
We thank the reviewers for their time and effort in providing feedback. We are encouraged by the universally positive1

scores, and that all the reviewers appreciated the paper for the following: (i) significant results (R1,R3,R4), (ii) technical2

contribution (R1,R3,R4), (iii) a unified view of heavy-tailed and robust mean estimation (R3), and (iv) clarity (R1, R2,3

R3). For completeness, we summarize the contributions of our paper below.4

Summary: Our goal is to show that a host of recent computationally efficient algorithms achieve optimal (or near-5

optimal) statistical results for two important families of distributions. We achieve this by showing that the underlying6

deterministic structural condition, stability, holds with optimal (or near-optimal) rates. Thus, our work simultaneously7

improves the statistical error guarantee of these existing algorithms without designing a new algorithm.8

We address the individual questions and comments by the reviewers below.9

Reviewer 1 (R1): We thank the reviewer for the positive feedback. Regarding the tolerance of [DL19,LLVZ19] to10

adversarial contamination: The algorithms and analyses in these papers establish tolerance to additive contamination11

but not strong contamination. More broadly, there is a significant difference between additive and strong contamination.12

Reviewer 2 (R2): We thank the reviewer for the positive feedback. The reviewer asked regarding the polynomial13

complexity and practicality of known stability-based algorithms. We would like to emphasize that the computational14

aspects of these algorithms ([DK19, CDG18, SCV18, DKK+17,DHL19, CDG20]) are well-studied. For concreteness,15

we specify the running time for two existing algorithms that achieve the rate in Proposition 1.6:16

• Universal filter [DK19]: Õ(min(k, d)k2d)17

• Quantum entropy filter [DHL19]: Õ(k2d)18

As shown in [DKK+17, DHL19], the filter algorithm (and its variants) is scalable and practical. In particular, these19

algorithms have been successfully implemented in practical applications (see [DHL19] and [DKK+17] for experiments).20

Combining our statistical results with the runtime of these filtering algorithms, we obtain fast algorithms for heavy-tailed21

robust mean estimation in the strong contamination model. Prior to our work, no polynomial-time algorithm (with22

provable guarantees) was known in the strong contamination model.23

Reviewer 3 (R3): We thank the reviewer for a detailed and encouraging feedback. We agree that it is an important24

question, both conceptually and practically, if the stability-based algorithms achieve the optimal rate without pre-25

processing.26

Comparison with prior work: Additional details for lines 140−143: Some prior works state their guarantees in terms27

of sample complexity to get O(
√
ε) error, either with constant probability or with probability 1− τ . In this terminology,28

our sample complexity is n = Ω((d log d+ log(1/τ))/ε). We mention the rates from the prior work below, all of which29

are sub-optimal in one or more parameters:30

• [DKK+17]: Guarantees are stated for large constant probability.31

• Goodness [DHL19]: δ =
√

(d log d)/(nτ) +
√
ε.32

• Resilience [SCV18]: Even for constant probability, the sample complexity is Ω(d3/2/ε+ d/ε2).33

• Generalized resilience [ZJS19]: They give two bounds: (i) δ = O(
√
ε+

√
d log(d/τ)

n ), (ii) δ =
√

ε
τ + 1

τ

√
d/n.34

• [PBR19]: δ = O(
√
d log(d/τ)/n).35

Thanks for pointing out the typos, we will fix them.36

Reviewer 4 (R4): We thank the reviewer for the detailed feedback.37

Presentation: We would work on the provided suggestions. “Some examples are in the additional comments section” —38

it seems, unfortunately, that this field is missing from the review. We will be happy to address these points once the39

reviewer updates their review with these comments after the rebuttal phase.40

Rank-deficient Σ: Why is the generalized covariance compared to identity?41

We note that for rank-deficient Σ, the tightest bound that we can show is δ = O(
√
ε) (Theorem 1.4). This is precisely42

because for this choice of δ, the eigenvalue has trivial lower bound of 1− δ2/ε, which is negative (see proof of Claim43

2.1). As the reviewer points out, we need more information about Σ to obtain o(
√
ε) error. For such cases, we assume44

the knowledge of Σ, and obtain tighter rates in Theorem 1.8.45


