
Appendix A Derivation of �-Model-Based Rollout Weights

Theorem 1. Let µnpse | st; �q denote the distribution over states at the n
th

sequential step of a

�-model rollout beginning from state st. For any desired discount �̃ P r�, 1q, we may reweight the

samples from these model rollouts according to the weights

↵n “ p1 ´ �̃qp�̃ ´ �qn´1

p1 ´ �qn

to obtain the state distribution drawn from µ1pse | st; �̃q “ µpse | st; �̃q. That is, we may reweight

the steps of a �-model rollout so as to match the distribution of a �̃-model with larger discount:

µpse | st; �̃q “
8ÿ

n“1

↵nµnpse | st; �q.

Proof. Each step of the �-model samples a time according to �t „ Geomp1 ´ �q, so the time after n

�-model steps is distributed according to the sum of n independent geometric random variables with
identical parameters. This sum corresponds to a negative binomial random variable, NBpn, 1 ´ �q,
with the following pmf:

pnptq “
ˆ

t ´ 1

t ´ n

˙
�

pt´nqp1 ´ �qn (7)

Equation 7 is mildly different from the textbook pmf because we want a distribution over the total
number of trials (in our case, cumulative timesteps t) instead of the number of successes before the
n

th failure. The latter is more commonly used because it gives the random variable the same support,
t • 0, for all n. The form in Equation 7 only has support for t • n, which substantially simplifies
the following analysis.

The distributions qptq expressible as a mixture over the per-timestep negative binomial distributions
pn are given by:

qptq “
tÿ

n“1

↵npnptq,

in which ↵n are the mixture weights. Because pn only has support for t • n, it suffices to only
consider the first t �-model steps when solving for qptq.

We are interested in the scenario in which qptq is also a geometric random variable with smaller
parameter, corresponding to a larger discount �̃. We proceed by setting qptq “ Geomp1 ´ �̃q and
solving for the mixture weights ↵n by induction.

Base case. Let n “ 1. Because p1 is the only mixture component with support at t “ 1, ↵1 is
determined by qp1q:

1 ´ �̃ “ ↵1

ˆ
t ´ 1

t ´ 1

˙
�
t´1p1 ´ �qt

“ ↵1p1 ´ �q.

Solving for ↵1 gives:

↵1 “ 1 ´ �̃

1 ´ �
.

14

Induction step. We now assume the form of ↵k for k “ 1, . . . , n ´ 1 and solve for ↵n using qpnq.

p1 ´ �̃q�̃n´1 “
nÿ

k“1

↵k

ˆ
n ´ 1

n ´ k

˙
�
n´kp1 ´ �qk

“
#

n´1ÿ

k“1

p1 ´ �̃qp�̃ ´ �qk´1

p1 ´ �qk
ˆ

n ´ 1

n ´ k

˙
�
n´kp1 ´ �qk

+
` ↵np1 ´ �qn

“ p1 ´ �̃q
#

n´1ÿ

k“1

ˆ
n ´ 1

n ´ k

˙
p�̃ ´ �qk´1

�
n´k

+
` ↵np1 ´ �qn

“ p1 ´ �̃q
#

nÿ

k“1

ˆ
n ´ 1

n ´ k

˙
p�̃ ´ �qk´1

�
n´k

+
´ p1 ´ �̃qp�̃ ´ �qn´1 ` ↵np1 ´ �qn

“ p1 ´ �̃q�̃n´1 ´ p1 ´ �̃qp�̃ ´ �qn´1 ` ↵np1 ´ �qn

Solving for ↵n gives

↵n “ p1 ´ �̃qp�̃ ´ �qn´1

p1 ´ �qn

as desired.

Appendix B Derivation of �-Model-Based Value Expansion
In this section, we derive the �-MVE estimator and provide pseudo-code showing how it may be
used as a drop-in replacement for value estimation in an actor-critic algorithm. Before we begin, we
prove a lemma which will become useful in interpreting value functions as weighted averages.

Lemma 1.

1 ´
Hÿ

n“1

↵n “
ˆ
�̃ ´ �

1 ´ �

Ḣ

Proof.

1 ´
Hÿ

n“1

↵n “ 1 ´
ˆ

1 ´ �̃

�̃ ´ �

˙ Hÿ

n“1

ˆ
�̃ ´ �

1 ´ �

ṅ

“ 1 ´
ˆ

1 ´ �̃

�̃ ´ �

˙
´
�̃´�
1´�

¯
´

´
�̃´�
1´�

H̄`1

1´�̃
1´�

“ 1 ´
ˆ

1 ´ �

�̃ ´ �

˙ ˜ˆ
�̃ ´ �

1 ´ �

˙
´

ˆ
�̃ ´ �

1 ´ �

Ḣ`1
¸

“
ˆ
�̃ ´ �

1 ´ �

Ḣ

We now proceed to the �-MVE estimator itself.

Theorem 2. For �̃ ° �, V pst; �̃q may be decomposed as a weighted average of H �-model steps

and a terminal value estimation. We denote this as the �-MVE estimator:

V̂�-MVEpst; �̃q “ 1

1 ´ �̃

Hÿ

n“1

↵nEse„µnp¨|st;�q rrpseqs `
ˆ
�̃ ´ �

1 ´ �

Ḣ

Ese„µHp¨|st;�q rV pse; �̃qs .

15

Proof.

V pst; �̃q “ 1

1 ´ �̃
Ese„µp¨|st;�̃q rrpseqs

“ 1

1 ´ �̃

8ÿ

n“1

↵nEse„µnp¨|st;�q rrpseqs

“ 1

1 ´ �̃

Hÿ

n“1

↵nEse„µnp¨|st;�q rrpseqs
loooooooooooooooomoooooooooooooooon

1

` 1

1 ´ �̃

8ÿ

n“H`1

↵nEse„µnp¨|st;�q rrpseqs
loooooooooooooooooomoooooooooooooooooon

2

. (8)

The second equality rewrites an expectation over a �̃-model as an expectation over a rollout of a
�-model using step weights ↵n from Theorem 1. We recognize 1 as the model-based component
of the value estimation in �-MVE. All that remains is to write 2 using a terminal value function.

8ÿ

n“H`1

↵nEse„µnp¨|st;�q rrpseqs “
8ÿ

n“1

↵H`nEse„µH`np¨|st;�q rrpseqs

“
ˆ
�̃ ´ �

1 ´ �

Ḣ

EsH„µHp¨|st;�q

« 8ÿ

n“1

↵nEse„µnp¨|sH ;�q rrpseqs
�

“
ˆ
�̃ ´ �

1 ´ �

Ḣ

EsH„µHp¨|st;�q
“
Ese„µp¨|sH ;�̃q rrpseqs

‰

“ p1 ´ �̃q
ˆ
�̃ ´ �

1 ´ �

Ḣ

Ese„µHp¨|st;�q rV pse; �̃qs (9)

The second equality uses ↵H`n “
´
�̃´�
1´�

H̄

↵n and the time-invariance of G
pnq with respect to its

conditioning state. Plugging Equation 9 into Equation 8 gives:

V pst; �̃q “ 1

1 ´ �̃

Hÿ

n“1

↵nEse„µnp¨|st;�q rrpseqs `
ˆ
�̃ ´ �

1 ´ �

Ḣ

Ese„µHp¨|st;�q rV pse; �̃qs .

Remark 1. Using Lemma 1 to substitute 1 ´ ∞
H

n“1 ↵n in place of
´
�̃´�
1´�

H̄

clarifies the interpreta-
tion of V pst; �̃q as a weighted average over H �-model steps and a terminal value function. Because
the mixture weights must sum to 1, it is unsurprising that the weight on the terminal value function

turned out to be
´
�̃´�
1´�

H̄

“ 1 ´ ∞
H

n“1 ↵n.

Remark 2. Setting � “ 0 recovers standard MVE with a single-step model, as the weights on the
model steps simplify to ↵n “ p1 ´ �̃qp�̃ ´ �qn´1 and the weight on the terminal value function
simplifies to �̃H .

Appendix C Implementation Details

�-MVE algorithmic description. The �-MVE estimator may be used for value estimation in any
actor-critic algorithm. We describe the variant used in our control experiments, in which it is used in
the soft actor critic algorithm (SAC; Haarnoja et al. 2018), in Algorithm 3. The �-model update is
unique to �-MVE; the objectives for the value function and policy are identical to those in SAC. The
objective for the Q-function differs only by replacing V pst`1q with V�´MVEpst`1q. For a detailed
description of how the gradients of these objectives may be estimated, and for hyperparameters
related to the training of the Q-function, value function, and policy, we refer to Haarnoja et al. (2018).

16

Algorithm 3 �-model based value expansion
1: Input �: model discount, �̃: value discount, � : step size
2: Initialize µ✓ : �-model generator
3: Initialize Q! : Q-function, V⇠ : value function, ⇡ : policy, D : replay buffer
4: for each iteration do
5: for each environment step do
6: at „ ⇡ p¨ | stq
7: st`1 „ pp¨ | st,atq
8: rt “ rpst,atq
9: D – D [tst,at, rt, st`1u

10: end for
11: for each gradient step do
12: Sample transitions pst,at, rt, st`1q from D

13: Update µ✓ to Algorithm 1 or 2
14: Compute V�´MVEpst`1q according to Theorem 2
15: Update Q-function parameters:

! – ! ´ �r!
1
2 pQ!pst,atq ´ prt ` �̃V�´MVEpst`1qqq2

16: Update value function parameters:
⇠ – ⇠ ´ �r⇠

1
2

`
V⇠pstq ´ Ea„⇡ p¨|stq rQ!pst,aq ´ log ⇡ pa | stqs

˘2

17: Update policy parameters:
 – ´ �r Ea„⇡ p¨|stq rlog ⇡ pa | stq ´ Q!pst,aqs

18: end for
19: end for

Table 1: GAN �-model hyperparameters (Algorithm 1).

Parameter Value
Batch size 128
Number of se samples per pst,atq pair 512
Delay parameter ⌧ 5 ¨ 10´3

Step size � 1 ¨ 10´4

Replay buffer size (off-policy prediction experiments) 2 ¨ 105

Network architectures. For all GAN experiments, the �-model generator µ✓ and discriminator
D� are instantiated as two-layer MLPs with hidden dimensions of 256 and leaky ReLU activations.
For all normalizing flow experiments, we use a six-layer neural spline flow (Durkan et al., 2019)
with 16 knots defined in the interval r´10, 10s. The rational-quadratic coupling transform uses a
three-layer MLP with hidden dimensions of 256.

Hyperparameter settings. We include the hyperparameters used for training the GAN �-model in
Table 1 and the flow �-model in Table 2.

We found the original GAN (Goodfellow et al., 2014) and the least-squares GAN (Mao et al., 2016)
formulation to be equally effective for training �-models as GANs.

Appendix D Environment Details

Acrobot-v1 is a two-link system (Sutton, 1996). The goal is to swing the lower link above a threshold
height. The eight-dimensional observation is given by rcos ✓0, sin ✓0, cos ✓1, sin ✓1,

d
dt✓0,

d
dt✓1s. We

modify it to have a one-dimensional continuous action space instead of the standard three-dimensional
discrete action space. We provide reward shaping in the form of rshaped “ ´ cos ✓0 ´ cosp✓0 ` ✓1q.

MountainCarContinuous-v0 is a car on a track (Moore, 1990). The goal is to drive the car up a
high too high to summit without built-up momentum. The two-dimmensional observation space is
rx,

d
dtxs. We provide reward shaping in the form of rshaped “ x.

17

Table 2: Flow �-model hyperparameters (Algorithm 2)

Parameter Value
Batch size 1024
Number of se samples per pst,atq pair 1
Delay parameter ⌧ 5 ¨ 10´3

Step size � 1 ¨ 10´4

Replay buffer size (off-policy prediction experiments) 2 ¨ 105

Single-step Gaussian variance �2 1 ¨ 10´2

Pendulum-v0 is a single-link system. The link starts in a random position and the goal is to swing it
upright. The three-dimensional observation space is given by rcos ✓, sin ✓, d

dt✓s.
Reacher-v2 is a two-link arm. The objective is to move the end effector e of the arm
to a randomly sampled goal position g. The 11-dimensional observation space is given by
rcos ✓0, cos ✓1, sin ✓0, sin ✓1,gx,gy,

d
dt✓0,

d
dt✓1, ex ´ gx, ey ´ gy, ez ´ gzs.

Model-based methods often make use of shaped reward functions during model-based rollouts (Chua
et al., 2018). For fair comparison, when using shaped rewards we also make the same shaping
available to model-free methods.

Appendix E Adversarial �-Model Predictions

�1 0 1

�2

�1

0

1

2

an
gl

e
2

(r
ad

)

Single-step model
� = 0

�1 0 1

� = 0.5

�1 0 1

� = 0.75

�1 0 1

� = 0.85

�1 0 1

� = 0.95

�1 0 1

angle 1 (rad)

Ground Truth
� = 0.95

Acrobot

�1 0

6

3

0

�3

�6

ve
lo

ci
ty

(a
.u

.)

�10�2

Single-step model
� = 0

�1 0

� = 0.5

�1 0

� = 0.75

�1 0

� = 0.85

�1 0

� = 0.95

�1 0

position (a.u.)

Ground Truth
� = 0.95

Mountain Car

Figure 6: Visualization of the distribution from a single feedforward pass of �-models trained as
GANs according to Algorithm 1. GAN-based �-models tend to be more unstable than normalizing
flow �-models, especially at higher discounts.

18

	Introduction
	Related Work
	Preliminaries
	Generative Temporal Difference Learning
	Analysis and Applications of Gamma-Models
	Gamma-Models as a Continuous Successor Representation
	Gamma-Model Rollouts
	Gamma-Model-Based Value Expansion

	Practical Training of Gamma-Models
	Experiments
	Prediction
	Control

	Discussion, Limitations, and Future Work
	Derivation of Gamma-Model-Based Rollout Weights
	Derivation of Gamma-Model-Based Value Expansion
	Implementation Details
	Environment Details
	Adversarial Gamma-Model Predictions

