
A Gradient analysis

We provide a detailed derivation of Eq. 6. The gradient backpropagated to layer l, ∂L
∂xl

, can be computed by
applying the chain rule:

∂L
∂xl

=
∂L
∂xL

× ∂xL
∂xl

(9)

(10)

To compute ∂xL
∂xl

, we first apply Eq. 2 recursively to expand xL as:

xL = xL−1 + zL−1 × FL−1(xL−1) (11)
= xL−2 + zL−2 × FL−2(xL−2) + zL−1 × FL−1(xL−1) (12)

= xl +

L−1∑
m=l

zmFm(xm) (13)

∂xL
∂xl

= 1 +

L−1∑
m=l

zm
∂Fm(xm)

∂xl
(14)

∂L
∂xl

=
∂L
∂xL

× (1 +

L−1∑
m=l

zm
∂Fm(xm)

∂xl
) (15)

B Training Details

B.1 Training procedure

The proposed training procedure is motivated by the Generalized Inner Loop Meta-learning [10] although we
use first-order gradient as approximation. Specifically, we treat qφ as “meta parameters" and the rest of the
Transformer parameters Θ as “task-specific" parameters. A key difference is that in our case there is only one
task and the support set and target set are from the same distribution. At a high-level, we learn Θ in an inner-loop
while updating qφ from the unrolled gradient steps. Such nested optimization is computationally expensive as the
graph for multiple steps needs to be stored in memory, and training was found to be unstable due to challenges
in backpropagating second-order gradients through multiple steps [2]. We adopt a multi-step loss approximation
using first-order gradients only as is shown to be effective in [2]. Specifically, in each outer loop we take the
latest parameters of qt−1

φ , and perform I inner loop steps. The gradients from each inner loop loss L̂ are directly
backpropagated to Θ, and the last step’s gradient are used to update qφ, which is a special case of multi-step loss
annealing where ωI−1 = 1, ωj = 0 for j < I − 1.

Algorithm 2 Training with latent layers in multilingual setting

1: Input: training examples from N languages {Dn}Nn=1; total number of training steps T ; inner
loop update frequency I

2: Initialize Θ, q0
φ = {α0

l }; t = 0.
3: for t=1, ..., T do
4: for i=1, ..., I do
5: for n = 1, ..., N do
6: Sample a mini-batch (x, y) ∼ Dn.
7: Compute zl=0,...,L−1 all at once following Eq. 5 with samples εl ∼ G
8: Compute loss L̂LL((x, y); Θi−1, q

t−1
φ) with Eq. 8

9: Update Θi = Θi−1 − η∇Θi−1
L̂LL

10: Update qtφ = qt−1
φ − η∇qt−1

φ
L̂LL

B.2 Training stability.

We examine the stability of our training procedure, e.g. whether training is sensitive
to the choice of inner loop frequencies. Figure 7 plots the gradient norms of using
I ∈ {1, 2, 5, 10}, and the impact on translation performance is summarized in Table 10.

12

Figure 7: Comparison of gradient norms using different inner
loop iterations I to verify training stability is not sensitive to
the choice of I .

C Experiments
Implementation Details

C.1 Dataset description

For WMT’16 English-German experi-
ment, we used the same preprocessed
data provided by [31] 1, including the
same validation (neewsteest2013) and test
(neewsteest2014) splits. The data vol-
ume for train, validation and test splits
are 4500966, 3000, 3003 sentence pairs
respectively. The data was tokenized and
numberized with a joint BPE (byte pair en-
coding) [26] vocabulary with 32k merge
operations.

For multilingual translation experiments, we use the same preprocessed data2 provided by [32] using the same
train, valid, and test split as in [23]. The data volumes for related and diverse language groups are summarized
in Table 12.

For crosslingual language modelling we used data from Wikipedia from the 25 languages used in the mBART [17]
model, using the same data collection and preprocessing as [8]. We list the languages used and corresponding
Wikipedia corpus size in Table 11. A random sample of 5000 sentences from each of the languages was used as
held-out data to compare models.

Avg. bos mar hin mkd ell bul fra kor
I = 1 28.28 23.0 14.1 19.2 31.6 37.2 39.4 40.8 20.9
I = 2 28.49 23.4 15.1 19 32.1 37.2 39.4 40.8 20.9
I = 5 28.24 23.4 14.5 18.6 32.1 37.2 39.1 40.2 20.8
I = 10 28.25 23.8 14.3 19 314 37 39.4 40.5 20.6

Table 10: BLEU scores on validation set to assess the impact of the inner loop frequency I on training
stability and model performance, evaluated on the M2O-Diverse dataset.

C.2 Models and hyperparameters

Both baselines and proposed models are implemented using Transformer models in fairseq [18]. For baseline
models, we use the pre-norm setting which provides a stronger baseline since it was shown to more effective for
training deeper Transformer models than post-norm[19, 31]. Therefore, the comparison with baseline can focus
on evaluate the difference made from using latent layers. We use per-token negative loglikelihood (NLL) loss on
the validation set to choose the loss coefficients for β and λ.

WMT’16 English-German. All models were trained for 75 epochs and evaluating on the last checkpoint.
For Transformer-big, we use the standard model architecture as is described in [30]: d = 1024 for embedding
and hidden dimension, and d = 4096 for FFN dimension, 6-layer encoder and decoder, 0.3 dropout (0.1 after
attention sub-layer and ReLU activation). Model was trained with 8192 token per GPU and 32 GPUs, learning
rate 7e-4 and 8000 warm-up updates with Adam optimizer. For deeper models, i.e. both DLCL (baseline) and
latent layers (LL, the proposed approach), since the depth is increased we reduce the model width by using
d = 512 for embedding and hidden dimension, and d = 1024 for FFN dimension, and 4 attention heads. Also,
we found for deeper models we were able to use almost 2× learning rate (1.5e-3). We use β = 1 and λ = 0.1
for latent layers models.

Crosslingual Masked Language Modelling. We use the XLM-RBase architecture of [8], which has a
hidden dimension of 768, but we explore increasing the number of layers, considering 24, 48 and 96 layer

1The authors of [31] provided the downloadable data at https://drive.google.com/uc?export=
download&id=0B_bZck-ksdkpM25jRUN2X2UxMm8

2The authors of [32] provided the downloadable data at https://drive.google.com/file/d/
1xNlfgLK55SbNocQh7YpDcFUYymfVNEii/view?usp=sharing

13

https://drive.google.com/uc?export=download&id=0B_bZck-ksdkpM25jRUN2X2UxMm8
https://drive.google.com/uc?export=download&id=0B_bZck-ksdkpM25jRUN2X2UxMm8
https://drive.google.com/file/d/1xNlfgLK55SbNocQh7YpDcFUYymfVNEii/view?usp=sharing
https://drive.google.com/file/d/1xNlfgLK55SbNocQh7YpDcFUYymfVNEii/view?usp=sharing

Code Language Sentences (M)

En English 41.9
Ru Russian 12.0
Vi Vietnamese 3.7
Ja Japanese 1.7
De German 16.7
Ro Romanian 1.8
Fr French 14.8
Fi Finnish 2.4
Ko Korean 2.1
Es Spanish 10.9
Zh Chinese (Sim) 5.2
It Italian 9.7
Nl Dutch 7.7
Ar Arabic 3.2
Tr Turkish 1.8
Hi Hindi 0.6
Cs Czech 2.7
Lt Lithuanian 0.9
Lv Latvian 0.45
Kk Kazakh 1.0
Et Estonian 2.2
Ne Nepali 0.1
Si Sinhala 0.1
Gu Gujarati 0.1
My Burmese 0.4

Table 11: A list of the 25 languages and corresponding Wikipedia corpus size (in millions of
sentences) used for crosslingual masked language modelling.

Related Diverse
aze bel glg slk ces por rus tur bos mar hin mkd ell bul fra kor

train (K) 5.94 4.51 10 61.5 103 195 208 182 5.64 9.84 18.79 25.33 134 174 192 205
valid 671 248 682 2271 3462 4035 4814 4045 474 767 854 640 3344 4082 4320 4441
test 903 664 1007 2445 3831 4855 5483 5029 463 1090 1243 438 4433 5060 4866 5637

Table 12: Data statistics (number of sentence pairs or thousands of sentence pairs for training data)
for languages used in multilingual translation experiments.

models. We learn a Sentencepiece vocabulary of size 40k on the training data. We evaluate the models after
100k updates (as opposed to [8] who train for 1.5 million updates) with a per-GPU batch size of 8192 tokens
and 32 GPUs. Note we do not use language-aware latent variables despite the multilingual training data. We
use the Adam optimizer with learning rate of either 5e-4, 2.5e-4 (24 or 48 layers) or 1.25e-4 (96 layers) and
linear warmup followed by polynomial decay with either 5000 (24 or 48 layers) or 15000 (96 layers) warmup
steps. For our static model with 96 layers we further tried increasing warmup to 30000 steps and decreasing the
learning rate to 1.5625e-5 but this did not help with training loss divergence issues. When using LayerDrop
we use 50% dropout probability. We re-use all other hyperparameters from XLM-R [8] (i.e. token masking
probability etc.).

Multilingual Machine Translation. For multilingual experiments, we use a single Transformer network
shared across all languages for both the encoder and decoder, with the same model size as used in [32]. We use
the same optimization hyperparameters (learning rate, warm up schedule, etc) as used in WMT English-German
experiments except that the batch size is 4096 tokens per-language and we train the model for 14k updates, and
evaluated on the last checkpoint. Similarly, we use beam search with beam size 5 and length penalty 1.0 for
decoding.

D Visualizations

We provide visualizations of the layer selection samples zl to further illustrate modeling choices around LK and
priors.

14

Effect of LK . First, we show that adding the auxiliary loss LK discretizes the samples and achieve the
pruning purpose by enforcing sparsity of the resulting model. In Figure 8, we visualized samples throughout
training using the WMT’16 English-German dataset. Since decoder depth directly contributes to latency at
inference time, we only apply LK with K = 12 to latent layers training in decoder and not in encoder. We could
see that samples zl in decoder becomes discrete throughout training while samples in encoder stay continuous.

Encoder Decoder

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

0.0

0.5

1.0

Figure 8: Layer selection samples throughout training evaluated on the WMT’16 English-German
dataset. Rows correspond to samples from encoder and decoder with 36 latent layers at epoch 2, 6,
25, 50, and 100 respectively. LK (K = 12) was applied to decoder only and not encoder to contrast
the discretizing and pruning effect.

Effect of priors. In Section 5 we showed the difference between using an uniform prior Beta(1,1) and
aggregated posterior q̃(z) in the early stage of training. In Figure 9, we further compared the resulting samples
used at inference time, where we can see that using aggregated posterior q̃(z) leads to more consistent sampling
behavior for each layer (either “all select" or “all skip") across languages and thus obtain increased sparsity
and a more compact model. We used the O2M-Related language group for evaluation, where we could observe
qualitatively common layer selection patterns for languages of the same language family, e.g. aze (Azerbaijani)
and tur (Turkish), bel (Belorussian) and rus (Russian), glg (Galician) and por (Portuguese), slk (Slovak) and ces
(Czech). We leave a systematic study of layer selection and linguistic similarity to future work.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

aze
tur
bel
rus
glg
por
slk
ces

DKL(q(z)||Beta(1,1))

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

DKL(q(z)||q(z))

0.0

0.5

1.0

Figure 9: Layer selection samples zl at inference time trained with uniform prior (left) and aggregated
posterior q̃(z) (right) in DKL. Compared to the uniform prior, using aggregated posterior is more
effective for “pruning" by encouraging consistent “select" and “skip" across languages. For example,
layer 0, 2, 6, and 23 can be complete pruned for all languages besides language-specific pruning (e.g.
for each language/row, layers corresponding to lighter cells could be pruned to derive a sub-network
for the given language). This property is appealing for deploying one shared multilingual model for
all languages.

15

	Gradient analysis
	Training Details
	Training procedure
	Training stability.

	Experiments Implementation Details
	Dataset description
	Models and hyperparameters

	Visualizations

