Appendix A Derivation of v-Model-Based Rollout Weights

Theorem 1. Let i, (S | s¢;7y) denote the distribution over states at the n™ sequential step of a
~-model rollout beginning from state s;. For any desired discount 7 € |7, 1), we may reweight the
samples from these model rollouts according to the weights

o = I=NE-7"!
" 1=y

to obtain the state distribution drawn from (s, | s¢;9) = (e | st;7). That is, we may reweight
the steps of a y-model rollout so as to match the distribution of a y-model with larger discount:

o0
1(se | se39 Z Qnfin(Se | St377).-

Proof. Each step of the y-model samples a time according to At ~ Geom(1 —), so the time after n
~v-model steps is distributed according to the sum of n independent geometric random variables with
identical parameters. This sum corresponds to a negative binomial random variable, NB(n, 1 — ~),
with the following pmf:

pn(t) = (t B 1)7“’”(1 —y)" (7)

t—n

Equation 7 is mildly different from the textbook pmf because we want a distribution over the total
number of trials (in our case, cumulative timesteps t) instead of the number of successes before the
n' failure. The latter is more commonly used because it gives the random variable the same support,
t > 0, for all n. The form in Equation 7 only has support for ¢ > n, which substantially simplifies
the following analysis.

The distributions ¢(t) expressible as a mixture over the per-timestep negative binomial distributions
Pr, are given by:

t
Z npn

in which «,, are the mixture weights. Because p,, only has support for ¢ > n, it suffices to only
consider the first ¢ y-model steps when solving for ¢(t).

We are interested in the scenario in which ¢(¢) is also a geometric random variable with smaller
parameter, corresponding to a larger discount 5. We proceed by setting ¢(t) = Geom(1 — ¥) and
solving for the mixture weights o, by induction.

Base case. Letn = 1. Because p; is the only mixture component with support at ¢t = 1, « is

determined by ¢(1):
t—1
1—4~ = t—1 1— t
7= (t— 1)7 (1=7)

= 061(1 —’}/).
Solving for a; gives:
1-5
ap = ——.
1=7 Py

Induction step. We now assume the form of ay, for k = 1,...,n — 1 and solve for o, using g(n).

n—1 n—1

=(1—-4 X k—1_n—k Ckn].— n

(7){k_1<n_k)()y }+ (I—7)

= (1%{% (”_1)(7k k} —(1=NE =" a1 ="
= n—=k

Solving for o, gives

A =HE="
(1=

as desired. O

Appendix B Derivation of v-Model-Based Value Expansion

In this section, we derive the v-MVE estimator and provide pseudo-code showing how it may be
used as a drop-in replacement for value estimation in an actor-critic algorithm. Before we begin, we
prove a lemma which will become useful in interpreting value functions as weighted averages.

Lemma 1.
H -
Y=
S (1)
n=1 1_,7
Proof.
H 1_,? H :Y_'V n
1-— a,=1—|(= _—
se-1-(2) 5 (5)

O
We now proceed to the v-MVE estimator itself.

Theorem 2. For 7 > ~, V(sy;) may be decomposed as a weighted average of H ~-model steps
and a terminal value estimation. We denote this as the v-MVE estimator:

~ _ 1 ~
Vymve(se;) =

H H
Y=7 ~
nES’\’ (St € ES’\’ HE V e; .
55 2 @B 16+ (12 Bt [V 3619

15

Proof.

. 1
V(st;7) = ?]ESS'VM(-‘SM’?) [r(se)]

2

B~ (Jsis) [7(8e)]

—_
— I
N

D= D8

anBs, <, ([sii) [7(Se) Z anBs, <y, (fsim) [T(se)]- (8)
1 n H+1

@ @

The second equality rewrites an expectation over a y-model as an expectation over a rollout of a
~v-model using step weights «,, from Theorem 1. We recognize @ as the model-based component

—_
I
N

n

of the value estimation in y~-MVE. All that remains is to write @ using a terminal value function.

0

0
Z anEse~un(\st,'y) 2 aginE Se~mH+n (-|St57) [T(se)]

n=H+1
o8]
() sa~pw (-se) lZ Es,~pin (-fsm) [T(se)]

Qz
Q

(7) Eo st (lser) [Eso~nClsns) [7(8e)]]
= (1) (122 Bur i V59 ©

1
conditioning state. Plugging Equation 9 into Equation 8 gives:

. \H
The second equality uses agryn, = (%) v, and the time-invariance of G(™ with respect to its

H

~ H
Y= ~
Sc'\‘;ufn Isesy) LT [()] + <)]ESCN,MH(-lsﬁ’Y) [V(SE;V)]'

v
(St7]-_’Y

n:l

O

H
Remark 1. Using Lemma 1 to substitute 1 — ZH 1 vy in place of (7 3) clarifies the interpreta-

tion of V'(s;7) as a weighted average over H ~y-model steps and a terminal value function. Because
the mixture weights must sum to 1, it is unsurprising that the weight on the terminal value function

H H
turned out to be (7 V) =1-=>,_1an.

Remark 2. Setting v = 0 recovers standard MVE with a single-step model, as the weights on the
model steps simplify to o, = (1 — 7)(7 —)" ! and the weight on the terminal value function
simplifies to 4

Appendix C Implementation Details

~-MVE algorithmic description. The y-MVE estimator may be used for value estimation in any
actor-critic algorithm. We describe the variant used in our control experiments, in which it is used in
the soft actor critic algorithm (SAC; Haarnoja et al. 2018), in Algorithm 3. The y-model update is
unique to y-MVE; the objectives for the value function and policy are identical to those in SAC. The
objective for the Q)-function differs only by replacing V' (s;+1) with V,,_mvge(s¢+1). For a detailed
description of how the gradients of these objectives may be estimated, and for hyperparameters
related to the training of the @-function, value function, and policy, we refer to Haarnoja et al. (2018).

16

Algorithm 3 ~-model based value expansion

1: Input +: model discount, 7: value discount, X : step size

2: Initialize 19 : y-model generator

3: Initialize)., : -function, V¢ : value function, 7y, : policy, D : replay buffer
4: for each iteration do

5: for each environment step do

6: at~7r¢(' ‘St)

7: sev1 ~ p(- | s, ay)

8: ry = T(St,at)

9: D(_DU{St7at7rt7st+l}

10: end for
11: for each gradient step do
12: Sample transitions (s, a;, r¢, S¢41) from D
13: Update p9 to Algorithm 1 or 2
14: Compute V,_mve(S¢+1) according to Theorem 2
15: Update Q-function parameters:
W w—)\vw% (Qu(se,a) — (ry + :)’V»y—MVE(StH)))Q
16: Update value function parameters:

2
§—&— /\vfé (Vﬁ(st) - Ea~7rw(-|5t) [Qw(St, a) — log 771/)(3 | St)])
17: Update policy parameters:

¥ = = AVyEarr, (s, [logmy(a | st) = Qu(ss,a)]

18: end for
19: end for
Table 1: GAN v-model hyperparameters (Algorithm 1).

Parameter Value
Batch size 128
Number of s, samples per (s;, a;) pair 512
Delay parameter 7 5-1073
Step size A 1-1074
Replay buffer size (off-policy prediction experiments) 2-10°

Network architectures. For all GAN experiments, the y-model generator 11y and discriminator
D, are instantiated as two-layer MLPs with hidden dimensions of 256 and leaky ReLU activations.
For all normalizing flow experiments, we use a six-layer neural spline flow (Durkan et al., 2019)
with 16 knots defined in the interval [—10, 10]. The rational-quadratic coupling transform uses a
three-layer MLP with hidden dimensions of 256.

Hyperparameter settings. We include the hyperparameters used for training the GAN ~-model in
Table 1 and the flow v-model in Table 2.

We found the original GAN (Goodfellow et al., 2014) and the least-squares GAN (Mao et al., 2016)
formulation to be equally effective for training y-models as GANSs.

Appendix D Environment Details

Acrobot-v1 is a two-link system (Sutton, 1996). The goal is to swing the lower link above a threshold
height. The eight-dimensional observation is given by [cos g, sin 6, cos 01, sin 61, %90, %01]. We
modify it to have a one-dimensional continuous action space instead of the standard three-dimensional
discrete action space. We provide reward shaping in the form of rgyapeda = — cos 8y — cos(6p + 61).

MountainCarContinuous-v0 is a car on a track (Moore, 1990). The goal is to drive the car up a
high too high to summit without built-up momentum. The two-dimmensional observation space is
[z, %z] We provide reward shaping in the form of 7'ghapeq = .

17

Table 2: Flow y-model hyperparameters (Algorithm 2)

Parameter Value
Batch size 1024
Number of s, samples per (s, a;) pair 1

Delay parameter 7 5-1073
Step size A 1-1074
Replay buffer size (off-policy prediction experiments) 2-10°
Single-step Gaussian variance o2 1-1072

Pendulum-v0 is a single-link system. The link starts in a random position and the goal is to swing it
upright. The three-dimensional observation space is given by [cos 6, sin 6, %9].

Reacher-v2 is a two-link arm. The objective is to move the end effector e of the arm
to a randomly sampled goal position g. The 11-dimensional observation space is given by

. . . d d
[CO5 003 COoS 013 Sll’l90751n01, ga:vgyv 590, aolyex — 8z, ey - gyaez - gz]

Model-based methods often make use of shaped reward functions during model-based rollouts (Chua

et al., 2018). For fair comparison, when using shaped rewards we also make the same shaping
available to model-free methods.

Appendix E Adversarial v-Model Predictions

) Acrobot
Single-step model Ground Truth
v= =05 v =0.75 v =0.85 v =0.95 v =0.95
2 \ ‘
=1 [o o o [[
&
= . \ \ \
2
20 \
g -1 \ \
-2
10 1 10 i 100 i 10 1 10 1 10 1
angle 1 (rad)
y Mountain Car
Single-step model sround Truth
vos 7 =0 =05 N =0.75 v =085 v =095 v =095
6
z
2 | |
= -3 o L o
-6

position (a.u.)

Figure 6: Visualization of the distribution from a single feedforward pass of v-models trained as
GANSs according to Algorithm 1. GAN-based y-models tend to be more unstable than normalizing
flow y-models, especially at higher discounts.

18

	Introduction
	Related Work
	Preliminaries
	Generative Temporal Difference Learning
	Analysis and Applications of Gamma-Models
	Gamma-Models as a Continuous Successor Representation
	Gamma-Model Rollouts
	Gamma-Model-Based Value Expansion

	Practical Training of Gamma-Models
	Experiments
	Prediction
	Control

	Discussion, Limitations, and Future Work
	Derivation of Gamma-Model-Based Rollout Weights
	Derivation of Gamma-Model-Based Value Expansion
	Implementation Details
	Environment Details
	Adversarial Gamma-Model Predictions

