). We
also assume that the reward distributions are 1-subgaussian as defined below. 6

Assumption 2. Every Pµ ∈ F is 1-subgaussian: for any µ ∈ [0, 1] and any t, if Zµ is distributed
according to Pµ, then E[exp(t(Zµ − µ))] ≤ exp(t2/2) .

Given a realization µ = (µ1, µ2, . . . , µk), let Yit denote the reward upon pulling arm i at time t. Then
Yit is distributed according to Pµi

, independent of all other randomness; in particular, E[Yit] = µi.
Note that Yat,t is the actual reward earned by the decision-maker. As is usual with bandit feedback,
we assume the decision-maker only observes Yat,t, and not Yit for i 6= at.

Policy. Let Ht = (a1, Ya1,1, . . . , at−1, Yat−1,t−1) denote the history up to time t and π denote the
decision-maker’s policy (i.e., algorithm) mapping the history prior to time t to a (possibly randomized)
choice of arm at ∈ [k]. In particular, π(Ht) is a distribution over [k], and at is distributed according
to π(Ht), independently of all other randomness.

Goal. Given a horizon of length T , a realization of µ, and the realization of actions and rewards, the
realized regret is then regretT = T maxki=1 µi −

∑T
t=1 Yat,t. We define RT to be the expectation of

the preceding quantity with respect to randomness in the rewards and the actions, given the policy π
and the mean reward vector µ:

RT (π | µ) = T maxki=1 µi −
∑T
t=1 E[µat |π] .

Here the notation E[·|π] is shorthand to indicate that actions are chosen according to the policy π, as
described above; the expectation is over randomness in rewards and in the choices of actions made by

4Our results can be extended to the case where the support of Γ is a bounded interval [a, b].
5We discuss how our results can be generalized to an arbitrary β in Section 7.
6Our results generalize to the S2-subgaussian rewards; for brevity we choose S = 1 throughout this paper.
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the policy. (In the sequel, the dependence of the preceding quantity on k will be important as well;
we make this explicit as necessary.)

The decision-maker’s goal is to choose π to minimize her Bayesian expected regret, i.e., where
the expectation is taken over the prior as well as the randomness in the policy. In other words, the
decision-maker chooses π to minimize BRT,k(π) = E[RT (π | µ)] .

Many arms. In this work, we are interested in the setting where k and T are comparable. In
particular, we focus on the scaling of BRT,k in different regimes for k and T .

3 Lower Bound

Theorem 1. Consider the model described in §2. Suppose that Assumption 1 holds. Then, there exist
absolute constants cD and cL such that for any policy π and T, k ≥ cD, we have

BRT,k(π) ≥ cL min(
√
T , k) .

This theorem shows that the Bayesian regret of an optimal algorithm should scale as Θ(k) when
k <
√
T and as Θ(

√
T ) if k >

√
T . The proof idea is to show that for any policy π, there is a class

of “bad arm orderings" that occur with constant probability for which a regret better than min(
√
T , k)

is not possible. Interestingly, this theorem does not require any assumption on reward distributions.

4 Optimal Algorithms

In this section we describe algorithms that achieve the lower bound of §3, up to logarithmic factors.
Recall that we expect to observe two different behaviors depending on whether k <

√
T or k >

√
T ;

Theorems 2 and 3 state our result for these two cases, respectively. In particular, Theorem 3 shows
that subsampling is a necessary step in the design of optimal algorithms in the many-armed regime.
Note that for Theorem 2, instead of Assumption 1, we require the density g to be bounded from
above.

We require several definitions. For i ∈ [k], define: Ni(t) =
∑t
s=1 1(as = i) and µ̂i(t) =∑t

s=1 Yis1(as=i)

Ni(t)
. Thus Ni(t) is the number of times arm i is pulled up to time t, and µ̂i(t) is

the empirical mean reward on arm i up to time t. (We arbitrarily define µ̂i(t) = 1 if Ni(t) = 0.) Also
define, f(t) = 1 + t log2(t).

Case k <
√
T : In this case, we show that the UCB algorithm (see, e.g., Chapter 8 of [19]) is optimal

(up to logarithmic factors). For completeness, this algorithm is restated as Algorithm 1.
Theorem 2. Consider the setting described in §2. Suppose that Assumption 2 holds and that there
exists D0 such that for all x ∈ [0, 1], g(x) ≤ D0. Then, Bayesian regret of Algorithm 1 satisfies

BRT,k(UCB) ≤ k[1 +D0 +D0(10 + 18 log f(T ))(2 + 2 log k + log T )] .

Case k >
√
T : For large k, UCB incurs Ω(k) regret which is not optimal. In this case, we show that

the subsampled UCB algorithm (SS-UCB) is optimal (up to logarithmic factors).
Theorem 3. Consider the setting described in §2. Let assumptions 1 and 2 hold. Then, Bayesian
regret of the subsampled UCB (Algorithm 2), when executed with m = d

√
T e satisfies

BRT,k(SS-UCB) ≤ 2+
√
T

[
log T

c0
+
C0 log2 T

c20
+ C0(20 + 36 log f(T ))(5 + log(

√
Tc0)− log log T )

]
.

Algorithm 1 Asymptotically Optimal UCB

1: for t ≤ k do
2: Pull at = t
3: end for
4: for t ≥ k + 1 do
5: Pull at = arg maxi[µ̂i(t− 1) +

√
2 log f(t)
Ni(t−1) ]

6: end for
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Algorithm 2 Subsampled UCB (SS-UCB)

1: Input: m: subsampling size
2: Draw a set of m arms S uniformly at random (without replacement) from [k]
3: Run UCB (Algorithm 1) on arms with indices in set S

5 A Greedy Algorithm

Motivated by the performance observed in Figure 1 as described in the introduction, in this section
we characterize performance of a greedy algorithm. The greedy algorithm pulls each arm once and
from then starts pulling the arm with the highest estimated mean; the formal definition follows. We
can also define a subsampled greedy algorithm that selects m arms and executes greedy on these
arms. This is formally defined in Algorithm 4.

Algorithm 3 Greedy

1: for t ≤ k do
2: Pull arm at = t
3: end for
4: for t ≥ k + 1 do
5: Pull arm at = arg maxi µ̂i(t− 1)
6: end for

Algorithm 4 Subsampled Greedy (SS-Greedy)

1: Input: m: subsampling size
2: Draw a set of m arms S uniformly at random (without replacement) from [k]
3: Run Greedy (Algorithm 3) on arms with indices in set S

Upper bounds on Bayesian Regret of Greedy. We require the following definition. Fix θ. For
any µ > θ, let {Xi}∞i=1 be an i.i.d. sequence with Xi ∼ Pµ. Let Mn =

∑n
i=1Xi/n, and define

qθ(µ) as the probability that the sample average never crosses θ:

qθ(µ) := P[Mn > θ for all n]. (1)

The following lemma provides a general characterization of the Bayesian regret of Greedy, under the
weak assumption that rewards are subgaussian (Assumption 2).
Lemma 1 (Generic bounds on Bayesian regret of Greedy). Let assumption 2 hold. For any
0 ≤ δ ≤ 1/3, there holds

BRT,k(Greedy) ≤ T (1− EΓ [1 (µ ≥ 1− δ) q1−2δ(µ))])
k

+ 3Tδ

+ kEΓ

[
1 (µ < 1− 3δ) min

(
1 +

3

C1(1− 2δ − µ)
, T (1− µ)

)]
. (2)

In addition, for SS-Greedy (Algorithm 4) the same upper bound holds, with k being replaced with m.

Lemma 1 is the key technical result in the analysis of Greedy and SS-Greedy. This bound depends on
several components, in particular, the choice of δ and the scaling of q1−2δ . To ensure sublinear regret,
δ should be small, but that increases the first term as P (µ ≥ 1− δ) decreases. The scaling of q1−2δ

is also important; in particular, the shape of q(·) will dictate the quality of the upper bound obtained.

Observe that q1−2δ(µ) is the only term that depends on the family of reward distributions F . In
the remainder of this section, we provide three upper bounds on Bayesian regret of Greedy and
SS-Greedy. The first one is designed for Bernoulli rewards; here qθ(µ) has a constant lower bound,
leading to optimal regret rates. The second result requires 1-subgaussian rewards (Assumption 2);
this leads to a q which is quadratic in δ. The last bound makes an additional (mild) assumption on the
reward distribution (covers many well-known rewards, including Gaussians); this leads to a q that is
linear in δ, and as a result, a better bound on regret compared to 1-subgaussian rewards.

6



The bounds that we establish on q rely on Lundberg’s inequality, which bounds the ruin probability
of random walks and is stated below. For more details on this inequality, see Corollary 3.4 of [3].

Proposition 1 (Lundberg’s Inequality). Let X1, X2, . . . be a sequence of i.i.d. samples from
distribution Q. Let Sn =

∑n
i=1Xi and S0 = 0. For u > 0 define the stopping time

η(u) = inf {n ≥ 0 : Sn > u} and let ψ(u) denote the probability ψ(u) = P[η(u) <∞]. Let γ > 0

satisfy E[exp(γX1)] = 1 and that Sn
a.s.−→ −∞ on the set {η(u) =∞}. Then, ψ(u) ≤ exp(−γu).

Bernoulli Rewards. In this case, we can prove that there exists a constant lower bound on q.

Lemma 2. Suppose Pµ is the Bernoulli distribution with mean µ, and fix θ > 2/3. Then qθ(µ) ≥
exp(−0.5)/3, for µ ≥ (1 + θ)/2.

The preceding lemma reveals that for δ < 1/6 and µ ≥ 1− δ, for the choice CBern = exp(−0.5)/3
we have q1−2δ(µ) ≥ CBern. We can now state our theorem.

Theorem 4. Consider the model described in §2. Suppose that Pµ ∼ B(µ) and the prior distribution
satisfies Assumption 1. Then, for k ≥ (30 log T )/c0

BRT,k(Greedy) ≤ 1 +
15T log T

kc0
+

3C0k

C1
(5 + log(kc0/5)− log log T ) .

Furthermore, Bayesian regret of SS-Greedy when executed with m = Θ(
√
T ) is Õ(

√
T ).

This theorem shows that for k = Θ(
√
T ), Greedy is optimal (up to log factors). Further, for k ≥

√
T ,

SS-Greedy is optimal.

Subgaussian Rewards. In the general case of a 1-subgaussian reward distribution, we prove in
longer version of paper [7] that infµ≥1−δ q1−2δ(µ) ≥ e−1δ2/2. Combining this and Lemma 1,
implies that BRT,k(Greedy) = Õ(Tk−1/3 + k) and also BRT,k(SS-Greedy) = Õ(T 3/4). While
this upper bound on regret is appealing – in particular, it is sublinear regret when k is large — we are
motivated by the empirically strong performance of Greedy and SS-Greedy (cf. Figure 1) to see if a
stronger upper bound on regret is possible.

Uniformly Upward-Looking Rewards. To this end, we make progress by showing that the
achieved rate is further improvable for a large family of subgaussian reward distributions, including
Gaussian rewards. The following definition describes this family of reward distributions.

Definition 2. Suppose that Q satisfies E[Q] = µ and that Q−µ is 1-subgaussian. Let {Xi}∞i=1 be a
sequence of i.i.d. random variables distributed according to Q and Sn =

∑n
i=1Xi. For θ < µ define

Rn(θ) = Sn − nθ and τ(θ) = inf{n ≥ 1 : Rn(θ) < 0 or Rn(θ) ≥ 1}. We call the distribution Q
upward-looking with parameter p0 if for any θ < µ one of the following conditions hold:

• P[Rτ(θ)(θ) ≥ 1] ≥ p0

• E[(X1 − θ)1(X1 ≥ θ)] ≥ p0.

More generally, a reward familyQ = {Qµ : µ ∈ [0, 1]} with E[Qµ] = µ is called uniformly upward-
looking with parameters (p0, δ0) if for µ ≥ 1− δ0, Qµ is upward-looking with parameter p0.

In the longer version of the paper in [7], we show that a general class of reward families are uniformly
upward-looking. In particular, class of reward distributions F that for all µ ≥ 1 − δ0 satisfy
E[(Xµ − µ)1(Xµ ≥ µ)] ≥ c0 are (c0, δ0) upward looking. This class includes the Gaussian rewards.

The preceding discussion reveals that many natural families of reward distributions are upward-
looking. The following lemma shows that for such distributions, we can sharpen our regret bounds.

Lemma 3. Let Q be upward-looking with parameter p0 which satisfies E[Q] = µ. Let {Xi}∞i=1 ∼ Q,
Sn =

∑n
i=1Xi and Mn = Sn/n. Then for any δ ≤ 0.05,P [∃ n : Mn < µ− δ] ≤ exp(−p0δ/4).

From this lemma, for µ ≥ 1 − δ we have q1−2δ(µ) ≥ 1 − exp(−p0δ/4) ≥ (p0e
−1/4)δ. The

following theorem shows that in small δ regime, this linear q yields a strictly sharper upper bound on
regret than a quadratic q.
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Theorem 5. Let assumptions 1 and 2 hold. Suppose that F is (p0, δ0) uniformly upward-looking.
Then for any k ≥ (4e log T max(400, 1/δ2

0))/(c0p0),

BRT,k(Greedy) ≤ 1 + 3T

[
4e log T

kc0p0

]1/2

+
3C0k

2C1
(10 + log(kc0p0/4e)− log log T ) .

Furthermore, Bayesian regret of SS-Greedy when executed with m = Θ(T 2/3) is Õ(T 2/3).

It is worth noting that in the case that k > T where subsampling is inevitable, the results presented on
SS-Greedy in Theorems 4 and 5 are still valid. The main reason is that our proof technique presented
in Lemma 1 bounds the regret with respect to the “best” possible reward of 1 which as stated in
Lemma 1 allows for an immediate replacement of k with the subsampling size m.

6 Simulations

Recall Figure 1 with results of simulations for two pairs of T, k in the many-armed regime where
rewards were generated according to Gaussian noise and uniform prior. These results are robust
when considering a wide range of beta priors as well as both Gaussian and Bernoulli rewards (see the
longer version of the paper [7]). In this section, motivated by real-world applications, we consider a
contextual reward setting and show that our theoretical insights carry to the contextual setting as well.

We use the Letter Recognition Dataset [12] from the UCI repository. The dataset is originally
designed for the letter classification task (26 classes) and it includes n = 20000 samples, each
presented with 16 covariates. As we are interested in values of k > 26, we only use the covariates
from this dataset and create synthetic reward functions as follows. We generate k = 300 arms
with parameters θ1, θ2, . . . , θk ∈ Rd (d will be specified shortly) and generate reward of arm i via
Yit = X>t θi+εit. We consider two experiments with d = 2 and d = 6 and compare the performance
of several algorithms in these two cases. As contexts are 16-dimensional, we project them onto
d-dimensional subspaces using SVD.

For each d, we generate 50 different instances, where we pick T = 8000 samples at random (from
the original 20000 samples) and generate the arm parameters according to the uniform distribution
on the `2-ball in Rd, i.e., θi ∼ Ud = {u ∈ Rd : ‖u‖2 ≤ 1}. We plot the distribution of the
per-instance regret in each case, for each algorithm; note the mean of this distribution is (an estimate
of) the Bayesian regret. We study the following algorithms and also their subsampled versions (with
subsampling m =

√
T ; subsampling is denoted by “SS”): (1) Greedy, (2) OFUL Algorithm [1], and

(3) TS [26, 22].

Results. The results are depicted in Figure 2(a). We can make the following observations. First,
subsampling is an important concept in the design of low-regret algorithms, and indeed, SS-Greedy
outperforms all other algorithms in both settings. Second, Greedy performs well compared to OFUL
and TS, and it benefits from the same free exploration provided by a large number of arms that we
identified in the non-contextual setting: if it drops an arm a due to poor empirical performance, it
is likely that it another arm with parameter close to θa is kept active, leading to low regret. Third,
we find that SS-TS actually performs reasonably well; it has a higher average regret compared to
SS-Greedy, but smaller variance. Finally, we see that the performance of Greedy is better for d = 6
which highlights that the aforementioned source of free exploration is different from that observed in
recent literature on contextual bandits (see, e.g., [6, 15, 20, 14]), where free exploration arises due to
diversity in the context distribution. For example, simulations of [6] show that when d is too small
compared to k, the context diversity is small and performance of Greedy deteriorates which leads to a
high variance for its regret (as also seen in the d = 2 case here). Figure 2(b) which shows results of
the above simulation, but using only k = 8 arms, underscores the same phenomena – by reducing the
number of arms, the performance of Greedy substantially deteriorates.

7 Generalizations and Conclusions

General β-regular priors. Our results can be extended to β-regular priors (see Definition 1); see
the longer version of paper [7] for more detail. The results are summarized in Table 1. In this table,
βF is the exponent of δ in EΓ [1 (µ ≥ 1− δ) q1−2δ(µ)] in Lemma 1. Indeed, it can be shown that
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(a) Large number of arms. (b) Small number of arms.

Figure 2: Distribution of the per-instance regret for the contextual setting with real data. For k = 8, subsampled
algorithms are omitted as subsampling leads to a poor performance. In these figures, the dashed lines indicate
the average regret. Comparing the average regrets shows that when covariate diversity is not sufficient, i.e.,
d = 2, the regret of Greedy is much worse for k = 8 compared to k = 300.

βBernoulli = β, βUpward-Looking = β + 1, β1-subgaussian = β + 2. Also, SS-UCB and SS-Greedy use all
arms whenever k < m. For these algorithms the optimal values for m are used.

Table 1: Regret of various algorithms for different values of β

Algorithm β < 1 β ≥ 1
small k large k small k large k

UCB k1/β kT (1−β)/2 k k

SS-UCB k1/β
√
T k T β/(β+1)

Greedy Tk−1/βF min(k(βF−β+1)/βF , kT (1−β)/2) Tk−1/βF k

SS-Greedy Tk−1/βF T (βF−β+1)/(βF−β+2) Tk−1/βF T βF/(βF+1)

Lower Bound k T β/(β+1) k T β/(β+1)

Sequential greedy. When k is large, allocating the first k (or
√
T arms in case of subsampling)

time-periods for exploration before exploiting the good arms may be inefficient. We can design a
sequential greedy algorithm, in which an arm is selected and pulled until its sample average drops
below 1 − θ. Once that happens, a new arm is selected and a similar routine is performed; the
pseudo-code of this algorithm is provided in Appendix G. We also show there that for an appropriate
choice of θ, Bayesian regret of Seq-Greedy is similar to that of SS-Greedy.

Future work. Surprisingly, through both empirical investigation and theoretical development we
found that greedy algorithms, and a subsampled greedy algorithm in particular, can outperform many
other approaches that depend on active exploration. In this way our paper identifies a novel form of
free exploration enjoyed by greedy algorithms, due to the presence of many arms. As noted in the
introduction, prior literature has suggested that in contextual settings, greedy algorithms can exhibit
low regret as they obtain free exploration from diversity in the contexts. An important direction
concerns a unified theoretical analysis of free exploration in the contextual setting with many arms,
that provides a complement to the empirical insights we obtain in the preceding section. Such an
analysis can serve to illuminate both the performance of Greedy and the relative importance of context
diversity and the number of arms in driving free exploration; we leave this for future work.
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Broader Impact

Narrowly, our work is a theoretical study of regret in MABs in the many-armed regime, and as
such has no immediate societal consequence. More broadly, however free exploration in general
has broader societal consequence, because in many applications, fairness and ethics (and sometimes
regulation) preclude active exploration (e.g., healthcare, criminial justice, and education). For this
reason, developing an understanding of what is achievable via free exploration is critical to fair and
ethical application of MABs in practice.

Acknowledgements

This work was supported by the Stanford Human-Centered AI Institute, and by the National Science
Foundation under grants 1931696, 1839229, and 1554140.

References
[1] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear

stochastic bandits. In Advances in Neural Information Processing Systems, pages 2312–2320,
2011.

[2] Shipra Agrawal and Navin Goyal. Analysis of thompson sampling for the multi-armed bandit
problem. In Conference on learning theory, pages 39–1, 2012.

[3] Søren Asmussen and Hansjörg Albrecher. Ruin probabilities, volume 14. World scientific
Singapore, 2010.

[4] Jean-Yves Audibert, Rémi Munos, and Csaba Szepesvári. Tuning bandit algorithms in stochastic
environments. In International conference on algorithmic learning theory, pages 150–165.
Springer, 2007.

[5] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine learning, 47(2-3):235–256, 2002.

[6] Hamsa Bastani, Mohsen Bayati, and Khashayar Khosravi. Mostly exploration-free algorithms
for contextual bandits. Management Science, 2020.

[7] Mohsen Bayati, Nima Hamidi, Ramesh Johari, and Khashayar Khosravi. The Unreasonable
Effectiveness of Greedy Algorithms in Multi-Armed Bandit with Many Arms. arXiv e-prints,
art. arXiv:2002.10121, 2020. URL https://arxiv.org/abs/2002.10121.

[8] Donald A Berry, Robert W Chen, Alan Zame, David C Heath, and Larry A Shepp. Bandit
problems with infinitely many arms. The Annals of Statistics, pages 2103–2116, 1997.

[9] Thomas Bonald and Alexandre Proutiere. Two-target algorithms for infinite-armed bandits with
bernoulli rewards. In Advances in Neural Information Processing Systems, pages 2184–2192,
2013.

[10] Alexandra Carpentier and Michal Valko. Simple regret for infinitely many armed bandits. In
International Conference on Machine Learning, pages 1133–1141, 2015.

[11] Arghya Roy Chaudhuri and Shivaram Kalyanakrishnan. Quantile-regret minimisation in in-
finitely many-armed bandits. In UAI, pages 425–434, 2018.

[12] Peter W Frey and David J Slate. Letter recognition using holland-style adaptive classifiers.
Machine learning, 6(2):161–182, 1991.

[13] John C Gittins. Bandit processes and dynamic allocation indices. Journal of the Royal Statistical
Society: Series B (Methodological), 41(2):148–164, 1979.

[14] Botao Hao, Tor Lattimore, and Csaba Szepesvari. Adaptive exploration in linear contextual
bandit. In International Conference on Artificial Intelligence and Statistics, pages 3536–3545.
PMLR, 2020.

10

https://arxiv.org/abs/2002.10121


[15] Sampath Kannan, Jamie H Morgenstern, Aaron Roth, Bo Waggoner, and Zhiwei Steven Wu. A
smoothed analysis of the greedy algorithm for the linear contextual bandit problem. In Advances
in Neural Information Processing Systems, pages 2227–2236, 2018.

[16] Emilie Kaufmann. On bayesian index policies for sequential resource allocation. The Annals of
Statistics, 46(2):842–865, 2018.

[17] Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. Ad-
vances in applied mathematics, 6(1):4–22, 1985.

[18] Tze Leung Lai et al. Adaptive treatment allocation and the multi-armed bandit problem. The
Annals of Statistics, 15(3):1091–1114, 1987.

[19] Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

[20] Manish Raghavan, Aleksandrs Slivkins, Jennifer Wortman Vaughan, and Zhiwei Steven Wu.
The externalities of exploration and how data diversity helps exploitation. arXiv preprint
arXiv:1806.00543, 2018.

[21] Daniel Russo and Benjamin Van Roy. Learning to optimize via information-directed sampling.
In Advances in Neural Information Processing Systems, pages 1583–1591, 2014.

[22] Daniel Russo and Benjamin Van Roy. Learning to optimize via posterior sampling. Mathematics
of Operations Research, 39(4):1221–1243, 2014.

[23] Daniel Russo and Benjamin Van Roy. An information-theoretic analysis of thompson sampling.
The Journal of Machine Learning Research, 17(1):2442–2471, 2016.

[24] Daniel Russo and Benjamin Van Roy. Satisficing in time-sensitive bandit learning. arXiv
preprint arXiv:1803.02855, 2018.

[25] Aleksandrs Slivkins. Introduction to multi-armed bandits. Foundations and Trends R© in
Machine Learning, 12(1-2):1–286, 2019. ISSN 1935-8237. doi: 10.1561/2200000068. URL
http://dx.doi.org/10.1561/2200000068.

[26] William R Thompson. On the likelihood that one unknown probability exceeds another in view
of the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

[27] Yizao Wang, Jean yves Audibert, and Rémi Munos. Algorithms for infinitely many-armed
bandits. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural
Information Processing Systems 21, pages 1729–1736. 2009.

11

http://dx.doi.org/10.1561/2200000068

	Introduction
	Related Work

	Problem Setting
	Lower Bound
	Optimal Algorithms
	A Greedy Algorithm
	Simulations
	Generalizations and Conclusions
	Proofs of Section 3
	Proofs of Section 4
	Examples of Uniformly Upward-Looking Distributions
	Proofs of Section 5
	Proof of Lemma 1
	Proofs for Bernoulli rewards
	Proof of Lemma 2.
	Proof of Theorem 4.

	Proofs for subgaussian rewards
	Proofs for uniformly upward-looking rewards
	Proof of Lemma 3
	Proof of Theorem 5


	Additional Simulations
	Stochastic reward
	Contextual reward

	Useful Lemmas
	Proofs of Section 7
	General -regular priors
	Lower Bounds
	Upper Bounds
	Greedy Results

	Sequential Greedy


