
Supplementary Material

Additional Notation For a set E, we use I(x ∈ E) to denote the indicator function for event E.
For simplicity, we use I(x ≥ t) to denote the indicator function for the event E = {x : x ≥ t}. For a
random variable Z, we use V(Z) to denote its variance. We use dTV(p, q) to denote the total variation
distance between distributions p and q. For a vector w ∈ Rn, we use ‖w‖1 to denotes its `1 norm,
i.e., ‖w‖1 =

∑n
i=1 |wi|.

A Robust Mean Estimation and Stability

A.1 Robust Mean Estimation from Subset Stability

The theorem statement in [DK19, Theorem 2.7] requires that the input multiset S is stable. We note
that the arguments straightforwardly go through when S contains a large stable subset S′ ⊆ S (see,
e.g., [DKK+16, DKK+17, DHL19]).

For concreteness, we describe a simple pre-processing of the data, that ensures that the data follows
the definition as is: simply throw away points so that the cardinality of the corrupted set matches the
cardinality of the stable subset.
Proposition A.1. Let S be a set such that ∃S′ ⊆ S such that |S′| ≥ (1− ε)|S| and S′ is (Cε, δ) for
some C > 0. Let T be an ε-corrupted version of S. Let T ′ be the multiset obtained by removing εn
points of T . Let ε′ = 2ε

1−ε . Then T ′ is an ε′-corrupted version of a ((C − 1)ε′/2, δ) stable set.

Proof. Let T be an ε-corrupted version of S. That is, T = S ∪ A \ R. We now remove εn points
arbitrarily from T to obtain the multiset T ′ of cardinality (1− ε)n.

Let S2 be any subset of S′ such that |S2| = |T1| = (1− ε)n. Therefore, T ′ is at most (2ε)/(1− ε)-
corrupted version of S2. As S′ is (Cε, δ) stable and S2 is a large subset of S′, Claim A.2 states that
S2 is (ε2, δ) stable where ε2 ≥ 1− (1− Cε)/(1− ε) = (C − 1)ε′/2.

Claim A.2. If a set S is (ε, δ) stable, then its subset S′ of cardinalitym > (1−ε)n is (1−(1−ε) nm , δ)
stable.

Proof. To show that S′ is (ε′, δ) stable, it suffices to ensure that ε′ ≤ ε and (1− ε′)|S′| ≥ (1− ε)|S|.
Therefore, we require that

(1− ε′)m ≥ (1− ε)n =⇒ ε′ ≤ 1− (1− ε)n
m

.

The upper bound is always less than ε for m ≤ n.

A.2 Adapting to Unknown Upper Bound on Covariance

As stated, the stability-based algorithms in [DKK+17, DK19] assume that the inliers are drawn from
a distribution with unknown bounded covariance Σ � σ2I , where the parameter σ > 0 is known.
Here we note that essentially the same algorithms work even if the parameter σ > 0 is unknown. For
this, we establish the following simple modification of standard results, see, e.g., [DK19].
Theorem A.3. Let T ⊂ Rd be an ε-corrupted version of a set S, where S is (Cε, δ)-stable with
respect to µS and σ2, where C > 0 is a sufficiently large constant. There exists a polynomial time
algorithm that given T and ε (but not σ or δ) returns a vector µ̂ so that ‖µS − µ̂‖ = O(σδ).

Proof. The algorithm is very similar to the algorithm from [DK19] except for the stopping condition.
We define a weight function w : T → R≥0 initialized so that w(x) = 1/|T | for all x ∈ T . We
iteratively do the following:

• Compute µ(w) = 1
‖w‖1

∑
x∈T w(x)x.

• Compute Σ(w) = 1
‖w‖1

∑
x∈T w(x)(x− µ(w))(x− µ(w))T .

• Compute an approximate largest eigenvector v of Σ(w).
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• Define g(x) for x ∈ T as g(x) = |v · (x− µ(w))|2.

• Find the largest t so that
∑
x∈T :g(x)≥t w(x) ≥ ε.

• Define f(x) =

{
g(x) if g(x) ≥ t
0 otherwise

.

• Let m be the largest value of f(x) for any x ∈ T with w(x) 6= 0.

• Set w(x) to w(x)(1− f(x)/m) for all x ∈ T .

We then repeat this loop unless ‖w‖1 < 1− 2ε, in which case we return µ(w).

Note that if S is (ε, δ)-stable with respct to µS and σ2, then S/σ is (ε, δ) with respect to µS/σ
and 1. We note that if σ was known, the weighted universal filter algorithm of [DK19] could be
applied to T/σ in order to learn µS/σ to error O(δ). Multiplying the result by σ would yield an
approximation to µS with error O(σδ). We note that this algorithm is equivalent to the one provided
above, except that we would stop the loop as soon as Σ(w) ≤ σ(1 +O(δ2/ε)) rather than waiting
until ‖w‖1 ≤ 1− 2ε.

However, we note that by the analysis in [DK19] of this algorithm, that at each iteration until it stops,∑
x∈S w(x) decreases by less than

∑
x∈T\S w(x) does. Since the latter cannot decrease by more

than ε, this means that the algorithm of [DK19] would stop before ours does. Our algorithm then
continues to remove an additional O(ε) mass from the weight function w (but only this much since f
has support on points of mass only a bit more than ε). It is easy to see that these extra removals do
not increase Σ(w) by more than a factor of 1 +O(ε). This means that when our algorithm terminates
Σ(w)/σ ≤ I +O(δ2/ε). Thus, by the weighted version of Lemma 2.4 of [DK19], we have that

‖µS − µ(w)‖ = σ‖µS/σ − µ(w)/σ‖ ≤ σO(δ +
√
ε(δ2/ε)) = O(σδ) .

This completes the proof.

B Robust Mean Estimation using Median-of-Means Principle

In this section, we again consider distributions with finite covariance matrix Σ. We now turn our
attention to the proof of Theorem 1.7 that removes the additional logarithmic factor

√
log(r(Σ)). In

Section B.1, we show a result stating that pre-processing on i.i.d. points yields a set that contains
a large stable subset (after rescaling). Then, in Section B.2, we use a coupling argument to show a
similar result in the strong contamination model.

We recall the median of means principle. Let k ∈ [n].

1. First randomly bucket the data into k disjoint buckets of equal size (if k does not divide n,
remove some samples) and compute their empirical means z1, . . . , zk.

2. Output (appropriately defined) multivariate median of z1, . . . , zk.

B.1 Stability of Uncorrupted Data

We first recall the result (with different constants) from Depersin and Lecué [DL19] in a slightly
different notation.
Theorem B.1. [DL19, Proposition 1] Let z1, . . . , zk be k points in Rd obtained by the median-
of-means preprocessing on n i.i.d. data x1, . . . , xn from a distribution with mean µ and co-
variance Σ. Let M be the set of PSD matrices with trace at most 1. Then, there exists a con-
stant c > 0, such that with probability at least 1 − exp(−ck), we have that for all M ∈ M,∣∣{i ∈ [k] : (zi − µ)TM(zi − µ) > (k‖Σ‖/n)δ2}

∣∣ ≤ k
100 , where δ = O(

√
r(Σ)/k + 1).

We now state our main result in this section, proved using minimax duality, that Theorem B.1 implies
stability. We first consider the case of i.i.d. data points, as it conveys the underlying idea clearly.
Theorem B.2. Let x1, . . . , xn be n i.i.d. random variables from a distribution with mean µ and
covariance Σ � I . For k ∈ [n], let z1, . . . , zk be the variables obtained by median-of-means
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preprocessing. Then, with probability 1− exp(−ck), where c is a positive universal constant, there
exists a set S1 ⊆ [k] and |S1| ≥ 0.95k such that S1 is (0.1, δ)-stable with respect to µ and k‖Σ‖/n,
where δ = O(

√
r(Σ)/n+ 1).

Proof. For brevity, let σ =
√
k‖Σ‖/n. Suppose that the conclusion in Theorem B.1 holds with

δ = O(
√

r(Σ)/k + 1) such that δ ≥ 1, i.e., for every M ∈ M, for at least 0.99k points (zi −
µ)TM(zi − µ) ≤ σ2δ2. Using minimax duality, we get that

min
w∈∆k,0.01

∥∥∥∥∥
k∑
i=1

wi(zi − µ)(zi − µ)T

∥∥∥∥∥ = min
w∈∆k,0.01

max
M∈M

〈M,

k∑
i=1

wi(zi − µ)(zi − µ)T 〉

= max
M∈M

min
w∈∆k,0.01

〈M,

k∑
i=1

wi(zi − µ)(zi − µ)T 〉

≤ σ2δ2,

where the last step uses the conclusion of Theorem B.1. As δ2 ≥ 1, we also get that ‖
∑k
i=1 w

∗
i (zi −

µ)(zi − µ)T − σ2I‖ ≤ σ2δ2. Let w∗ be the distribution that achieves the minimum in the above
statement. We can also bound the first moment of w∗ using the bound on the second moment of w∗
as follows:

k∑
i=1

w∗i v
T (zi − µ) ≤

√
k∑
i=1

w∗i (vT (zi − µ))2 ≤
√
‖
∑
i=1

w∗i (zi − µ)(zi − µ)T ‖ ≤
√
σ2δ2 = σδ.

Given this w∗ ∈ ∆k,0.01, we will now obtain a subset of {z1, . . . , zk} that satisfies the stability
condition. In particular, Lemma E.2 shows that we can deterministically round w∗ such that there
exists a large stable subset of {z1, . . . , zk} which is (0.1, δ) stable with respect to µ and σ2.

B.2 Stability Under Strong Contamination Model

We now prove Theorem 1.7, i.e., stability of a subset after corruption, using Theorem B.2. The
following result shares the same principle as [DHL19, Lemma B.1]: we add a coupling argument
because the pre-processing step (random bucketing) introduces an additional source of randomness.

Theorem B.3. (Formal statement of Theorem 1.7) Let T be an ε-corrupted version of the set S,
where S is a set of n i.i.d. points from a distribution P with mean µ and covariance Σ. Set
ε′ = O(ε + log(1/τ)/n) and set k = bε′nc. Let Tk be the set of k points obtained by median-of-
means preprocessing on the set T . Then, with probability 1−τ , Tk is 0.01-corruption of a set Sk such
that there exists a S′k ⊆ Sk, |S′k| ≥ 0.95k and S′k is (0.1, δ) stable with respect to µ and k‖Σ‖/n,
where δ = O(

√
r(Σ)/n+ 1).

Proof. For simplicity, assume k divides n and let m = n/k.

Let S = {x1, . . . , xn} be the multiset of n i.i.d. points in Rd from P . We can write T as T =
{x′1, . . . , x′n} such that |{i : x′i 6= xi}| ≤ εn.

As the algorithm only gets a multiset, we first order them arbitrarily. Let r′1, . . . , r
′
n be any arbitrary

labelling of points and let σ1(·) be the permutation such that r′i = x′σ1(i). We now split the points
randomly into buckets by randomly shuffling them. Let σ(·) be a uniformly random permutation
of [n] independent of T (and S). Define w′i = r′σ(i) = x′σ1(σ(i)). For i ∈ [k], define the bucket
B′i to be the multiset B′i := {w′(i−1)m+1, . . . , w

′
im}. For i ∈ [k], define z′i to be the mean of the

set B′i, i.e., zi = µB′i . That is, the input to the stable algorithm would be the multiset Tk, where
Tk = {z′1, . . . , z′k}.
We now couple the corrupted points with the original points. For σ and σ1, define their composition
σ′ as σ′(i) := σ1(σ(i)). Define ri := xσ1(i) and wi := rσ(i) = xσ′(i). Importantly, Proposition B.4
below states that wi’s are i.i.d. from P . The analogous bucket for uncorrupted samples is Bi :=
{w(i−1)m+1, . . . , wim}. For i ∈ [k], define zi := µBi and define Sk to be {z1, . . . , zk}. Therefore,
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z1, . . . , zk are obtained from the median-of-means processing of i.i.d. data w1, . . . , wn, and thus
Theorem B.2 holds1. That is, there exists S′k ⊆ Sk that satisfies the desired properties.

It remains to show that Tk is a corruption of Sk. It is easy to see that |Tk ∩ Sk| ≥ k − εn ≥ 0.99k,
by choosing ε′ large enough. That is, for any σ1 and σ, Tk is at most (0.01)-contamination of the set
Sk.

Proposition B.4. Let x1, . . . , xn be n i.i.d. points from a distribution P and σ1(·) be a permutation,
potentially depending on x1, . . . , xn. Let σ(·) be a random permutation independent of x1, . . . , xn
and σ1(·). Define the composition permutation be σ′(i) := σ1(σ(i)). Then xσ′(1), . . . , xσ′(n) are
also i.i.d. from the distribution P .

Proof. First observe that σ′(·) is a uniform random permutation independent of x1, . . . , xn. The
result follows from the following fact:

Fact B.5. Let x1, . . . , xn be n i.i.d. points from a distribution P . Let σ(·) be a random permutation
independent of x1, . . . , xn, then xσ(1), . . . , xσ(n) are also i.i.d. from the distribution P .

C Tools from Concentration and Truncation

Organization. In Section C.1, we state the concentration results that we will use repeatedly in the
following sections. Section C.2 contains some well-known results regarding the properties of the
truncated distribution.

C.1 Concentration Results

We first state Talagrand’s concentration inequality for bounded empirical processes.

Theorem C.1. ([BLM13, Theorem 12.5] ) Let Y1, . . . , Yn be independent identically distributed
random vectors. Assume that EYi,s = 0,and that Yi,s ≤ L for all s ∈ T . Define

Z = sup
s∈T

n∑
i=1

Yi,s, σ2 = sup
s∈T

n∑
i=1

EY 2
i,s.

Then, with probability at least 1− exp(−t), we have that

Z = O(EZ + σ
√
t+ Lt). (8)

See [BLM13, Exercise 12.15] for explicit constants.

We will also repeatedly use the following version of Matrix Bernstein inequality [Tro15, Min17].

Theorem C.2. ([Tro15, Corollary 7.3.2]) Let S1, . . . , Sn be n independent symmetric matrices such
that ESi = 0 and ‖Si‖ ≤ L a.s. for each index i. Let Z =

∑n
i=1 Si and let V be any PSD matrix

such that
∑n
i=1 ESkSTk � V . Let ν = ‖V ‖ and r = r(V ). Then, we have that

E‖Z‖ = O(
√
ν log r + L log r). (9)

In particular, if Si = ξixix
T
i , where ξi is a Rademacher random variable, and xi is sampled

independently from a distribution with zero mean, covariance Σ, and bounded support L, i.e.
‖xi‖ ≤ L almost surely. Then E‖Z‖ = O(

√
nL‖Σ‖ log r(Σ) + L log r(Σ)).

1If (x1, . . . , xn) are i.i.d., then choosing the buckets Bi = {x(i−1)m, . . . , xim} for i ∈ [k] preserves
independence. In particular, any partition of k sets of equal cardinality that does not depend on the values of
(x1, . . . , xn) suffices. Therefore, Theorem B.1 and Theorem B.2 hold for this bucketing strategy too.
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C.2 Properties under Truncation

We state some basic results regarding truncation of a distribution in this subsection. These results are
well-known in literature and are included here for completeness (see, e.g., [DKK+17, LRV16]).

Proposition C.3. (Shift in mean by truncation) Let X be sampled from a distribution with mean 0
and covariance Σ � I . For a t ≥ 0, let g(·) be defined as

g(x) =


x, if x ∈ [−t, t],
t, if x > t,

−t, if x < −t.

If t ≥ Cε− 1
2 , then for all v ∈ Sd−1, |Eg(xT v)| ≤ C−1

√
ε.

Proof. Let Z = xT v. By Markov’s inequality,

P(Z ≥ t) ≤ P(Z2 ≥ C2ε−1) ≤ 1

C2ε−1
= C−2ε.

We get that

|Eg(Z)| = |EZ − g(Z)| ≤ E|Z − g(Z)| ≤ E|Z|I|Z|≥t ≤
√
εC−1. (10)

Proposition C.4. (Shift in mean by truncation under higher moments) Let X be sampled from a
distribution with mean 0 and covariance (1 − σ2

kε
1− 2

k )I � Σ � I . Moreover, assume that the
distribution has bounded moments, i.e., for a k ≥ 4:

∀v ∈ Sd−1, (E(vTX)k)
1
k ≤ σk. (11)

Note that σ2 ≤ 1. Let Tk = σkε
− 1
k . Then

1. For all M ∈M, E(xTMx)
k
2 ≤ σkk .

2. For all M ∈M and t ≥ CT 2
k , ExTMxIxTMx≥t ≤ σ2

kC
2
k−1ε1−

2
k .

3. Let f(·) be defined as f(x) = min(x, t). For a t ≥ CT 2
k , |Ef(xTMx)− 1| ≤ σ2

kε
1− 2

k (1 +

C1− k2 ).

4. Let t ≥ CTk. For all v ∈ Sd−1, |ExT vI|xT v|≤t| ≤ σkε1−
1
kC1−k.

5. Let g(·) be defined as g(x) = sign(x) min(|x|, t). For t ≥ CTk and all v ∈ Sd−1,
|Eg(xT v)| ≤ σkC1−kε1−

1
k .

6. E‖X‖k ≤ d k2 σkk .

7. P(‖X‖ ≥ σk
√
dε−1/k) ≤ ε.

Proof. We prove each statement in turn.

1. We use the spectral decomposition of M , to write M = UT∆U , where U is a rotation
matrix, ∆ is a non-negative diagonal matrix with diagonal entries λi and trace 1. Observe
that if the random variable X satisfies Equation (11), then the random variable Z := UX
also satisfies Equation (11).

We use the aforementioned observation and apply Jensen’s inequality to get:

E(xTMx)
k
2 = E(ZT∆Z)

k
2 = E(

d∑
i=1

λiz
2
i )

k
2 ≤

d∑
i=1

λiEzki ≤
∑
i=1

λiσ
k
k ≤ σkk .
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2. Let Z = xTMx. From the first part, we have that k2 -th moment of Z is bounded by σ2
k. By

Markov’s inequality, we get that

P {Z ≥ t} ≤ P
{
Z ≥ CT 2

k

}
≤ P

{
Z ≥ C σ

2
k

ε
2
k

}
≤ ε

C
k
2 σkk

EZ
k
2 ≤ ε

C
k
2

.

We can now apply Hölder’s inequality, to get

EZIZ≥CT 2
k
≤ σ2

kC
2
k−1ε1−

2
k .

3. As above, let Z = xTMx. It follows that f(x) ≤ x. Therefore, we get that

Ef(xTMx) ≤ ExTMx ≤ 1.

For the lower bound, we get that

Ef(xTMx) ≥ ExTMxIxTMx≤CT 2
k

= ExTMx1− ExTMxIxTMx>CT 2
k

≥ 1− σ2
kε

1− 2
k − σ2

kε
1− 2

kC1− k2 .

4. Let Z = xT v. We note that

P(Z ≥ t) ≥ P(Z ≥ CTk) ≤ P(Zk ≥ CkT kk ) ≤ σkk
σkkε
−1Ck

≤ C−kε.

We now bound the deviation in mean by truncation:

EZ = EZI|Z|≤t + EZI|Z|>t = 0

=⇒ |EZI|Z|≤t| = |EZIZ>t|

≤ (EZk)
1
k (P{Z > t})1− 1

k

= σkC
1−kε1−

1
k .

5. Let Z = xT v. We get that

|Eg(Z)| = |EZ − g(Z)| ≤ E|Z − g(Z)| ≤ E|Z|I|Z|≥CTk ≤ σkε
1− 1

kC1−k.

6. It follows by taking M = 1
dI in the first part.

7. This follows by Markov’s inequality and the previous part.

Lemma C.5. Let P be a distribution with mean µ and covariance I . Let X ∼ P . For k > 2, let its
k-th central moment be bounded as

for all v ∈ Sd−1 : (E|vTX|k)
1
k ≤ σk.

For ε ≤ 0.5, let E be the event

E = {‖X − µ‖ ≤ T},

where T is such that P(E) ≥ 1− ε. Let Z be the random variable X|E, that is X conditioned on
X ∈ E. Then, we have that

1. ‖µ− EZ‖ ≤ 1
1−εσkε

1− 1
k ≤ 2σkε

1− 1
k .

2. (1− 3σ2
kε

1− 2
k )I � Cov(Z) � I .

Proof. We prove each statement in turn.
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1. Let Q be the distribution of Z. We will assume that P(Ec) > 0, otherwise the results hold
trivially. Let R be the distribution of X conditioned on X ∈ Ec and let Y ∼ R. Note that
P can be written as the convex combination of Q and R.

P = (P(E))Q+ (1− P(E))R. (12)

Using this decomposition, we can calculate the shift in mean along any direction v ∈ Sd−1:

P(E)vTEZ + (1− PE)EvTY = vTEX = µ

=⇒ vT (EZ − µ) =
1

P(E)
E(−vT (X − µ))IX 6∈E

≤ 1

P(E)
(E|vT (X − µ)|k)

1
k (P(Ec))1− 1

k

≤ 1

P(E)
σkε

1− 1
k ,

where the first inequality uses Hölder’s inequality. Therefore, ‖EZ−µ‖ ≤ σkε1−1/k/(1−ε).

2. We will follow the notations from the previous part. Note that for all v ∈ Sd−1, the mean
minimizes the quadratic loss

E(vT (Z − EZ))2 ≤ E(vT (Z − µ))2.

Note that for any direction v, we have that E(vT (Z − µ))2 ≤ E(vT (Y − µ))2. As
E(vT (X − µ))2 is the convex combination of E(vTZ)2 and E(vTY )2, and thus larger
than the minimum of these two, we get

E(vT (Z − µ))2 = min(E(vT (Y − µ))2,E(vT (Z − µ))2)

≤ P(E)E(vT (Z − µ))2 + (1− P(E))E(vT (Y − µ))2 = E(vT (X − µ))2 = 1.

Therefore, we obtain the following upper bound:

EvT (Z − EZ)2 ≤ E(vT (Z − µ))2 ≤ 1.

We now turn our attention to lower bound. We first note that

(1− P(E))E(vT (Y − µ))2 = E(vTX)2I {X ∈ Ec} ≤ (E(vTX)k)
2
k (P(E))1− 2

k ≤ σ2
kε

1− 2
k .

Using the definition of P , Q and R, we get

E(vT (Z − µ))2 =
1

P(E)
(E(vT (X − µ))2 − (1− P(E))E(vT (Y − µ))2)

≥ (1− (1− P(E))E(vT (Y − µ))2) ≥ 1− σ2
kε

1− 2
k .

We are now ready to bound the lower bound the deviation from mean:

E(vT (Z − EZ))2 = E(vT (Z − µ))2 − (EZ − µ)2

≥ 1− σ2
kε

1− 2
k − (

σkε
1− 1

k

1− ε
)2

≥ 1− σ2
kε

1− 2
k − σ2

kε
1− 2

k

1− ε
≥ 1− 3σ2

kε
1− 2

k .

D Bounds on the Number of Points with Large Projections

Organization. This section contains the proofs of Lemma 2.2 and Lemma 3.2 from the main paper.
In Section D.1, we prove the results controlling the number of outliers uniformly along all directions
v ∈ Sd−1. We then generalize these results to projections along PSD matrices in Section D.2.
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D.1 Linear Projections

We state Lemma 1 from Lugosi and Mendelson [LM19b]. We will use this result for distributions
with bounded covariance.
Lemma D.1. ([LM19b, Lemma 1]) Let x1, . . . , xn be n i.i.d. points from a distribution with mean
zero and covariance Σ � I . Let Q2 be defined as follows:

Q2 =
256

ε

√
tr(Σ)

n
+

16√
ε
.

Then, for a constant c > 0, with probability at least 1− exp(−cεn),

sup
v∈Sd−1

∣∣{i : |vTxi| ≥ Q2

}∣∣ ≤ 0.25εn.

We state the following straightforward generalization of Lemma D.1 for distributions with bounded
central moments. We give the proof for completeness.
Lemma D.2. Let x1, . . . , xn be n i.i.d. points from a distribution with mean zero and covariance
Σ � I . Further assume that for all v ∈ Sd−1:

(E(vTX)k)
1
k ≤ σk. (13)

Let Qk be defined as follows:

Qk = Θ

(
1

ε

√
tr(Σ)

n
+ σkε

− 1
k

)
.

Then, there exists a c > 0, such that with probability at least 1− exp(−cnε),

sup
v∈Sd−1

∣∣{i : |xTi v| ≥ Qk
}∣∣ = O(nε). (14)

Proof. We follow the same strategy as in Lugosi and Mendelson [LM19b]. We first setQk as follows:

Qk = C

(
1

ε

√
tr(Σ)

n
+ σkε

− 1
k

)
,

for a large enough constant C to be determined later. Consider the function χ : R→ R defined by

χ(x) =


0, if x ≤ Qk

2 ,
2x
Qk
− 1, if x ∈

[
Qk
2 , Qk

]
,

1, if x ≥ Qk.
(15)

Therefore, IxT v≥Qk ≤ χ(xTi v) ≤ IxT v≥Qk/2 and note that χ(·) is a 2
Qk

Lipschitz. We first bound
the number of points violating the upper tail bounds. The random quantity of interest is the following:

Z = sup
v∈Sd−1

n∑
i=1

IxTi v≥Qk . (16)

We first calculate its expectation using the symmetrization principle [LT91, BLM13]. We have that

EZ = E sup
v∈Sd−1

n∑
i=1

IxTi v≥Qk

≤ E sup
v∈Sd−1

n∑
i=1

χ(xTi v)

≤ E sup
v∈Sd−1

n∑
i=1

(χ(xTi v)− Eχ(xTi v)) + sup
v∈Sd−1

E
n∑
i=1

χ(xTi v)

≤ 2E sup
v∈Sd−1

n∑
i=1

εiχ(xTi v) + sup
v∈Sd−1

E
n∑
i=1

χ(xTi v). (17)
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We bound the second term in Eq. (17) by

E
n∑
i=1

χ(xTi v) ≤ E
n∑
i=1

IxTi v|≥Qk/2 = nP(xTi v ≥ Qk/2) ≤ nP(xTi v ≥ Cσkε−
1
k ) = O(nε),

by applying Markov inequality and choosing a large enough constant C for Qk. For the first term in
Eq. (17), we upper bound χ(·) using contraction principle for Rademacher averages and independence
of xi:

E sup
v∈Sd−1

n∑
i=1

εiχ(xTi v) ≤ 2

Qk
E sup
v∈Sd−1

n∑
i=1

εix
T
i v =

2

Qk
E‖
∑
i

εixi‖ ≤ n
2

Qk

√
n tr(Σ) = O(nε),

where we use the covariance bound on xi and a large enough constant for Qk ≥ (C/ε)
√

tr(Σ)/n.
Therefore, we get that EZ = O(nε). We can bound the wimpy variance, i.e., the quantity σ2 in
Theorem C.1, by O(εn). By Talagrand’s concentration C.1, we get that probability 1− exp(−cnε),

Z = O(nε+
√
nσ
√
cnε
√
nγ + cnε) = O(nε). (18)

D.2 Matrix Projections

We will now use the results from the previous section to prove Lemma 2.2 and Lemma 3.2. The proof
follows the ideas from [DL19, Proposition 1].
Lemma D.3. (Formal version of Claim 2.4) Suppose that the event E1 holds, where E1 is the following

E1 :=

{
sup

v∈Sd−1

|{i : |xTi v| ≥ Q0}| ≤ 0.25εn

}
.

Let Q = 8Q0 and ε ≥ 1/n. Then the event E also holds, where E is defined as follows:

E :=

{
sup
M∈M

|{i : xTi Mxi ≥ Q2}| ≤ εn
}
.

Proof. We follow the same proof strategy as Depersin and Lecue [DL19]. We reproduce the proof
here for completeness.

Suppose that E1 holds but the desired event E does not hold. Let M be such that |{i : xTi Mxi ≥
Q2}| > εn. LetG be the Gaussian vector in Rd independent of x1, . . . , xn with distributionN (0,M).
We will work conditionally on x1, . . . , xn in the remaining of the proof. Let Z be the following
random variable

Z =
n∑
i=1

I|xTi G|2≥25Q2
0
.

We have that xTi G ∼ N (0, xTi Mxi). For i such that xTi Mxi ≥ Q2, we have that

P(|xTi G|2 > 25Q2
0) ≥ 2P(g ≥ 5

8
) > 0.528,

where g is a standard Gaussian random variable. Therefore,

EZ =

n∑
i=1

P(|xTi G|2 > 25Q2
0) ≥ εn(0.528) ≥ 0.528.

Note that Z a is sum of independent indicator random variables. A Chernoff bound (see, e.g.,
[Ver18, Section 2.3]) states that, with probability at least 1 − (

√
2/e)EZ > 0.05, we have that

Z ≥ EZ
2 > 0.25nε. However, by Gaussian concentration (see, e.g., [BLM13]) we have that with

probability at least 0.9999: ‖G‖ ≤ 5. Taking a union bound, we get that both of the events happen
simultaneously with non-zero probability. Therefore, with non-zero probability ∃u : ‖u‖ ≤ 5 and

n∑
i=1

I|xTi u|2≥25Q2
0
> 0.25nε.
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That is, ∃v : ‖v‖ ≤ 1, and
n∑
i=1

I|xTi v|2≥Q2
0
> 0.25nε ≡

n∑
i=1

I|xTi v|≥Q0
> 0.25nε,

which is a contradiction to E1. This completes the proof.

We are now ready to prove Lemma 2.2 and 3.2.

Proof. (Proof of Lemma 2.2) Without loss of generality, we can assume εn = Ω(1). The result now
follows from Lemma D.1, due to Lugosi and Mendelson [LM19b, Lemma 1], and Lemma D.3.

Proof. (Proof of Lemma 3.2) Without loss of generality, we can assume εn = Ω(1). The result now
follows from Lemma D.2, which might require a change of variables, and Lemma D.3.

D.3 Truncation with Domain Constraint

Lemma D.4. Let w ∈ ∆n,ε for some ε ≤ 1/2. Suppose that the following event E holds:

E :=

{
sup
M∈M

|{i : (xi − µ)TM(xi − µ) ≥ Q2}| ≤ εn
}
.

For a unit vector v, let Sv ∈ [n] be the following multiset: Sv = {xi : xi ∈ S, |xTi v| ≤ Q}. For a
unit vector v, let w(v) be the following distribution:

w̃
(v)
i := min

(
wi,

I{xi ∈ Sv}
|Sv|

)
, w(v) :=

w̃(v)

‖w̃(v)‖1
. (19)

Let g(·) be defined as in Eq. (6). Then, for all unit vectors v, w(v) ∈ ∆n,4ε,w. Moreover, the following
inequalities hold:∣∣∣∣∣

n∑
i=1

w
(v)
i vT (xi − µ)

∣∣∣∣∣ ≤ 4εQ+

∣∣∣∣∣
∑
i∈Sv v

T (xi − µ)

|Sv|

∣∣∣∣∣ ≤ 5εQ+

∣∣∣∣∣
∑
i∈S g(vT (xi − µ))

(1− ε)n

∣∣∣∣∣ .
Proof. On the event E , we have that |Sv| ≥ (1 − ε)n for all v ∈ Sd−1. In order to show that
w(v) ∈ ∆n,4ε,w, it suffices to show that for all v, w(v)

i ≤ wi/(1− 4ε). By the definition of w(v)
i , it

is sufficient to show that ‖w̃(v)‖1 ≥ 1 − 4ε. Let uS and uSv denote the uniform distributions on
the multi-sets S and Sv respectively. Let dTV(p, q) denote the total variation distance between the
distributions p and q. First note that

dTV(w, uSv ) ≤ dTV(w, uS) + dTV(uS , uSv ) ≤ ε

1− ε
+

ε

1− ε
≤ 2ε

1− ε
≤ 4ε. (20)

We now use the alternative characterization of total variation distance (see, e.g., [Tsy08, Lemma
2.1]):

dTV(p, q) = (1/2)

n∑
i=1

|pi − qi| = 1−
n∑
i=1

min(pi, qi).

Observe that w̃(v) = min(w, uSv ); combining this observation with Eq. (20), we get the following
lower bound on ‖w̃(v)‖1:

‖w̃(v)‖1 = 1− dTV(w, uSv ) ≥ 1− 4ε.

This concludes that w(v) ∈ ∆n,4ε,w. We now focus our attention on the second result in the theorem
statement. The first inequality follows from the fact that both distributions w(v) and uSv have total
variation distance less than 4ε, and supported on [−Q,Q]. The second inequality follows from the
fact that (i) |Sv| ≥ (1− ε)n, (ii) g(·) is identity on Sv , and bounded by Q outside [−Q,Q], and (iii)
at most ε-fraction of the points are outside Sv . This completes the proof.
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E Stability for Distributions with Bounded Covariance

Organization. Section E.1 contains the proof of the sufficient conditions for stability under bounded
covariance assumption (Claim 2.1). Section E.2 contains the arguments for deterministic rounding.
Sections E.3 and E.4 contain the detailed proofs of the concentration results ommitted from the main
text. We then combine the results from these sections to give the proof of Theorem 1.4 in Section E.5.

E.1 Sufficient Conditions for Stability

The following claim simplifies the stability condition for the bounded covariance case.

Claim E.1. (Claim 2.1) Let S be a set such that ‖µS − µ‖ ≤ σδ, and ‖ΣS − σ2I‖ ≤ σ2δ2/ε
for some 0 ≤ ε ≤ δ. Let ε′ < 0.5. Then S is (ε′, δ′) stable with respect to µ and σ2, where
δ′ = 2

√
ε′ + 2δ

√
ε′/ε.

Proof. Let ε′ < 0.5. Without loss of generality, we can assume that σ = 1. For S′ ⊆ S : |S′| ≥
(1− ε′)|S|,

1

|S′|
∑
i∈S′

(xTi v)2 − 1 ≤ 1

|S′|
∑
i∈S

(xTi v)2 − 1 ≤ 1

1− ε′
(1 +

δ2

ε
)− 1

=
δ2

ε + ε′

1− ε′
≤ 1

ε′
(2ε′ + 2δ

√
ε′

ε
)2 ≤ (δ′)2

ε′
.

As δ′ ≥
√
ε′, the lower bound on eigenvalues of ΣS′ is trivially satisfied. We now bound the deviation

in mean. Observe that the uniform distribution on S′ can be obtained by conditioning the uniform
distribution on S on an event E, such that P(E) ≥ 1− ε′. Using this observation in conjunction with
Hölder’s inequality gives us that for any v, the shift in mean is at most∣∣∣∣∣ 1

|S′|
∑
i∈S′

vTxi −
1

|S|
∑
i∈S′

vTxi

∣∣∣∣∣ ≤ 2

√
1 +

δ2

ε

√
ε′ ≤ 2

√
ε′ + 2δ

√
ε′

ε
≤ δ′. (21)

E.2 Deterministic Rounding of the Weight Function

The next lemma states that it suffices to find a distribution w ∈ ∆n,ε for stability.

Lemma E.2. For ε ≤ 1
3 , let w∗ ∈ ∆n,ε be such that for ε ≤ δ, we have

1. ‖µw − µ‖ ≤ σδ.

2. ‖Σw − σ2I‖ ≤ σ2δ2/ε.

Then there exists a subset S1 ⊆ S such that

1. |S1| ≥ (1− 2ε)|S|.

2. S1 is (ε′, δ′) stable with respect to µ and σ2, where δ′ = O(δ +
√
ε+
√
ε′).

Proof. Without loss of generality, we will assume that σ2 = 1. We will use Claim E.1 to prove this
result by first showing that there exists a S′ ⊆ [n] with bounded covariance and good sample mean.

Without loss of generality, we will assume that εn is an integer and µ = 0. We will also assume that
1

(1−ε)n ≥ w1 ≥ w2 ≥ · · · ≥ wn ≥ 0. For any k ∈ [n], we have that

1 =
∑
i

wi ≤
n− k

(1− ε)n
+ kwk (22)

=⇒ wk ≥
1

k

(1− ε)n− (n− k)

(1− ε)n
=

k − εn
(1− ε)nk

. (23)
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Setting k = 2εn, we have that

wk ≥
2εn

2n(1− ε)
=

1

2(1− ε)n
. (24)

We now have a lower bound on wi for all i ≤ (1− 2ε)n. Now let S1 be the set of the n− k points
with the largest wi. In particular, for each i ∈ S1, wi ≥ 1

2(1−ε)n . We have that,∑
i∈S1

1

|S1|
(xTi v)2 =

∑
i∈S1

1

(1− 2ε)n
(xTi v)2

≤
∑
i∈S1

1

(1− 2ε)
2wi(1− ε)(xTi v)2 (Using Eq. (24))

≤ 2(1− ε)
(1− 2ε)

∑
i∈S

wi(x
T
i v)2

≤ 9(1 +
δ2

ε
). (25)

Let the uniform distribution on S1 be u(1) and the uniform distribution on S be u. We now calculate
the total variation distance between w and u(1).

dTV(w, u(1)) ≤ dTV(w, u) + dTV(u, u(1)) ≤ ε+ 2ε = 3ε. (26)

Therefore, there exist distributions p(1), p(2), p(3) such that

w = (1− 3ε)p(1) + 3εp(2), u1 = (1− 3ε)p(1) + 3εp(3).

This decomposition follows from an alternate characterization of total variation distance(see, e.g.,
[Tsy08, Lemma 2.1]). We first note that

3ε
∑
i

p
(2)
i (xTi v)2 ≤

∑
i

wi(x
T
i v)2 ≤ 1 +

δ2

ε
.3ε
∑
i

p
(3)
i (xTi v)2 ≤

∑
i

u
(1)
i (xTi v)2 ≤ 9

(
1 +

δ2

ε

)
.

Therefore, we get that

|
n∑
i=1

(1− 3ε)p
(1)
i xTi v| ≤ |

n∑
i=1

wix
T
i v|+ |3ε

∑
i

p
(3)
i xTi v| ≤ δ + 3ε

√√√√ n∑
i=1

pi(xvi )
2

≤ δ +
√

3ε

√√√√3ε

n∑
i=1

pi(xTi v)2 ≤ δ +
√

3ε

√
(1 +

δ2

ε
)

≤ δ +
√

3ε+
√

3δ ≤ 3δ + 2
√
ε.

We finally get that

|
n∑
i=1

u
(1)
i xTi v| ≤ |

n∑
i=1

(1− 3ε)p
(1)
i xTi v|+ |

n∑
i=1

3εp
(3)
i xTi v|

≤ 3δ + 2
√
ε+
√

3ε

√
3ε
∑
i

p
(3)
i (xTi v)2

≤ 3δ + 2
√
ε+
√

27
√
ε+ δ2 ≤ 10δ + 10

√
ε. (27)

Therefore using Equations (25) and (27), we have a set S1 that satisfies the conditions in Claim E.1
with δ′′ = 10δ + 10

√
ε. Using Claim E.1, we get that S1 is (ε′, δ′) stable.

E.3 Controlling the Variance

We provide the details of concentration of the empirical process, related to the variance in Lemma 2.3,
which was ommitted from the main text.
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Lemma E.3. Consider the setting in the proof of Lemma 2.3. Then, with probability 1− exp(−nε),
R′/n ≤ δ2/ε, where δ = O(

√
(tr(Σ) log r(Σ))/n+

√
ε).

Proof. We will apply Talagrand’s concentration inequality for the bounded empirical process, see
Theorem C.1. We first calculate the quantity σ2, the wimpy variance, required in Theorem C.1 below

σ2 = sup
M∈M

n∑
i=1

V(f(xTi Mxi)) ≤ sup
M∈M

n∑
i=1

E(f(xTi Mxi))
2 ≤ sup

M∈M

n∑
i=1

Q2Ef(xTi Mxi) ≤ nQ2,

where we use that f(x) ≤ Q2, f(x) ≤ x, and ExTMx ≤ 1. We now focus our attention to ER′.
Let ξi be n i.i.d. Rademacher random variables, independent of x1, . . . , xn. We use contraction and
symmetrization properties for Rademacher averages [LT91, BLM13] to get

ER′ = E sup
M∈M

n∑
i=1

f(xTi Mxi)− Ef(xTi Mxi) ≤ 2E

∣∣∣∣∣ sup
M∈M

n∑
i=1

ξif(xTi Mxi)

∣∣∣∣∣
≤ 2E

∣∣∣∣∣ sup
M∈M

n∑
i=1

ξix
T
i Mxi

∣∣∣∣∣ ≤ 2E sup
M∈M

‖
n∑
i=1

ξixix
T
i ‖‖ tr(M)‖ (28)

= 2E‖
n∑
i=1

ξixix
T
i ‖ = O

(√
n tr(Σ) log r(Σ)

ε
+

tr(Σ) log r(Σ)

ε

)
,

where the last step uses the refined version of matrix-Bernstein inequality [Min17], stated in Theo-
rem C.2, with L = O(tr(Σ)/ε).

Note that the empirical process R′ is bounded by Q2. By applying Talagrand’s concentration
inequality for bounded empirical processes (Theorem C.1), with probability at least 1− exp(−nε),
we have

R′ = O
(
ER′ +

√
nQ2
√
nε+Q2nε

)
=⇒ R′

n
= O

(
tr(Σ) log r(Σ)

nε
+

√
tr(Σ) log r(Σ)

nε
+Q
√
ε+ εQ2

)

=
1

ε
O

(
tr(Σ) log r(Σ)

n
+

√
tr(Σ) log r(Σ)

n

√
ε+Qε

√
ε+ (εQ)2

)

=
1

ε

(
O

(√
tr(Σ) log r(Σ)

n
+
√
ε+ εQ

))2

=
δ2

ε
,

where δ = O(
√

tr(Σ) log r(Σ)/n+
√
ε+ εQ) = O(

√
tr(Σ) log r(Σ)/n+

√
ε), where we use the

fact that εQ = O(
√
ε+

√
tr(Σ)/n).

E.4 Controlling the Mean

We now provide the detailed argument for the concentration of empirical process related to mean in
Lemma 2.5, which was ommitted from the main text.
Lemma E.4. Consider the setting in Lemma 2.5. Then, with probability, 1 − exp(−nε), R′/n =

O(
√

tr(Σ)/n+
√
ε).

Proof. We will use Talagrand’s concentration inequality for bounded empirical processes, stated in
Theorem C.1. We first calculate the wimpy variance required for Theorem C.1,

σ2 = sup
v∈Sd−1

n∑
i=1

V(g(xTi v)) ≤ sup
v∈Sd−1

n∑
i=1

Eg(vTxi)
2 ≤ sup

v∈Sd−1

nE(vTxi)
2 ≤ n. (29)
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We also bound the quantity ER′ using symmetrization and contraction [LT91, BLM13] properties of
Rademacher averages. We have that

ER′ = E sup
v∈Sd−1

n∑
i=1

g(vTxi)− Eg(vTxi) ≤ 2E

∣∣∣∣∣ sup
v∈Sd−1

n∑
i=1

εig(vTxi)

∣∣∣∣∣
≤ 2E

∣∣∣∣∣ sup
v∈Sd−1

n∑
i=1

εiv
Txi

∣∣∣∣∣ = 2E‖
n∑
i=1

εixi‖ ≤ 2
√
n tr(Σ),

where the last step uses that εixi has covariance Σ. By applying Talagrand’s concentration inequality
for bounded empirical processes (Theorem C.1), we get that with probability at least 1− exp(−nε),

R′/n = O(ER′/n+
√
nε+Qε) = O(

√
tr(Σ)/n+

√
ε).

E.5 Proof of the Main statement

Theorem E.5. (Theorem 1.4) Let x1, . . . , xn be n i.i.d. points in Rd from a distribution with mean
µ and covariance Σ. Let ε′ = Θ(log(1/τ)/n + ε) ≤ c for a sufficiently small positive constant c.
Then, with probability at least 1− τ , there exists a subset S′ ⊆ S s.t. |S|′ ≥ (1− ε′)n and |S′| is
(Cε′, δ)-stable with respect to µ and ‖Σ‖ with δ = O(

√
(r(Σ) log r(Σ))/n+

√
Cε′).

Proof. Note that we can assume without loss of generality that µ = 0 and ‖Σ‖ = 1, upper bound δ
by δ = O(

√
tr(Σ) log(r(Σ))/n+

√
Cε′); otherwise, apply the following arguments to the random

variable (xi − µ)/
√
‖Σ‖ (the result holds trivially if ‖Σ‖ = 0).

We first prove a simpler version of the theorem for distributions with bounded support. The reason
we make this assumption is to apply the matrix concentration results in Theorem C.2.

Base case: Bounded support Assume that ‖xi − µ‖ = O(
√

tr(Σ)/ε′) almost surely.

Note that the bounded support assumption allows us to apply Lemma 2.3. Set ε̃ = ε′/c′ for a large
constant c′ to be determined later. Let u∗ ∈ ∆n,ε̃ achieve the minimum in Lemma 2.3. For this u∗,
let w∗ ∈ ∆n,4ε̃,u∗ be the distribution achieving the minimum in Lemma 2.5. Note that the probability
of error is at most 2 exp(−Ω(nε̃)). We can choose ε′ large enough, ε̃ = ε′/c = Ω(log(1/τ)/n), so
that the probability of failure is at most 1 − τ . Let δ = C

√
tr(Σ) log r(Σ)/n + C

√
ε̃ for a large

enough constant C to be determined later. We first look at the variance of w∗ using the guarantee of
u∗ in Lemma 2.3:

n∑
i=1

w∗i xix
T
i �

n∑
i=1

1

1− ε′
u∗i xix

T
i � 2

n∑
i=1

u∗i xix
T
i ≤

1

ε̃
(C
√

tr(Σ) log r(Σ)/n+ C
√
ε̃)2. (30)

By choosing C to be a large enough constant, we get that ‖
∑n
i=1 w

∗xix
T
i − I‖ ≤ δ2/ε̃. Now, we

look at the mean. Lemma 2.5 states that∥∥∥∥∥
n∑
i=1

w∗xi

∥∥∥∥∥ = O

(
√
ε̃+ C

√
tr(Σ)

n

)
≤ δ. (31)

Since w∗ ∈ ∆n,4ε̃,u∗ and u∗ ∈ ∆n,ε̃, we have that w∗ ∈ ∆n,5ε̃. Therefore, we have a w∗ ∈ ∆n,5ε̃

that satisfies the requirements of Lemma E.2. Applying Lemma E.2, we get the desired statement for
a set S′ ⊆ S. Finally, we can choose the constant c′ in the definition of ε̃ large enough, so that the set
has cardinality |S′| ≥ (1− ε′)n. This completes the proof for the case of bounded support.

General case We first do a simple truncation. For a large enough constantC ′, letE be the following
event:

E =

{
X : ‖X − µ‖ ≤ C ′

√
tr(Σ)

ε′

}
. (32)
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Let Q be the distribution of X conditioned on E. Note that P can be written as a convex combination
of two distributions: Q and some distribution R,

P = (1− P(E))Q+ P(Ec)R. (33)

Let Z ∼ Q. By Chebyshev’s inequality, we get that P(Ec) ≤ ε′/C ′2. Using Lemma C.5, we get that
‖EZ − µ‖ = O(

√
ε′) and Cov(Z) � I . The distribution Q satisfies the assumptions of the base case

analyzed above. Let SE be the set {i : xi ∈ E} and let E1 be the following event:

E1 = {|SE | ≥ (1− ε′/2)n}. (34)

A Chernoff bound implies that given n samples from P , for a c > 0, with probability at least
1− exp(−cnε′/C ′2) ≥ 1− τ/2 (by choosing C ′ large enough and ε′ = Ω(log(1/τ)/n)), E1 holds.

For a fixed m ≥ (1− ε′/2)n, let z1, . . . , zm be m i.i.d. draws from the distribution Q. Applying the
theorem statement of the base case for each such m, we get that, except with probability τ/2, there
exists an S′ ⊆ [m] ⊆ [n] with |S′| ≥ (1 − ε′/2)m ≥ (1 − ε′/2)2n ≥ (1 − ε′)n, such that |S′| is
(Cε′, O(

√
d log d/n+

√
Cε′))-stable.

As mentioned above (event E1), m ≥ (1 − ε′/2)n with probability at least 1 − τ/2. We can now
marginalize over m to say that with probability at least 1− τ , there exists a (Cε′, δ) stable set S′ of
cardinality at least (1− ε′)n.

However, we are still not done. We have the guarantee that S′ is stable with respect to EZ. Using the
triangle inequality and Cauchy-Schwarz, we get that the set is also (Cε′, δ′) stable with respect to µ
as well, where δ′ = δ + ‖µ− EZ‖ = δ +O(

√
ε′). This completes the proof.

F Stability for Distributions with Bounded Central Moments

Organization. In this section, we give the detailed arguments for the proof of Theorem 1.8. Our
proof strategy closely follows the proof structure of the bounded covariance case. We suggest the
reader to read Section 2 before reading this section.

This section has a similar organization to Appendix E. We start with a simplified stability condition
in Section F.1. Section F.2 contains the argument for rounding a good distribution w ∈ ∆n,ε to a
subset. Sections F.3 and F.4 contain the arguments for controlling the second moment matrix from
above and below respectively. Section F.5 contains the results regarding the concentration results for
controlling the sample mean. Finally, we combine the results of the previous sections in Section F.6
to complete the proof of Theorem 1.8.

F.1 Sufficient Conditions for Stability

We will prove the existence of a stable set with high probability using the following claim. This is
analogous to Claim E.1 in the bounded covariance setting, but we also need a lower bound on the
minimum eigenvalue of ΣS′ for all large subsets S′.
Claim F.1. Let 0 ≤ ε ≤ δ and ε ≤ 0.5. A set S is (ε, 7δ) stable, if it satisfies the following for all
unit vectors v.

1. ‖µS − µ‖ ≤ δ.

2. vTΣSv ≤ 1 + δ2

ε .

3. For all subsets S′ ⊆ S such that |S′| ≥ (1− ε)|S|, we have vTΣS′v ≥ (1− δ2

ε ).

Proof. Without loss of generality, we will assume that µ = 0. We first show the second condition in
the definition of stability. Let S′ be any proper subset of S, such that |S′| ≥ (1− ε)|S|. Note that the
minimum eigenvalue of S′ is lower-bounded by the assumption:

vTΣS′v =
1

|S \ Sε|
∑

i∈S\Sε

(vTx)2 ≥ 1− δ2

ε
. (35)
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We now look at the largest eigenvalue of S′:

vTΣSv − 1 =
1

|S′|
∑
i∈S′

(vTx)2 − 1 ≤ |S|
|S′|

1

|S|
∑
i∈S

(vTx)2 − 1

≤ 1

1− ε
(1 +

δ2

ε
)− 1 ≤ 1

1− ε
(
δ2

ε
+ ε) ≤ 2δ2

ε
+ 2ε ≤ 4

δ2

ε
.

We now need to show that the mean of S′ is also good. In order to do that, we first control the
deviation due to a small set S \ S′.

1

|S|
∑

i∈S\S′
(vTxi)

2 =
1

|S|
∑
i∈S

(vTxi)
2 − 1

|S|
(
∑
i∈S′

(vTxi)
2)

≤ (1 +
δ2

ε
)− |S

′|
|S|

(1− δ2

ε
)

≤ (1 +
δ2

ε
)− (1− ε)(1− δ2

ε
) ≤ 2δ2

ε
+ ε. (36)

We first break the deviation in mean into two terms, and control each individually:∣∣∣∣∣ 1

|S′|
∑
i∈S′

(vTxi)

∣∣∣∣∣ =
|S|
|S′|

∣∣∣∣∣∣ 1

|S|
∑

i∈S\Sε

(vTxi)

∣∣∣∣∣∣ ≤ |S||S′|
∣∣∣∣∣ 1

|S|
∑
i∈S

(vTxi)

∣∣∣∣∣+
|S|
|S′|

∣∣∣∣∣∣ 1

|S|
∑

i∈S\S′
(vTxi)

∣∣∣∣∣∣ .
We can upper bound the first term by ‖µS‖/(1− ε) ≤ δ/(1− ε). We bound the second term using
the Cauchy-Schwarz inequality and Eq. (36):

|S|
|S′|

∣∣∣∣∣∣ 1

|S|
∑

i∈S\S′
(vTxi)

∣∣∣∣∣∣ ≤ |S \ S
′|

|S′|

∣∣∣∣∣∣ 1

|S \ S′|
∑

i∈S\S′
(vTxi)

∣∣∣∣∣∣
≤ |S \ S

′|
|S′|

√√√√ 1

|S \ S′|
∑

i∈S\S′
(vTxi)2

=

√
|S \ S′||S|
|S′|

√√√√ 1

|S|
∑

i∈S\S′
(vTxi)2 ≤

√
ε

1− ε

√
2δ2

ε
+ ε.

Overall, we get that

|vTµS′ | ≤
1

1− ε
(δ +

√
2δ + ε) ≤ 5δ + 2ε ≤ 7δ.

F.2 Randomized Rounding of Weight Function

In this section, we show how to recover a subset from a w ∈ ∆n,ε. Unlike the deterministic rounding
in Section E.2, we do a randomized rounding in Lemma F.2 to get a better dependence on ε. For the
second condition (δ2 = O(ε)) in Lemma F.2 to hold, it is necessary that n = Ω(d). If n = O(d), it is
not a problem because, in this regime, the bounded covariance assumption already leads to optimal
error.
Lemma F.2. Let k ≥ 4. Let w ∈ ∆n,ε, for ε ≤ 1

3 , be a distribution on the set of points S such that

1. ‖µw − µ‖ ≤ δ.

2. ‖Σw‖ − 1 ≤ δ2

ε ≤ r1, for some r1 > 1.

3. Let C ≥ 4. For all subsets S′: |S′| ≥ (1− Cε)n and v ∈ Sd−1: vTΣS′v ≥ 1− δ2/(Cε).

4. wi > 0 implies that ‖xi‖ ≤ r2σk
√
dγ−1/k for some r2 ≥ 1.
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Then, there exists a subset S1 ⊆ [n] such that

1. |S1| ≥ (1− 2ε)n.

2. S1 is (ε′, δ′) stable, where

ε′ = (C − 2)ε, δ′ = O
(
δ +

√
r1d log d

n
+ r2σkε

1
2−

1
k

√
d log d

n
+ r2σkε

1− 1
k

)
.

(37)

Proof. We will use Claim F.1 to prove this result. Without loss of generality, let µ = 0. Therefore,
it suffices to find a subset such that both the mean and the largest eigenvalue are controlled. Let
Yi ∼ Bernoulli(wi(1− ε)n). We have that

∑n
i=1 EYi = (1− ε)n. Let S1 be the (random) set:

S1 = {i : Yi = 1}. (38)

By a Chernoff bound, we have that for some constant c′ > 0,

P(|S1| ≥ (1− 2ε)n) ≤ exp(−c′nε). (39)

Let E be the event E = {|S1| ≥ (1− 2ε)n}. We now bound the mean of the set S1. Consider the
following random variable Z:

Z =
∑
i

(Yi − (1− ε)win)xi. (40)

The random variable Z satisfies EZ = 0. Moreover, its covariance can be bounded using the
assumption as follows:

vTΣZv =

n∑
i=1

wi(1− ε)n(1− wi(1− ε)n)(vTxi)
2

≤ (1− ε)n
n∑
i=1

wi(x
T
i v)2 ≤ (1− ε)n(1 +

δ2

ε
) � 2r1n.

Therefore, with probability at least 0.8, we have that

‖Z‖ ≤ 10
√
r1nd

=⇒ ‖
∑

Yixi‖ ≤ (1− ε)n‖
∑
i

wiXi‖+ 10
√
r1nd.

Let E2 be the event that E2 = {‖
∑
Yixi‖ ≤ (1− ε)nσ+ 10

√
r1nd}. This implies that on the event

E ∩ E1,

‖µS1
‖ ≤ 1− ε

1− 2ε
δ + 10

c5
1− 2ε

√
d

n
≤ 2δ + 30

√
r1d

n
. (41)

We now focus our attention on upper bounding the eigenvalue. Define the symmetric random matrix,
Zi as Zi := Yixix

T
i − wi(1 − ε)nxixTi . We have that EZi = 0 and ‖Zi‖ ≤ r2

2dσkε
1− 1

k almost
surely. We now bound the matrix variance statistic (used in Theorem C.2):

ν(Z) =

∥∥∥∥∥
n∑
i=1

wi(1− ε)n(1− wi(1− ε)n)‖xi‖2xixTi

∥∥∥∥∥
≤

∥∥∥∥∥
n∑
i=1

wi(1− ε)n
r2
2σ

2
kd

ε
2
k

xix
T
i

∥∥∥∥∥
≤ (1− ε)r

2
2σ

2
knd

ε
2
k

∥∥∥∥∥
n∑
i=1

wixix
T
i

∥∥∥∥∥
≤ (1− ε)r

2
2σ

2
knd

ε
2
k

‖Σw‖ ≤ 2
r1r

2
2σ

2
knd

ε
2
k

.
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By the matrix concentration (Theorem C.2), we get that with probability at least 0.8, we have that∥∥∥∥∥
n∑
i=1

Yixix
T
i − wi(1− ε)nxixTi

∥∥∥∥∥ = O

√r1r2
2σ

2
knd log d

ε
2
k

+
r2
2σ

2
kd log d

ε
2
k

 . (42)

Let E3 be the event above, which happens with probability at least 0.8. Under the event E ∩E3, we
get that

vTΣS1
v ≤ 1− ε

1− 2ε
wi(x

T
i v)2 +

1

1− 2ε
O

√r1r2
2σ

2
kd log d

nε
2
k

+
r2
2σ

2
kd log d

nε
2
k


≤ 1− ε

1− 2ε
(1 +

δ2

ε
) +O

√r1r2
2σ

2
kd log d

nε
2
k

+
r2
2σ

2
kd log d

nε
2
k


≤ 1 +

1

ε
O

(
ε2 + δ2 +

√
d log d

n
r1r2σkε

1− 1
k + r2

2σ
2
kε

1− 2
k
d log d

n

)

≤ 1 +
1

ε

(
O

(
δ + r1r2σkε

1− 1
k +

√
d log d

n
+ r2σkε

1
2−

1
k

√
d log d

n

))2

. (43)

Let ε′ = (C − 2)ε. Note that if |S1| ≥ (1 − 2ε)|S|, then |S′| ≥ (1 − ε′)|S1| implies that |S′| ≥
(1 − Cε)|S|, which leads to a lower bound on the minimum eigenvalue. This follows from the
following elementary calculations:

|S′|
|S|
≥ (1− 2ε)

|S1|
|S|
≥ (1− 2ε)(1− (C − 2)ε) ≥ 1− Cε. (44)

Using Equations (39), (41) and (43), we get that there exists a subset S1 such that for all v ∈ Sd−1

and δ′ = O(δ +
√
r1d log d/n+ r1r2σkε

1/2−1/k
√
d log d/n+ r1r2σkε

1− 1
k ):

1. |S1| ≥ (1− 2ε)n ≥ (1− ε′)n.

2. ‖µS1‖ ≤ δ′.

3. vTΣS1v ≤ 1 + δ′2

ε′ .

4. For all subsets S′ ⊆ S1 : |S′| ≥ (1− ε′)|S1|, vTΣS′v ≥ 1− δ′2

ε′ .

We now invoke Claim F.1 to conclude that S′ is (ε′, 7δ′)-stable.

F.3 Upper Bound on the Second Moment Matrix

As Σ = σ2I , we have that tr(Σ) = σ2d, and r(Σ) = d. We follow the same strategy as in Section 2.1.
We first find a subset such that its covariance matrix is bounded. For technical reasons, we do not
assume that the covariance is exactly identity and allow some slack. The argument is similar to
Lemma 2.3 for the bounded covariance. We also impose some additional constraints to simplify the
expression, as those regimes would not hold anyway in the proof.
Lemma F.3. Let x1, . . . , xn be n i.i.d. points in Rd from a distribution with mean µ, covariance
Σ, and for a k ≥ 4, the k-th central moment is bounded by σk. Further assume that for ε < 0.5,
covariance matrix Σ satisfies that (1− 2σ2

kε
1− 2

k ) � Σ � I . Further assume the following conditions
hold:

1. log(1/τ)/n = O(ε).

2. ‖xi − µ‖ = O(σk
√
dε−1/k) almost surely.

3. σkε
1
2−

1
k = O(1).
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Then, for a c > 0, with probability 1 − τ − exp(−cnε): minw∈∆n,ε

∥∥Σw
∥∥ ≤ 1 + δ2/ε, where

δ = O(
√

(d log d)/n+ σkε
1− 1

k + σ4

√
log(1/τ)/n).

Proof. We will assume without loss of generality that µ = 0. We will assume that the event E in
Lemma 3.2 holds as it only incurs an additional probability of error of exp(−cnε). We use the
variational characterization of spectral norm and minimax duality to write the following:

min
w∈∆n,ε

‖
∑
i

wixix
T
i ‖ = min

w∈∆n,ε

max
M∈M

∑
wi〈xixTi ,M〉

= max
M∈M

min
w∈∆n,ε

∑
wix

T
i Mxi

≤ max
M∈M

n∑
i=1

1

(1− ε)n
(xTi Mxi)IxTi Mxi≤Q2

k
,

where the third inequality uses Lemma 3.2, where it chooses the uniform distribution on the set
SM = {xi : xTi Mxi ≤ Q2

k}. Let f : R+ → R+ be the following function:

f(x) :=

{
x, if x ≤ Q2

k

Q2
k, otherwise.

Define the following random variables R and R′:

R = sup
M∈M

n∑
i=1

f(xTi Mxi), R′ = sup
M∈M

n∑
i=1

f(xTi Mxi)− Ef(xTi Mxi).

By Lemma C.4, we get that |Ef(xTi Mx)− 1| ≤ 2σ2
kε

1− 2
k , which gives that

|R− n−R′| ≤ 2nσ2
kε

1− 2
k .

We therefore get that

min
w∈∆n,ε

‖
∑
i

wixix
T
i ‖ − 1 ≤ max

M∈M

n∑
i=1

1

(1− ε)n
(xTi Mxi)IxTi Mxi≤Q2

k
− 1

≤ max
M∈M

n∑
i=1

1

(1− ε)n
f(xTi Mxi)− 1

=
1

(1− ε)n
R− 1

≤ 2R′

n
+ 4σ2

kε
1− 2

k + 2ε.

Observe that the last two terms in the above expression are small, i.e., σ2
kε

1− 1
k + ε = O(δ2/ε). We

next use Lemma F.4 in Appendix to conclude that R′ concentrates well. Lemma F.4 states that with
probability 1 − τ , R′/n ≤ (1/ε)(O(

√
d log d/n + σkε

1− 1
k + σ4

√
log(1/τ)/n))2. Note that both

of the remaining terms are small compared to Overall, we get that

min
w∈∆n,ε

‖Σw‖ ≤ 1 +
δ2

ε
.

Taking a union bound on the event E and concentration of R′ concludes the result.

Lemma F.4. Consider the conditions in Lemma F.3. Then, with probability 1 − τ , R′/n ≤ δ2/ε ,
where δ = O(

√
d log d/n+ σkε

1− 1
k + σ4

√
log(1/τ)/n).

Proof. (Proof of Lemma F.4) We first calculate the wimpy variance required for Theorem C.1,

σ2 = sup
M∈M

n∑
i=1

V(f(xTi Mxi)) ≤ sup
M∈M

n∑
i=1

Ef(xTi Mxi)
2 (45)

≤ n sup
M∈M

E(xTi Mxi)
4 ≤ nσ4

4 . (46)
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We use symmetrization, contraction, and matrix concentration (Theorem C.2) to bound ER′ as
follows:

ER′ = E sup
M∈M

n∑
i=1

f(xTi Mxi)− Ef(xTi Mxi) ≤ 2E

∣∣∣∣∣ sup
M∈M

n∑
i=1

εif(xTi Mxi)

∣∣∣∣∣
≤ 2E

∣∣∣∣∣ sup
M∈M

n∑
i=1

εix
T
i Mxi

∣∣∣∣∣ ≤ 2E‖
n∑
i=1

εixix
T
i ‖

= O

√σ2
knd log(d)

ε
2
k

+
σ2
kd log d

ε
2
k

 ,

where we use Theorem C.2, with ν = O(σ2
kndε

− 2
k ) and L = O(σ2

kdε
− 2
k ).

Note that Qk = O(σkε
− 1
k + (1/ε)

√
d/n. As R′ is bounded by Q2

k, we can apply Theorem C.1 to
get that with probability at least 1− τ , R′/n is bounded as follows:

R′

n
= O

√σ2
kd log d

nε
2
k

+
σ2
kd log d

nε
2
k

+ σ2
4

√
log( 1

τ )

n
+
σ2
k

ε
2
k

log( 1
τ )

n
+

1

ε2
d

n

log( 1
τ )

n


=

1

ε
O

√d log d

n
σkε

1− 1
k +

d log d

n
σ2
kε

1− 2
k + σ4εσ4

√
log( 1

τ )

n
+ σ2

kεε
1− 2

k +
d

n


( Using log( 1

τ )

n = O(ε).)

=
1

ε
O

√d log d

n
+ σkε

1− 1
k + σkε

1
2−

1
k

√
d log d

n
+ σ4ε+ σ4

√
log( 1

τ )

n

2

=
1

ε
O

√d log d

n
+ σkε

1− 1
k + σ4

√
log( 1

τ )

n

2

( Using σ4ε ≤ σkε1−
1
k and σkε

1
2−

1
k = O(1).)

≤ δ2

ε
,

where we use the parameter regime stated in Lemma F.3.

F.4 Minimum Eigenvalue of Large Subsets

In this section, we prove that under bounded central moments, the minimum eigenvalue of ΣS′ , of
each large enough subset S′, has a lower bound close to 1. Our result is similar in spirit to Koltchinskii
and Mendelson [KM15, Theorem 1.3] that only bounds the eigenvalue of ΣS . The proof of the
following lemma is very similar to the proof of Lemma F.3.
Lemma F.5. Consider the setting in Lemma F.3. Then, for a constant c > 0, with probability
1− τ − exp(−cnε), the following holds:

min
S′:|S′|≥(1−ε)n

vTΣS′v ≥ 1− δ2

ε
,

where δ = O(
√

d log d
n + σkε

1− 1
k + σ4

√
log( 1

τ )

n ).

Proof. Without loss of generality, assume that µ = 0. We will assume that event E from Lemma 3.2
holds, with an additional probability of error exp(−cnε), that is

sup
v∈Sd−1

∣∣{i : xTi v ≥ Qk
}∣∣ ≤ nε.
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Let f be as defined in the proof of Lemma F.3. For a sequence y1, . . . , yn, let y(1), . . . , y(n) be its
rearrangement in non-decreasing order. For any unit vector v, we have that

min
S′:|S′|≥(1−ε)n

vTΣS′v ≥ min
w∈∆n,ε

vTΣwv = min
w∈∆n,ε

n∑
i=1

wi(x
T
i v)2

≥
(1−ε)n∑
i=1

(xTi v)2
(i)/((1− ε)n)

≥
n∑
i=1

(f((xTi v)2)−Q2
kεn)/((1− ε)n),

where we use that at most εn points have projections larger than Q2
k. Thus we get that the minimum

eigenvalue of any large subset is lower bounded by:

min
w∈∆n,ε

min
v∈Sd−1

n∑
i=1

wi(x
T
i v)2 ≥ min

v∈Sd−1

n∑
i=1

f((xTi v)2)−Q2
kεn.

Let h(·) be the negative of the function f(·). Define the following random variable Z and its
counterpart Z ′:

Z := sup
v∈Sd−1

n∑
i=1

h((xTi v)2), Z ′ := sup
v∈Sd−1

n∑
i=1

h((xTi v)2)− Eh((xTi v)2)

From Lemma C.4, it follows that |Eh((xTi v)2) + 1| = |Ef((xTi v)2) − 1| = O(σ2
kε

1− 2
k ). This

immediately gives us that

|Z ′ − Z − n| = O(nσ2
kε

1− 2
k ).

Therefore, the desired quantity satisfies the following inequalities:

(1− ε)n min
w∈∆n,ε

min
v∈Sd−1

n∑
i=1

wi(x
T
i v)2 ≥ min

v∈Sd−1

n∑
i=1

f((xTi v)2)−Q2
kεn

= − sup
v∈Sd−1

n∑
i=1

h((xTi v)2)−Q2
kεn

= −Z −Q2
kεn

≥ −Z ′ + n−O(nσ2
kε

1− 2
k )− εQ2

kεn.

We thus require a high probability upper bound on Z ′. Note that Z ′ behaves similarly to R′, defined
in the proof of Lemma F.3. Similar to the proof of Lemma F.4, we get that, with probability at least
1− τ ,

Z ′

n
≤ 1

ε

(
O
(√d log d

n
+ σkε

1− 1
k + σ4

√
log(1/τ)

n

))2

.

Note that the remaining terms σ2
kε

1− 2
k = O(δ2/ε) and εQ2

k = O(σ2
kε
− 2
k+ d

nε = O(δ2/ε). Therefore,
we get the minimum eigenvalue of any large subset is at least

min
w∈∆n,ε

λmin(Σw) ≥ 1− δ2

ε
,

where δ = O(
√

d log d
n + σkε

1− 1
k + σ4

√
log( 1

τ )

n ).

F.5 Controlling the Mean

Lemmas F.3 and F.5 give a control on the second moment matrix. We will now further remove O(ε)
fraction of points to obtain w such that ‖µw − µ‖ is small.
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Lemma F.6. Let x1, . . . , xn be n i.i.d. random variables from a distribution with mean µ and
covariance Σ � I . Further, assume that the xi’s are drawn from a distribution with k-th bounded
central moment σk for a k ≥ 4. Let u ∈ ∆n,ε. Assume that log(1/τ)/n = O(ε). Then, for a constant
c > 0, the following holds with probability 1− τ − exp(−cnε):

min
w∈∆n,4ε,u

‖
n∑
i=1

wixi − µ‖ = O(
√
d/n+ σkε

1− 1
k +

√
log(1/τ)/n).

Proof. Without loss of generality, let us assume that µ = 0. Also, assume that the event E from
Lemma 3.2 holds, with the additional error of exp(−cnε). Let g(·) be the following function:

g(x) =


x, if x ∈ [−Qk, Qk]

Qk, if x > Qk
−Qk, if x < −Qk.

Let N be the following random variable:

N = sup
v∈Sd−1

n∑
i=1

g(vTxi) = sup
v∈Sd−1

∣∣∣∣∣
n∑
i=1

g(vTxi)

∣∣∣∣∣ ,
where we use that g(·) is an odd function. We also define the following empirical process, where
each term is centered:

N ′ = sup
v∈Sd−1

n∑
i=1

g(vTxi)− E[g(vTxi)] =

∣∣∣∣∣ sup
v∈Sd−1

n∑
i=1

g(vTxi)− E[g(vTxi)]

∣∣∣∣∣ .
As Qk = Ω(σkε

−1/k), Lemma C.4 states that supv Eg(vTx) = O(σkε
1− 1

k ), and this gives that

|N −N ′| = O(nσkε
1− 1

k ).

We now use duality to write the following:

min
w∈∆n,ε,u

‖
n∑
i=1

wixi‖ = min
w∈∆n,ε,u

max
v∈Sd−1

〈
n∑
i=1

wixi, v〉

= max
v∈Sd−1

min
w∈∆n,ε,u

〈
n∑
i=1

wixi, v〉

≤ 5εQk +

∣∣∣∣ 1

(1− ε)n
N

∣∣∣∣ ≤ O(εQk) +O(σkε
1−1/k) + 2N ′,

where the last step uses Lemma D.4. We now use Lemma F.7 to conclude that N ′ concentrates.
Recall that εQk = O(σkε

1− 1
k +

√
d/n). Overall, we get that, with probability 1− τ − exp(−nε),

there exits a w ∈ ∆n,ε,u, such that ‖
∑
wixi‖ = O(

√
d/n+ σkε

1− 1
k +

√
log(1/τ)/n).

Lemma F.7. Consider the setting in Lemma F.6. Then, with probability, 1− τ − exp(−nε),

R′

n
= O

(√ d

n
+

√
log(1/τ)

n
+ σkε

1− 1
k

)
.

Proof. We first calculate the wimpy variance required for Theorem C.1,

σ2 = sup
v∈Sd−1

n∑
i=1

V(g(xTi v)) ≤ sup
v∈Sd−1

n∑
i=1

Eg(vTxi)
2 ≤ sup

v∈Sd−1

nE(vTxi)
2 ≤ n.
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We use symmetrization, contraction of Rademacher averages to bound ER′.

ER′ = E sup
v∈Sd−1

n∑
i=1

g(vTxi)− Eg(vTxi)

≤ 2E

∣∣∣∣∣ sup
v∈Sd−1

n∑
i=1

εig(vTxi)

∣∣∣∣∣
≤ 2E

∣∣∣∣∣ sup
v∈Sd−1

n∑
i=1

εiv
Txi

∣∣∣∣∣ = 2E‖
n∑
i=1

εixi‖ ≤ 2

√
d

n
.

By applying Theorem C.1, we get that with probability at least 1− τ ,

R′

n
= O

(ER′
n

+

√
log(1/τ)

n
+Qk

log(1/τ)

n

)
= O

(√ d

n
+

√
log(1/τ)

n
+ σkε

− 1
k

log( 1
τ )

n
+

1

ε

√
d

n

log(1/τ)

n

)
= O

(√ d

n
+

√
log(1/τ)

n
+ σkε

1− 1
k

)
,

where the last inequality uses the assumption that log(1/τ)
n = O(ε).

F.6 Proof of the Main statement

We now combine the results in the previous lemmas to obtain the stability of a subset with high
probability. Although we prove the following result showing the existence of (2ε′, δ) stable subset,
this can generalized to existence of (Cε,O(δ)) stable subset for a large constant C.

Theorem F.8. (Theorem 1.8) Let S = {x1, . . . , xn} ⊂ Rd be n i.i.d. points from a distribution with
mean µ and covariance Σ such that (1− 2σ2

kγ
1− 1

k )I � Σ � I . Further assume that for a k ≥ 4, the
kth central moment is bounded by σk. Let ε′ = Θ(ε+ log(1/τ)

n ) ≤ c for a sufficiently small constant
c.

Then, with probability at least 1− τ , there exists a subset S′ ⊆ S s.t. |S′| ≥ (1− ε′)n and |S′| is
(2ε′, δ)-stable with δ = O(σkε

1− 1
k +

√
d log d
n + σ4

√
log(1/τ)

n ).

Proof. First note that, for the bounded covariance condition, Theorem 1.4 already gives a guarantee
that, with probability at least 1− τ ,

‖µ̂− µ‖ = O
(√

(d log d)/n+
√
ε+

√
log(1/τ)/n

)
. (47)

Therefore, the guarantee of this theorem statement is tighter only in the following regimes:

log(1/τ)/n = O(ε), O(σkε
1
2−

1
k ) = O(1), d log d/n = O(ε). (48)

For the rest of the proof, we will assume that all three of these conditions hold. Similar to the proof
of Theorem 1.4, we will first prove the statement when the samples are bounded. Without loss of
generality, we will assume µ = 0.

Base case: Bounded support In this case, we will assume that ‖xi‖ = O(σkε
−1/k
√
d) almost

surely. We will use Lemma F.2 to show that the set is stable. Set ε̃ = ε′/C ′ for a large enough
constant C ′ to be determined later.

Note that x1, . . . , xn satisfy the conditions of Lemmas F.5, F.3, and F.6. In particular, we will use
Lemma F.5 with Cε̃, where C is large enough. By choosing ε′ = Ω(log(1/τ)/n), we get that, with
probability 1− τ/3, for any S′ : |S′| ≥ (1− Cε̃)n and unit vector v,∑

i∈S′(v
Txi)

2

|S′|
≥ 1− δ2

Cε̃
. (49)
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We first look at the variance using the guarantee in Lemma F.3: Let u ∈ ∆n,ε̃ be the distribution
achieving the minimum in Lemma F.3. By choosing ε′ = Ω(log(1/τ)/n) , we get that with
probability 1− τ/3,

n∑
i=1

ui(x
T
i v)2 ≤ 1 +

δ2

ε̃
. (50)

We now obtain a guarantee on the mean using Lemma F.6. For this u, let w ∈ ∆n,4ε̃,u be the
distribution achieving the minimum in Lemma F.6. Then with probability 1− τ/3,

‖
n∑
i=1

wixi‖ ≤ δ. (51)

Since u ∈ ∆n,4ε̃,w and w ∈ ∆n,ε̃,u, we have that u ∈ ∆n,5ε̃. Moreover,
n∑
i=1

wi(x
T
i v)2 ≤

n∑
i=1

ui
1− ε̃

(xTi v) =
1

1− ε̃
(1 +

δ2

ε̃
) ≤ 1 +

1

1− ε̃
(ε̃+

δ2

ε̃
) ≤ 1 +

4δ2

ε̃
. (52)

Therefore, we have that u ∈ ∆n,5ε̃ and satisfies the requirements of Lemma F.2, where we note that
r1 = O(1) and r2 = O(1) to get the desired statement. By a union bound, the failure probability
is τ . Finally, we choose C and C ′ large enough such that the cardinality of the stable set is at least
(1− ε′)n and it is (2ε′, δ) stable.

General case: Unbounded support We first do a simple truncation. Let E be the following event:

E = {X : ‖X‖ ≤ Cσkε−
1
k

√
d}. (53)

Let Q be the distribution of X conditioned on E. Note that P can be written as convex combination
of two distributions: Q and some distribution R,

P = (1− P(E))Q+ P(Ec)R. (54)

Let Z ∼ Q. Using Lemma C.5, we get that ‖EZ‖ ≤ 2σkε
1− 1

k /Ck and (1 − 3σ2
kε

1− 2
k /Ck) �

Cov(Z) � I . Thus the distribution Q satisfies the assumptions of the base case for C ≥ 2.

Let SE be the set {Xi : Xi ∈ E}. A Chernoff bound gives that given n samples from P , with
probability at least 1− exp(−nε′),

E1 = {|SE | ≥ (1− ε′/2)n}. (55)

For a fixed m ≥ (1 − ε′/2)n, let z1, . . . , zm be m i.i.d. draws from the distribution Q. Applying
the theorem statement for Q, as it satisfies the base case above, we get that, with probability at least
1−exp(−cmε′), ∃ S′ ⊂ [m] : |S′| ≥ (1−ε′/2)m ≥ (1−ε′/2)2n ≥ (1−ε′)n, such that S′ is (2ε′, δ′)-
stable. This gives us a set S′ which is stable with respect to EZ. Using triangle inequality, we get that
the set S′ is (ε, δ′) stable with respect to µ as well, where δ′ = δ + ‖µ− EZ‖ = δ +O(σkε

1− 1
k ).

We can now marginalize over m to get that with probability except 1− 2 exp(−cnε′), the desired
claim holds. Choosing ε′ = Ω(log(1/τ)n), we can make probability of failure less than τ .
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