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We thank the reviewers for their time and effort in providing feedback. We are encouraged by the universally positive
scores, and that all the reviewers appreciated the paper for the following: (i) significant results (R1,R3,R4), (ii) technical
contribution (R1,R3,R4), (iii) a unified view of heavy-tailed and robust mean estimation (R3), and (iv) clarity (R1, R2,
R3). For completeness, we summarize the contributions of our paper below.

Summary: Our goal is to show that a host of recent computationally efficient algorithms achieve optimal (or near-
optimal) statistical results for two important families of distributions. We achieve this by showing that the underlying
deterministic structural condition, stability, holds with optimal (or near-optimal) rates. Thus, our work simultaneously
improves the statistical error guarantee of these existing algorithms without designing a new algorithm.

We address the individual questions and comments by the reviewers below.

Reviewer 1 (R1): We thank the reviewer for the positive feedback. Regarding the tolerance of [DL19,LLVZ19] to
adversarial contamination: The algorithms and analyses in these papers establish tolerance to additive contamination
but not strong contamination. More broadly, there is a significant difference between additive and strong contamination.

Reviewer 2 (R2): We thank the reviewer for the positive feedback. The reviewer asked regarding the polynomial
complexity and practicality of known stability-based algorithms. We would like to emphasize that the computational
aspects of these algorithms ([DK19, CDG18, SCV18, DKK+17,DHL19, CDG20]) are well-studied. For concreteness,
we specify the running time for two existing algorithms that achieve the rate in Proposition 1.6:

e Universal filter [DK19]: O(min(k, d)k2d)
e Quantum entropy filter [DHL19]: O(k2d)

As shown in [DKK+17, DHL19], the filter algorithm (and its variants) is scalable and practical. In particular, these
algorithms have been successfully implemented in practical applications (see [DHL19] and [DKK+17] for experiments).
Combining our statistical results with the runtime of these filtering algorithms, we obtain fast algorithms for heavy-tailed
robust mean estimation in the strong contamination model. Prior to our work, no polynomial-time algorithm (with
provable guarantees) was known in the strong contamination model.

Reviewer 3 (R3): We thank the reviewer for a detailed and encouraging feedback. We agree that it is an important
question, both conceptually and practically, if the stability-based algorithms achieve the optimal rate without pre-
processing.

Comparison with prior work: Additional details for lines 140 — 143: Some prior works state their guarantees in terms
of sample complexity to get O(+/€) error, either with constant probability or with probability 1 — 7. In this terminology,
our sample complexity is n = Q((dlog d + log(1/7))/€). We mention the rates from the prior work below, all of which
are sub-optimal in one or more parameters:

o [DKK+17]: Guarantees are stated for large constant probability.

e Goodness [DHL19]: 6 = /(dlogd)/(nT) + \/e.

e Resilience [SCV18]: Even for constant probability, the sample complexity is Q(d%/? /e 4 d/€?).
o Generalized resilience [ZJS19]: They give two bounds: (i) 8 = O(y/e + 1/ 8™ (i) § = /€4 1 /d/n.
e [PBRI9]: § = O(4/dlog(d/T)/n).

Thanks for pointing out the typos, we will fix them.

Reviewer 4 (R4): We thank the reviewer for the detailed feedback.

Presentation: We would work on the provided suggestions. “Some examples are in the additional comments section” —
it seems, unfortunately, that this field is missing from the review. We will be happy to address these points once the
reviewer updates their review with these comments after the rebuttal phase.

Rank-deficient >: Why is the generalized covariance compared to identity?

We note that for rank-deficient X, the tightest bound that we can show is 6 = O(y/€) (Theorem 1.4). This is precisely
because for this choice of §, the eigenvalue has trivial lower bound of 1 — 62 /¢, which is negative (see proof of Claim
2.1). As the reviewer points out, we need more information about X to obtain o(+/€) error. For such cases, we assume
the knowledge of X, and obtain tighter rates in Theorem 1.8.



