A Scalable MIP-based Method for Learning
Optimal Multivariate Decision Trees

Haoran Zhu, Pavankumar Murali, Dzung T. Phan, Lam M. Nguyen, Jayant R. Kalagnanam
IBM Research, Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA
haoran@ibm.com, pavanm@us.ibm.com, phandu@us.ibm. com,
LamNguyen.MLTD@ibm.com, jayant@us.ibm.com

Abstract

Several recent publications report advances in training optimal decision trees
(ODT) using mixed-integer programs (MIP), due to algorithmic advances in integer
programming and a growing interest in addressing the inherent suboptimality of
heuristic approaches such as CART. In this paper, we propose a novel MIP formu-
lation, based on a 1-norm support vector machine model, to train a multivariate
ODT for classification problems. We provide cutting plane techniques that tighten
the linear relaxation of the MIP formulation, in order to improve run times to reach
optimality. Using 36 data-sets from the University of California Irvine Machine
Learning Repository, we demonstrate that our formulation outperforms its counter-
parts in the literature by an average of about 10% in terms of mean out-of-sample
testing accuracy across the data-sets. We provide a scalable framework to train
multivariate ODT on large data-sets by introducing a novel linear programming
(LP) based data selection method to choose a subset of the data for training. Our
method is able to routinely handle large data-sets with more than 7,000 sample
points and outperform heuristics methods and other MIP based techniques. We
present results on data-sets containing up to 245,000 samples. Existing MIP-based
methods do not scale well on training data-sets beyond 5,500 samples.

1 Introduction

Decision tree models have been used extensively in machine learning (ML), mainly due to their
transparency which allows users to derive interpretation on the results. Standard heuristics, such as
CART [6], ID3 [17] and C4.5 [18]], help balance gains in accuracy with training times for large-scale
problems. However, these greedy top-down approaches determine the split at each node one-at-a-time
without considering future splits at subsequent nodes. This means that splits at nodes further down
in the tree might affect generalizability due to weak performance. Pruning is typically employed to
address this issue, but this means that the training happens in two steps — first, top-down training
and then pruning to identify better (stronger) splits. A better approach would be a one-shot training
of the entire tree that determines splits at each node with full knowledge of all future splits, while
optimizing, say, the misclassification rate [4]. The obtained decision tree is usually referred to as an
optimal decision tree (ODT) in the literature.

The discrete nature of decisions involved in training a decision tree has inspired researchers in the field
of Operations Research to encode the process using a mixed-integer programming (MIP) framework
[SL 1241190 [22] 23]]. This has been further motivated by algorithmic advances in integer optimization
[4]. An MIP-based ODT training method is able to learn the entire decision tree in a single step,
allowing each branching rule to be determined with full knowledge of all the remaining rules. Papers
on ODT have used optimality criteria such as the average testing length [14]], training accuracy, the
combination of training accuracy and model interpretability [4}13]], and the combination of training
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accuracy and fairness [[1]. In a recent paper, Aghaei et al. [2] propose a strong max-flow based MIP
formulation to train univariate ODT for binary classification. The flexibility given by the choice of
different objective functions, as well as linear constraints in the MIP model, also allows us to train
optimal decision trees under various optimality criteria.

Yet another drawback of heuristic approaches is the difficulty in training multivariate (or oblique)
decision trees, wherein splits at a node use multiple variables, or hyperplanes. While multivariate
splits are much stronger than univariate (or axis-parallel) splits, they are more complicated because
the splitting decision at each node cannot be enumerated. Many approaches have been proposed
to train multivariate decision trees including the use of support vector machine (SVM) [3]], logistic
regression [21] and Householder transformation [25]. As noted in [4], these approaches do not
perform well on large-scale data-sets as they also rely on top-down induction for the training process.

The first contribution of this paper is a new MIP formulation, SVM1-ODT, for training multivariate
decision trees. Our formulation differs from others in the literature — we use a 1-norm SVM to
maximize the number of correctly classified instances and to maximize the margin between clusters at
the leaf nodes. We show that this formulation produces ODTs with a higher out-of-sample accuracy
compared to the ODTSs trained from state-of-the-art MIP models and heuristic methods on 20 data-sets
selected from the UCI ML repository. In Sect.[d] we report the testing performance of the ODT trained
using our formulation and show that is has an average improvement of 6-10% in mean out-of-sample
accuracy for a decision tree of depth 2, and an average improvement of 17-20% for a decision tree of
depth 3.

The second contribution of this paper is towards increasing tractability of the MIP-based ODT training
for very large data-sets that are typical in real-world applications. It is imperative to bear in mind that
the tractability of MIPs limits the size of the training data that can be used. Prior MIP-based ODT
training formulations [4} 23] are intractable for large-sized data-sets (more than 5000 samples) since
the number of variables and constraints increase linearly with the size of the training data. We address
tractability in two steps. First, we tighten the LP-relaxation of SVM1-ODT by providing new cutting
planes and getting rid of the big-M constant. Second, we propose an efficient linear programming
(LP) -based data-selection method to be used prior to training the tree. This step is comprised of
selecting a subset of data points that maximizes the information captured from the entire data-set.

Our method is able to routinely handle large data-sets with more than 7,000 sample points. We
present results on data-sets containing up to 245,000 samples. Existing MIP-based methods do not
scale well on training data beyond 5,000 samples, and do not provide a significant improvement over
a heuristic approach. For large-scale data-sets, when SVM1-ODT is used along with the LP-based
data selection method, our results indicate that the resulting decision trees offer higher training and
testing accuracy, compared to CART (see Sect.[d] Figure 2). However, solely using any MIP-based
formulation (including ours) without data selection can rarely outperform CART, due to the model
becoming intractable resulting in the MIP solver failing to find any better feasible solution than the
initially provided warm-start solution. This indicates that any loss of information from data-selection
is more than adequately compensated by the use of optimal decision trees (using the SVM1-ODT
formulation).

2 MIP formulation for training multivariate ODT for classification

In this section, we present our formulation to train an optimal multivariate classification tree using a
data-set comprising numerical features, and for general data-sets containing categorical features, we
propose an extension of such formulation in the supplementary material. For any n € Z, let [n] :=
{1,2,...,n} denote a finite set of data points, [Y] = {1,2,...,Y} be a set of class labels, and
[d] ={1,2,...,d} be the index set of all features. Our formulation is established for the balanced
binary tree with depth D. Let the set of branch nodes of the tree be denoted by B := {1,...,2P —1},
and the set of leaf nodes be denoted by £ := {27 ... 2P+1 — 1}, Similar to [4], let Ag(l) and
Ap (1) denote the sets of ancestors of leaf node | whose right and left branches, respectively, are on
the path from the root node to leaf node [.

Next, we define the variables to be used. Each data point ¢ € [n] is denoted by (x;,y;), where x; is a
d-dimensional vector, and y; € [Y]. Since we train multivariate trees, we use a branching hyperplane
at branch node b, denoted by (hy, x;) = g5, where gy, is the bias term in the hyperplane. Indicator
binary variable ¢; = 1 when ¢ is misclassified and 0 otherwise. Indicator binary variable e¢;; = 1



when 7 enters leaf node {. Variable §; € [Y] denotes the predicted label for ¢, and the decision
variable u; € [Y] is the label assigned to leaf node . We let m;;, denote the slack variable for the
soft margin for each point ¢ corresponding to a hyperplane (hy,x;) = g, used in the SVM-type
model (B). The objective for the learning problem shown in (I attempts to minimize the total
misclassification (3, ¢;), the 1-norm SVM margin (3, ||hy||1) and the sum of slack variables for
classification ambiguity subtracted from the soft margin (3_; , m;;). Additionally, 3, [[hy[[1 helps
promote sparsity in the decision hyperplanes constructed at the branch nodes of a decision tree during
the training process.

Then, SVM1-ODT can be expressed as follows:

min Y citar Y mip+azd [y (1)

1€[n] i1€[n],beB beB
st. (yi —Y)e; <wyi — 9 < (y; — 1)e;, Vi € [n] (1b)

Qi:Zwil,We [n] (1)
lel

wip > eg,up — wi + ey > 1L,Vi € [n],l €L (1d)

Yey+u —wy <Y,wy <Yeu,Vie[n],l el (le)

9o — Z hyjiij = Py, — Dy, Vi € [n],b € B (1f)
jeld]

piy < M(1—e;),Vi€[n],l € L,be Ag(l) (12

Py + map > €€, Vi € [n],l € L,be Ag(l) (1h)

Py < M(1—ey),Vien],le Ll be AL(l) (11)

piy +mup > €€y, Vi € [n],l € L,b e Ap(l) (1)

Ze,;l =1,Vi € [n] (1k)

lel

Ui wit, hej, gy € R,p%,pﬁ),mib €Ry,ei,¢ €{0,1},u € {1,..., Y} (11)

We notice that hy, g, and u; are main decision variables to characterize a decision tree, while 3;, w;,
pj,'}, Dip» Mib, €41 and ¢; are derived variables for the MIP model.

Constraint (Tb) expresses the relationship between ¢; and g;. If §; = y;, then ¢; = 0 since ¢; is
minimized. If §; # y; and §; < y;, then (y; — 1)¢; > y; — §; > 1, thus ¢; = 1, Similarly, if §; > y;,
then (y; — Y)e; < —1, thus ¢; = 1. In a balanced binary tree with a fixed depth, the branching rule is
given by: i goes to the left branch of b if (hy,x;) < g, and goes to the right side otherwise. Predicted
class 4; = Zl cr Ul " €l Since u; - e;; is bilinear, we perform McCormick relaxation [15] of this
term using an additional variable w;; such that w;; = u; - e;;. Since e;; is binary, this McCormick
relaxation is exact. That is to say, §; = > ler UL €il if and only if (Ic)-(Te) hold for some extra
variables w. Since u; and e;; are integer variables, it follows that ¢; also integral. Constraints (If),
(Ig) and formulate the branching rule at each node b € B: if i goes to the left branch at node
b, then gy — >~ e hwjxi; = 0, and if it goes to the right side, then g, — >~ ¢ hwjzi; < 0. As
per MIP convention, we formulate this relationship by separating g, — > jeld] hyjz;; into a pair of
complementary variables pz'.';) and p;, (meaning p;; and p;, cannot both be strictly positive at the
same time), and forcing one of these two variables to be 0 through the big-M method [26]. We
should remark that this is not exactly the same as our branching rule: when ¢ goes to the right branch,
it should satisfy g, — > jeld] hyjzi; < 0 strictly. The only special case is when p:g =p,; = 0.
However, due to the two constraints , , and the penalizing term m;; > 0, this phenomenon
cannot occur. Constraint (Tk]) enforces that each  should be assigned to exactly one leaf node. For a
given dataset, model parameters €, oy and o are tuned via cross-validation. In the following section,
we provide explanations for constraints (Th), (Ij) and objective function (Ta)), and some strategies to
tighten SVM1-ODT.



2.1 Multi-hyperplane SVM model for ODT

When constructing a branching hyperplane, we normally want to maximize the shortest distance
from this hyperplane to its closest data points. For any branching node associated with a hyperplane
(hy, x;) = gy by fixing other parts of the tree, we can view the process of learning the hyperplane as
constructing a binary classifier over data points {(x;,7;)} that reach the node. The artificial label
y; € {left,right} (= {—1,+1}) is derived from the child of the node: x; goes to the left or the right;
that is determined by e;;. This problem is reduced to an SVM problem for each branching node.
Applying the 1-norm SVM model with soft margin [[16}27] to the node b gives us

min gl [l1 + a1 X e p, M

. 2
st gy — Zje[d] hijxij| + map > eeq, Vi € [n], 1 € Ly,. )

Here L, is the set of leaf nodes that have node b as an ancestor and m;;, denotes the slack variable for
soft margin. We slightly modify the original 1-norm SVM model by using a small constant ee;; in (2)
instead of e;; to prevent variables from getting too big. The constraint is only active when e;; = 1,
namely data 7 enters the branching node b, and e;; = 1 implicitly encodes ;.

We use 1-norm, instead of the Euclidean norm, primarily because it can be linearized. The sparsity
for hy, targeted heuristically by including the 1-norm term [27] in the objective allows for feature
selection at each branching node. As we noted previously, we can express the term g, — > jeld] hyjXi;
as the difference of two positive complementary variables, and the absolute value [g, — ;< 4 husXij|
just equals one of these two complementary variables, depending on which branch such a data point
enters. When taking the sum over all branching nodes, we have the following multi-hyperplane SVM

problem to force data points close to the center of the corresponding sub-region at each leaf node
lel:

min ZbeAL(l)UAR(l) %”hb”l ta Zie[n],beAL(l)UAR(l) Mip
st 9o = D jeqa Mg mij| + map = eeq, 3)
Vi€ [n],be Ap(l) U Ag(l).

Note that |, (AL (1) U Ar()) = B. By combining (3) over all leaf nodes | € £ we obtain:

min Zbel’j’ %”hbnl + o Zie[aneB Mip )

st (@) — (@).

Adding the misclassification term ), ¢; back into the objective function, and assigning some regular-
ization parameters, we end up getting the desired objective function in (Ta).

In LP, the minimized absolute value term |h;;| can be easily formulated as an extra variable A ; and

two linear constraints: hj,; = hy; + hy, hy; = hy; — hy, b by > 0. We highlight the major
difference here from another recent work [4] in using MIP to train ODT. First, in their formulation
(OCT-H), they consider penalizing the number of variables used across all branch nodes in the tree,
in order to encourage model simplicity. Namely, their minimized objective is: ). ¢; + a1 Y, |/hy|lo-
However, this requires some additional binary variables for each h;;, which makes the MIP model
even harder to solve. In fact, there is empirical evidence that using the 1-norm helps with model
sparsity (e.g., LASSO [20], I-norm SVM [27]]. For that reason, we do not bother adding another
0-norm regularization term into our objective. Secondly, unlike in [4]], we use variables u; to denote
the assigned label on each leaf, where u; € [Y]. The next theorem shows, in SVM1-ODT (T)), integer
u variables can be equivalently relaxed to be continuous between [1, Y]. This relaxation is important
in terms of optimization tractability.

Theorem 1. Every integer variable u;,l € L, in (I) can be relaxed to be continuous in [1,Y].

We note that all proofs are delegated to the supplementary material.

2.2 Strategies to tighten MIP formulation

For MIPs, it is well-known that avoiding the use of a big-M constant can enable us to obtain a tighter
linear relaxation of the formulation, which helps an optimization algorithm such as branch-and-bound
converge faster to a global solution. The next theorem shows that the big-M constant M can be



fixed to be 1 in (I) for SVM1-ODT, with the idea being to disperse the numerical issues between
parameters by re-scaling. The numerical instability for a very small ¢, as in the theorem below, should
be easier to handle by an MIP solver than a very big M.

Theorem 2. Let (hy, g))ven, (W))icc, (9, ¢})icm) (W, €l ienlicc: (Pi s Piy s iy )icn) ves
be a feasible solution to (1) with parameters (a1,aa,M,e). Then, it is
also an optimal solution to (1) with parameters (a1,a9,M,€), if and only if
(h;)/Ma g[l)/M)bEBu (Ug)le& (?327 c;)ié[n]u (wép e//il)ie[n],leﬂv (P;?,//M» p;b//Ma m;b/M)iG[n],bGB

is an optimal solution to (1) with parameters (M oy, Mag,1,¢/M).

Note that {(hy, g} )ves, (u))icc} and {(hy /M, g; /M )pes, (u})icc } represent the same decision tree,
since (hy, h) < g/ is equivalent to (h,/M,x) < g; /M, at each branch node b € B.

In MIP parlance, a cutting-plane (also called a cut) is a linear constraint that is not part of the
original model and does not eliminate any feasible integer solutions. Pioneered by Gomory [10} [L1],
cutting-plane methods, as well as branch-and-cut methods, are among the most successful techniques
for solving MIP problems in practice. Numerous types of cutting-planes have been studied in integer
programming literature and several of them are incorporated in commercial solvers (see, e.g., [7, 26]).
Even though the state-of-the-art MIP solvers can automatically generate cutting-planes during the
solving process, these cuts usually do not take the specific structure of the model into consideration.
Therefore, most commercial solvers allow the inclusion of user cuts, which are added externally
by users in order to further tighten the MIP model. In this section, we propose a series of cuts for
SVM1-ODT, and they are added once at the beginning before invoking a MIP solver. For the ease
of notation, we denote by N, the set of data points with the same dependent variable value , i.e.,
Ni:={i € [n]:y; =k}, forany k € [Y].

Theorem 3. Given a set I C [n] with |I N Ny| < 1 for any k € [Y]. Then for any L C L, the

inequality
da= > ea—|L| o)
i€l iel,lel
is a valid cutting-plane for SYM1-ODT ().
Here the index set I is composed by arbitrarily picking at most one data point from each class Nj.
Theoremadmits QnY - 22D) number of cuts. Next, we list cuts that will be added later as user cuts

for our numerical experiments. They all help provide lower bounds for the term ), €[] Cis which

also appear in the objective function of our SVM1-ODT formulation. Our cutting planes are added
once at the beginning before invoking a MIP solver.

Proposition 1. Ler {|Ny| | k € [Y]} = {s1,..., sk} with s1 < s9 < ... < sy. Then the following
inequalities

1. Vvl € E,Zie[n] ¢ > Zie[n] €l — Sys
2.V € L, (i +en) > s1- (Y =27 +1);
3 Yiem G st sy an ifY > 2D,

are all valid cutting-planes for SVM1-ODT ().

Note that the second inequality is only added when Y > 2P and the last lower bound inequality is
only added when Y > 2%, As trivial as the last lower bound inequality might seem, in some cases it
can be quite helpful. During the MIP solving process, when the current best objective value meets this
lower bound value, optimality can be guaranteed and the solver will terminate the branch-and-bound
process. Therefore, a tightness of the lower bound has a significant impact on run time.

3 LP-based data-selection procedure

As mentioned previously, our main focus is to be able to train ODT over very large training data-sets.
For the purpose of scalability, we rely on a data-selection method prior to the actual training process
using SVM1-ODT.



The outline for our procedure is as follows: first, we use a decision tree trained using a heuristic
(e.g., CART) as an initial solution. Next, data-selection is performed on clusters represented by the
data points with the same dependent values at each leaf node. Finally, we merge all the data subsets
selected from each cluster as the new training data, and use SVM1-ODT to train a classification tree
on this data-set. In each cluster, our data-selection is motivated by the following simple heuristic:
suppose for a data subset I all the points in conv{x; | i € Iy} are correctly classified as label
y. Then, we can drop out all the data points that lie in the interior of conv{x; | i € Iy} from our
training set, since by assigning {x; | ¢ € Iy} to the same leaf node and labeling it with y, we will
also correctly classify all the remaining data points inside their convex combination. With that in
mind, a data subset I is selected as per the following two criteria: (1) the points within the convex
hull conv ({Xz |ie Io}) are as many as possible; and (2) |Ip| is as small as possible. In each cluster
N C [n], the following 0-1 LP can be defined to do data-selection:

min  fTa—gTb

S.t. —€ -1 < ijj — Zi;&j /\jixi < e - I,Vj eN
Sz Mji = by, Vg €N
OSAJZSGHVZ#‘]GN
aj+b; <1VjeN
(lj,bj € {0,1},V] eN.

(6)

Here f, g are two parameter vectors with non-negative components. Data point x; is selected if a; = 1.
Data point x; is contained in the convex combination of selected data points if b; = 1. When €’ = 0,
for any j € NV with b; = 1, the first two constraints express X; as the convex combination of points
in {x; | A\;; > 0}. Here we introduce a small constant ¢’ to allow some perturbation. The third
inequality 0 < Aj; < a; means we can only use selected data points, which are those with a; = 1,
to express other data points. The last constraint a; + b; < 1 ensures that any selected data point
cannot be expressed as a convex combination of other selected data points. Depending on the choice
of f, g and €, we have many different variants of (6. In the next section, we describe one variant of
data-selection. We discuss balanced data-selection in the supplementary material.

3.1 Selecting approximal extreme points

We notice that the original 0-1 LP can be formulated to maximize the number of data points inside
the convex hull of selected data points by selecting f = 0 and g = 1. This special case of (6] is used
because choosing these values allows us to decompose it into [V smaller LPs while maximizing the
points inside the convex hull. By projecting out variable a, the resulting 0-1 LP is equivalent to the
following LP, as shown by the next result:

max Y . bi

S.t. — -1 < ijj — Zi;ﬁj /\jixi < € - I,Vj eN 7
Sis it = by, Vi EN
0<b; <1,VjeN.

We note that such an LP is decomposable: it can be decomposed into || many small LPs, each with
d + 2 constraints and || variables, and each can be solved in parallel.

Theorem 4. The following hold.

1) If € = 0, then for any optimal solution (b, \) of (I), there exists \ s.t. (b, \) is optimal
solution of (@) withf = 0,g = 1, and vice versa;

2) If € > 0, then for any optimal solution (b, \) of (), there exists X s.t. (|b], \) is an optimal
solution of (@) withf = 0,g = 1. Here, |b| is a vector with every component being |b; |.

3.2 Data-selection algorithm

For each cluster NV, let Iy := {j € N : b; = 1}. Note that among those extreme points in
{i e N': 3j € Iy, s.t. \j; > 0}, some of them may be outliers, which will result in \;; being a
small number for all j € A/. From the classic Carathéodory’s theorem in convex analysis, for any
point x; with j € I, it can be written as the convex combination of at most d + 1 extreme points.

Then in that case, there must exist ¢ with A;; > d%_l. Denote Jy :={i € N : 3j € Iy, s.t. Aj; >



715 K := N\ (Ix U Jr). One can show that the size of set .Jy- is upper bounded by (d+1)|Ly|,

so if |In| is small, |Jxr| is also relatively small. For those data points in K s, we use a simple
heuristic for data-selection inspired by support vector machines, wherein the most critical points for
training are those closest to the classification hyperplane. That is, for some data-selection threshold
number N and the boundary hyperplanes h € H (hyperplanes for each leaf node), we sort data point
i € K by minge g dist(x;, h), in an increasing order, and select the first N points. This heuristic is
called hyperplane based data-selection and is presented in Algorithm [I|below. The LP in (7) above
is solved in the second step of Algorithm When |I| is relatively large, we can simply select all
the extreme points as the new training data. When || is relatively small, we can select those points
with index in Js as the new training data. The remaining data points in K are selected according
to the above hyperplane based data-selection heuristic.

Algorithm 1 LP-based data-selection in each cluster A/

Given 31,3, € (0,1), 82 < (d+1)(1 = p1); _
Solve LP (7) and obtain the optimal solution (b, A),
denote I :={i € N : b; =1}, A =T(\),
Iy ={ieN:3jely, st Aj; > ﬁ},
Ky =N\ (Ixn U Jy);
if |Ix|/|IN| > 1 — 5, then
Select N \ I as training set;
else if |Jnr| > (2| NV| then
Select J s as training set;
else
For K s, do Hyperplane Data-selection and pick the first 32| N| — | x| points, together with
Js, as the selected new training set.
end if

In Algorithm 1} 7'()\) is the transformation we used in the proof of Theoremto construct a feasible
solution for (6), and 31, B2 are some pre-given threshold parameters. For MIP solvers such as CPLEX,

the obtained optimal solution (b, A) is a vertex in the associated polyhedron. In that case, T'(\) = .

For large data-sets, for (7), we observed that it took a considerable amount of time to import the
constraints into the LP solver and solve it. However, since LP can be decomposed into ||
number of much smaller LPs, the computational process can be accelerated dramatically.

4 Numerical experiments

We present results mainly from two types of numerical experiments to evaluate the performance of
our ODT training procedure: (1) benchmark the mean out-of-sample performance of the ODT trained
using SVM1-ODT on medium-sized data-sets (n < 7000), w.r.t. its counterparts in literature; and
(2) benchmark the mean out-of-sample performance of the ODT trained using SVM1-ODT together
with our data-selection procedure on large-scale data-sets (7,000 < n < 245, 000), w.r.t. CART and
OCT-H [4]. For benchmarking, we use data-sets from the UCI Machine Learning Repository [9].

Accuracy of multivariate ODT: We tested the accuracy of the ODT trained using our SVM1-ODT
against baseline methods CART and OCT-H [4]].

We used the same training-testing split as in [4], which is 75% of the entire data-set as training set,
and the rest 25% as testing set, with 5-fold cross-validation. The time limit was set to be 15 or 30
minutes for medium-sized data-sets, and for larger data-sets we increased it up to 4 hours to ensure
that the solver could make sufficient progress. Due to intractability of MIP models and the loss in
interpretability for deep decision trees we only train ODT for small tree depths, similar to [4, |12} 23]
With the exception of Table([I] all results shown in this section and in the supplementary material are
for D = 2.

For the following numerical results, our SVM1-ODT formulation is abbreviated as “S10”, “OCT-H”
is the MIP formulation to train multivariate ODT in [4]], “Fair” is the MIP formulation from [|1]] without
the fairness term in objective, and “BinOCT” is from [23]]. We implemented all these MIP approaches
in Python 3.6 and solved them using CPLEX 12.9.0 [8]. We invoked the DecisionTreeClassifier



Table 1: Performance on data-sets with more than 4 classes using D = 3. The numbers inside the bracket ()’
for CART and OCT-H are the numerical results reported in [4].

tree depth D = 3

data-set Dermatology Heart-disease Image
n 358 297 210

d 34 13 19

Y 6 5 7

testing accuracy (%)

S10 98.9 65.3 85.7
CART 76.1(78.7) 55.6 (54.9) 57.1(52.5)
OCT-H 82.6 (83.4) 56.2 (54.7) 59.4 (57.4)
Fair 86.4 472 63.3

training accuracy (%)

S10 100 90.2 100
CART 80.7 68.0 57.1
OCT-H 89.4 81.9 82.7
Fair 100 92.3 100

implementation from scikit-learn to train a decision tree using CART, using default parameter settings.
For all methods, the maximum tree depth was set to be the same as our SVM1-ODT.

In Figure (Ta), we compare the mean out-of-sample accuracy of the ODT trained from several
different MIP formulations. Here the labels on the x-axis represent the names of the data-sets,
followed by the data size. In Figure (Tb), we have more comparison over the counterparts in literature,
along with the BinOCT from [23]). Table[2]shows detailed results about the ODT training, including
the running time and training accuracy of different methods. Moreover, we also tested a few data-sets
with more than 4 classes using tree depth 3, with time limit being 30 minutes, the results are more
exciting: For our tested 3 data-sets, we obtained 20.4 percentage points average improvement over
CART, 17.2 percentage points improvement over OCT-H, and 17.7 percentage points improvement
over Fair. We list the detailed results in Table[T]

Training multivariate ODT on large data-sets: We use SVM1-ODT together with the LP-based
data-selection (denoted by “S10-DS") to train multivariate ODT on large data-sets, which has never
been attempted by prior MIP-based training methods in the literature. The time limit for these
experiments is 4 hours. Figure[2]depicts the performance of our method w.r.t. CART and OCT-H. For
solving S10 and OCT-H, we use the decision tree trained using CART as a warm start solution for
CPLEX, as in [4] 24]]. For OCT-H, we observe that within the time limit, the solver is either not able
to find any new feasible solution other than the one provided as warm start, implying the decision
tree trained using OCT-H has the same performance as the one from CART, or the solver simply fails
to construct the MIP formulation, which is depicted by the missing bars in the Figure[2] This figure
basically means that solely relying on any MIP formulation to train ODT using large data-sets will
result in no feasible solution being found within the time limit.

“
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Figure 1: Accuracy comparison for multivariate ODT trained on medium-sized data-sets w.r.t (Ta): OCT-H and
Fair ; (TB): OCT-H, Fair and BinOCT [23]], D = 2. In-depth results in Tables 3 and 5 in supplementary material.



Table 2: Accuracy and running time on medium-sized data-sets, for D=2. The numbers inside the bracket ‘()’
for CART and OCT-H are the numerical results reported in [4].

data-set  Iris Congress Spectf-  Breast-  Heart- Image Hayes-
heart cancer disease roth

n 150 232 80 683 297 210 132

d 4 16 44 9 13 19 4

Y 3 2 2 2 5 7 3

testing accuracy (%)

S10 98.6 98.0 83.3 97.6 69.9 55.0 71.9

CART 92.4 93.5 72.0 91.1 57.5 429 55.8

(92.4) (98.6) (69.0) (92.3) (54.1) (38.9) (52.7)
OCT-H 944 94.8 75.0 96.1 56.7 49.8 61.2
(95.1) (98.6) (67.0) (97.0) (54.7) (49.1) (61.2)

Fair 90.0 91.4 57.0 95.4 56.7 46.9 72.2

training accuracy (%)

S10 98.9 98.5 85 97.3 75.3 56.7 76.8

CART 96.4 96.3 88.0 93.4 58.8 429 60.0

OCT-H 995 96.2 92.5 95.3 60.5 48.0 774

Fair 100 100 100 99.7 68.4 56.6 82.8

running time (s)

S10 8.17 1.48 0.42 517.4 900 900 900

OCT-H 1.56 727.3 900 900 900 900 900

Fair 11.14 1.82 0.23 803.5 900 713.7 900

100
== 510-DS
B CART

901 mmm OCT-H

50
40
30 h

Avila EEG HTRU pendigits skin-segmentation shuttle
(10430) (14980) (17898) (7494) (245057) (43500)

Testing accuracy (%)

Figure 2: Comparison for large data-sets, D=2. In-depth results in Table 7 in supplementary material.

5 Conclusions

We propose a novel MIP-based method to train an optimal multivariate classification tree, which
has better generalization behavior compared to state-of-the-art MIP-based methods. Additionally, in
order to train ODT on very large data-sets, we devise an LP-based data-selection method. Numerical
experiments suggest that the combination of these two can enable us to obtain a decision tree with
better out-of-sample accuracy than CART and other comparable MIP-based methods, while solely
using any MIP-based training method will fail to do that almost certainly. In the current setup,
data selection occurs prior to training using SVM1-ODT. So, once a data subset has been selected,
it is used at every branch node to determine optimal branching rules. A natural extension of this
methodology could be a combined model for ODT training and data selection, wherein the branching
rules learned at the each layer, is applied to the entire data-set and data selection is redone at every
node in the subsequent layer prior to branching.



Broader impact

Ensemble methods such as random forests and gradient boosting methods such as XGBoost, and
LightGBM typically perform well, in terms of scalability and out-of-sample accuracy, for large-scale
classification problems. However, these methods suffer from low interpretability and are incapable
of modeling fairness. We hope the scalable MIP-based framework proposed in this paper proves to
be seminal in addressing applicability of ODTs to large-scale real-world problems, while relying on
the decision tree structure to preserve interpretability. The MIP framework might especially come in
handy for sequential or joint prediction-optimization models, wherein the problem structure could be
utilized to devise decomposition-based solution procedures. Alternatively, the proposed approach
could be used to train a classification tree to provide insights on the behavior of a black-box model.
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