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Abstract

Structured representations of images that model visual relationships are benefi-
cial for many vision and vision-language applications. However, current human-
annotated visual relationship datasets suffer from the long-tailed predicate distribu-
tion problem which limits the potential of visual relationship models. In this work,
we introduce a self-supervised method that implicitly learns the visual relationships
without relying on any ground-truth visual relationship annotations. Our method
relies on 1) intra- and inter-modality encodings to respectively model relation-
ships within each modality separately and jointly, and 2) relationship probing,
which seeks to discover the graph structure within each modality. By leveraging
masked language modeling, contrastive learning, and dependency tree distances
for self-supervision, our method learns better object features as well as implicit
visual relationships. We verify the effectiveness of our proposed method on various
vision-language tasks that benefit from improved visual relationship understanding.

1 Introduction

Visual relationships that describe object relationships in images have become more and more important
for high-level computer vision (CV) tasks that need complex reasoning [1, 2, 3, 4]. They are often
organized in a structured graph representation called scene graph, where nodes represent objects and
edges represent relationships between objects. In recent years, we have witnessed great progress with
visual relationship datasets such as Visual Genome [5] and the application of scene graphs to various
CV reasoning tasks such as image captioning [6, 7], image retrieval [8], and visual reasoning [9].

Despite this, current visual relationship models still rely on human-annotated relationship labels.
Due to the combinatorics involved — two objects and one relationship between them, where objects
and relationships each have different types — relationships are numerous and have a long-tailed
distribution and, thus, it is difficult to collect enough annotations to sufficiently represent important
but less frequently observed relationships. Consequently, current visual relationship models tend to
focus on modeling only a few relationships that have a large number of human annotations [10], and
they ignore relationship categories with few annotations. We have seen some research attempts that
use external knowledge databases to help enrich visual relationships, however, the total number of
relationships modeled is still relatively small [11].

On the other hand, in the past few years, we have seen significant progress in natural language
processing (NLP) towards building contextualized language models with self-supervised pretraining
objectives [12, 13]. The removal of human annotators from the training loop has enabled training on
massive unlabeled datasets, leading to significant advances in NLP performance [14, 15]. These trends
have also brought significant advances in vision-language (VL) pretraining tasks [16, 17, 18, 19, 20].
Most existing VL pretraining methods concatenate visual objects and the corresponding sentences as
one input and adopt the Transformer [21] as the core module to learn contextualized multi-modal
representations in a self-supervised manner via self- and cross-attentions. These models rely heavily
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on the multi-head attention layers to explore implicit relations, or they directly rely on attention
distributions to explain the relations between objects [17, 22]. However, different layers vary in
their behaviors [23, 24], and it has been shown that attention alone can be deceiving when used
for interpretability and explanation [25]. Thus, existing VL pretraining algorithms suffer from two
problems: discovered relationships are not modeled explicitly, but are instead expected to be implicitly
represented as transformer weights; and, the concatenation of multimodal inputs at training time
restricts the model to require multimodal inputs at prediction time, as well.

Motivated by textual relation mining work in NLP [26], we propose a novel framework that discovers
dependencies between objects from the model’s representation space which addresses the problems
highlighted above. Our approach is based on two simple observations: (1) when we slightly change
the images, the relative visual relationships in those images remain unchanged; (2) relationships
mentioned in image descriptions are visually observable in the corresponding image. Our approach
relies on three modules, each consisting of a set of layers. In the first module, implicit intra-modal
relationships are modeled using transformer encoders. In the second module, cross-modal learning
allows for implicit relationship information to be leveraged across modalities. In the third module,
relationships between visual and linguistic entities are represented explicitly as latent variables via
a technique we call relationship probe. All modules are trained using self-supervision, with a first
stage relying on masked language modeling to train the first two modules, and a second stage relying
on contrastive learning and linguistic dependency trees as supervisory signals to train the relationship
probe network.

Our main contribution is a novel self-supervised relationship probing (SSRP) framework for finding
dependencies in visual objects or textual entities that address issues with existing visual relationship
models: it relies on self-supervision rather than explicit supervision, it explicitly models relationships
as latent variables, and it leverages cross-modal learning but allows a single modality as input at
prediction time. We conduct extensive experiments to demonstrate that our method can benefit both
vision and VL understanding tasks.

2 Background

Visual relationships. It has been demonstrated that visual relationships between objects can help
improve performance on many CV tasks [8, 27, 28, 29, 30, 31]. Most of these methods assume
a known explicit graph structure, and limit the graph to the most frequently occurring predicate
categories while ignoring others that do not have enough labeled examples. Relaxing this assumption,
some works transfer the object representations learned with predicate functions to rare predicates
in few-shot scene graph generation [32, 33, 34]. Other works capture the relations via attention
mechanisms [35, 36, 37, 38]. However, unlike object detectors that are trained on unambiguous and
objectively defined object class labels, visual relationships are subjective and it is hard to exhaustively
annotate all possible relationships between objects. Thus, we do not explicitly define or label visual
relationship classes, but instead, we discover the implicit visual relationships via the accompanied
captions. We call our method SSRP in the sense that we do not use any explicit predicate labels.

Pretraining. Motivated by the huge success of BERT [13] in NLP, there is a growing interest in
pretraining generic models to solve a variety of VL problems [39, 40, 22, 40, 18]. These methods
generally employ BERT-like objectives to learn cross-modal representations from visual region
features and word embeddings. They use self- and cross-attention mechanisms to learn joint represen-
tations that are appropriately contextualized in both modalities. However, most of the VL pretraining
works heavily rely on massive amounts of visual-linguistic corpus [19, 17]. Moreover, although
huge multi-modal training datasets enable pretraining methods to learn good representations for
downstream multi-modal VL tasks, they usually do not benefit visual tasks that only deal with single
visual modality during inference. We overcome this problem with a new approach that enables the
generation of implicit visual object relationships even with only visual inputs during inference, while
benefiting greatly from the cross-modality learning objectives during training.

We would like to point out that several works focus on investigating the representations learned by
transformer-based pretraining models [41, 42]. Their findings suggest that BERT-based network
pretraining learns a rich set of intermediate representations of both semantic and syntactic information,
which can be used to unearth the representations of dependency grammar relations. An interesting
finding in [26] shows that BERT can recover dependency parse trees that have not been encountered

2



                        (a)                                  (b)                                  (c)          

man standing[MASK] [MASK]

Intra-Modality Encoder (            ) Intra-Modality Encoder (            )

[MASK] [MASK]

[CLS] A man standing ... [SEP]

Inter-Modality Encoder (            )

  Relationship Probe (           )  Relationship Probe (           )

Visual Relationships Textual Relationships

Inter-Modality Encoder (            )

[CLS] A ... [SEP] man standing[MASK] [MASK]

Intra-Modality Encoder (            ) Intra-Modality Encoder (            )

[MASK] [MASK]

[CLS] A man standing ... [SEP]

Inter-Modality Encoder (            )

  Relationship Probe (           )  Relationship Probe (           )

Visual Relationships Textual Relationships

Inter-Modality Encoder (            )

[CLS] A ... [SEP] man standing[MASK] [MASK]

Intra-Modality Encoder (            ) Intra-Modality Encoder (            )

[MASK] [MASK]

[CLS] A man standing ... [SEP]

 Relationship Probe (           )  Relationship Probe (           )

Visual Relationships Textual Relationships

[CLS] A ... [SEP]

Inter-Modality Encoder (            )

...

...

...

...

...

...

Figure 1: Overview of the proposed three types of SSRP frameworks, each of which consists of three
types of modules: intra-modality encoder, inter-modality encoder and relationship probe.

during training. Coenen et al. [43] further present empirical descriptions of syntactic representations
in BERT. These results in NLP motivate us to exploit BERT to find visual relationships between
image regions without explicitly training on relationship annotations.

3 Method

Fig. 1 gives an overview of three variants of our method: SSRPShare, SSRPVisual and SSRPCross. Each
variant consists of three modules: intra-modality encoder, inter-modality encoder and relationship
probe. The main difference among the three SSRP variants lies in the inter-modality encoding process.
The intra-modality and inter-modality encoders are BERT-like encoders, that respectively capture
implicit single-modality relations and cross-modality relations among the entities (image objects and
textual tokens) and output contextual representations. The relationship probe generates relationship
graphs for each modality from the encoded contextual representations in a self-supervised way.

In the following, we first briefly describe BERT [13] since our approach is based on BERT architecture,
and then we describe the individual modules of our SSRP frameworks as well as the learning process.

3.1 Revisiting BERT

BERT uses Masked Language Modeling (MLM), a self-supervised pretraining objective that allows a
transformer encoder [21] to encode a sequence from both directions simultaneously. Specifically, for
an input sequence S = {w1, . . . , wNw} of Nw tokens, BERT first randomly masks out 15% of the
tokens and then predicts the masked tokens in the output. The masked tokens in the input sequence
are represented by a special symbol [MASK] and fed into a multi-layer transformer encoder. Let
H l = {h1, . . . ,hNw

} be the encoded features at the l-th transformer layer, with H0 being the input
layer. The features at the (l + 1)-th layer are obtained by applying a transformer block defined as:

H l+1 = LN
(

LN
(
H l + f lSelf-Att(H

l)
)

+ f lFF

(
LN(H l + f lSelf-Att(H

l))
))

(1)

where LN stands for layer normalization [44], f lSelf-Att(·) is a multi-headed self-attention sub-layer,
fFF(·) is a feed-forward sub-layer composed of two fully-connected (FC) layers, wrapped in residual
connection [45] with an LN as specified in Eq. 1. The token representations in the final layer are
used to predict the masked tokens independently.

3.2 Model architecture

Input embeddings. The input to the three SSRP pretraining models includes both visual and textual
elements, where the former is defined as regions-of-interest (RoIs) in an image and the latter is
defined as the tokens in a caption. Specifically, given an image I , we use Faster-RCNN [46] to
detect RoIs {v1, . . . , vNv

} and take the feature vector prior to the output layer of each RoI as the
visual feature embedding. For a caption S, we insert the special tokens [CLS] and [SEP] before
and after the sentence, and use the WordPiece tokenizer [47] to split it into tokens {w1, . . . , wNw}.
Apart from token and visual feature embeddings, we also add positional encoding to represent tokens.
In particular, for token wi, its input representation w̃i is the sum of its trainable token embedding,
positional embedding (index in the sequence) and segment (image/text) embedding, followed by an
LN layer. Each object vi is represented by its positional feature (normalized top-left and bottom-right
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Figure 2: Illustration of our proposed learning process for relationship probing. The entire learning
process consists of two training stages: training BERT encoders and training relationship probes. The
notations i and j here refer to two different augmented images or sentences.

coordinates) and its 2048-dimensional RoI feature, both of which are transformed through FC+LN
layers to obtain the position-aware object-level embedding ṽi.

Intra-modality encoding. The purpose of intra-modality encoding is to model the intra-relations of
the encoded representations in one modality via self-attention, same as that in BERT. Specifically, we
randomly mask out ṽ\i and w̃\j with a fixed probability, and feed the masked object-level embeddings
Ṽ =

{
ṽ1, . . . , ṽ\i, . . . , ṽNv

}
and word-level embeddings W̃ =

{
w̃1, . . . , w̃\j , . . . , w̃Nw

}
into two

intra-modality encoders (fV↔V
Intra and fS↔S

Intra ) separately. Each layer in the intra-modality encoders
contains a self-attention sub-layer and an FF sub-layer (Eq. 1).

Inter-modality encoding. The inter-modality encoder models the cross-modality relationships
between image and textual entities. The three proposed SSRP pretraining models use different
inter-modality encoding schemes as illustrated in Fig. 1. In SSRPShare, the inter-modality encoding
is done with a single encoder fV S

Inter that is shared between the two modalities, and fV S
Inter consists of

a shared self-attention sub-layer wrapped in residual connection with an LN. The shared weights
connect the two modalities by causing the projections of the two input modalities to align in the
query, key, and value spaces. In SSRPVisual, the textual features attend to visual features to connect
the two modalities. In contrast to SSRPShare, we keep fV S

Inter for the visual branch which contains a
self-attention sub-layer and an FF sub-layer, while using fS→V

Inter for the textual branch which consists
of a self-attention sub-layer, one unidirectional cross-attention sub-layer, and an FF sub-layer. Finally,
SSRPCross uses an inter-modality bidirectional cross-attention encoder fV↔S

Inter , where both textual and
visual features attend to each other. Following [17], each layer in fV↔S

Inter consists of two self-attention
sub-layers, one bi-directional cross-attention sub-layer, and two FF sub-layers.

Relationship probing. The purpose of the relationship probing is to model the implicit relations
among visual or textual entities. Specifically, we build a latent relationship graph Gv for the objects in
an image and a latent relationship graph Gw for the tokens in a caption, based on the unmasked con-
textual object representations V = {v1, . . . ,vNv

} and token representations W = {w1, . . . ,wNw
},

which are the output feature vectors of the inter-modality encoders. Inspired by [26], we use a visual
probe and a textual probe to compute the distances for each object pair (vi,vj) ∈ Gv and each token
pair (wi,wj) ∈ Gw, respectively. The distance for an object/token pair is defined as:

dBu
(ui,uj)

2 = (Bu(ui − uj))
T

(Bu(ui − uj)) (2)

where u ∈ {v,w}, i and j are the object/token indices, and Bu are the parameters for the probe
layer. The learning goal of a structural probe (Sec. 3.3) is to determine the edge distances between
all pairs of nodes. The outputs of the visual probe and the textual probe layer are respectively the
distance matrices Rv = (dBv

(vi,vj)
2) ∈ RNv×Nv and Rw = (dBw

(wi,wj)
2) ∈ RNw×Nw , which

capture implicit relations between visual/textual entities.
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3.3 Learning

We employ two learning stages in our method. In the first stage, we train the BERT encoders
including the intra-modality encoders and the inter-modality encoders to obtain the contextual object
representations V and the token representations W . In the second stage, with these contextual
representations, we freeze the BERT encoders and train the two probe layers to generate implicit
relationship matrices Rv and Rw. Fig. 2 shows a schematic diagram of our learning framework.

3.3.1 Stage 1: Training BERT encoders

Masked language modeling with RoI feature reconstruction. We train the BERT encoders with
the MLM objective to predict masked RoI feature vi and masked token wj given their surroundings
I\i and S\j . We also include a L1 reconstruction smoothing loss [48] for the grounding of visual
features. We minimize the following loss:

LMLM = −EI,S∼D
[

log p(vi|I\i, S̃) + log p(wj |S\j , Ĩ)−
∑
i

L1(vi − g(vi|I\i, S̃))
]

(3)

where Ĩ and S̃ are the image regions and input words with random masking, g(.) outputs the unmasked
visual feature, p(vi|I\i, S̃) and p(wj |S\j , Ĩ) are respectively the predicted probabilities for the target
object label and word given the masked inputs, and I and S are sampled from the training set D.
Note that here we reuse the symbols v and w to represent both the visual features and the label/word
for simplicity.

Image-text matching. An additional loss is added to perform the instance-level alignment between
an image and its caption. Both positive (y = 1) and negative (y = 0) image-sentence pairs are
sampled and the model learns to align with a binary cross-entropy loss:

LMatch = −EI,S∼D[y log p(falign) + (1− y) log(1− p(falign))] (4)

where p(falign) is the output probability of a binary classifier and falign is the visual-textual alignment
representation. For SSRPShare and SSRPVisual, falign is computed as galign([v̄;wCLS]), where v̄ =∑

i vi/Nv is the visual representation averaged over the contextual features of all the visual elements
V , wCLS is the contextual representation of the special token [CLS], and galign(·) is a non-linear
mapping function (see supplementary for details). For SSRPCross, we define falign = galign(wCLS).
Essentially, we force wCLS to model either the aggregated textual or visual-textual information.

The overall training loss for the first-stage pretraining becomes: LStage1 = LMLM + LMatch.

3.3.2 Stage 2: Training relationship probes

In the second stage, the relationship probe layers are learned via a probe loss LS
Probe and a contrastive

lossLCL-all, where the former is to ensure the learned textual relationships Rw is structurally consistent
with a dependency tree and the latter is to ensure that the learned relationships Rv and Rw remain
stable across different data augmentations.

In particular, on the language side, we use a pre-parsed dependency tree Gw for each sentence [49] to
guide the textual relationship probe learning with LS

Probe defined as:

LS
Probe =

1

N2
w

∑
i,j

|dGw(wi,wj)− dBw
(wi,wj)

2| (5)

where dGw(wi,wj) is the distance between tokens wi and wj in the dependency tree Gw.

For the contrastive loss, we adopt stochastic data augmentation methods to transform an original
image (or sentence) into semantics-preserving data samples, and treat them as positive pairs; see
Fig. 2, where Ii ∼ TI and Si ∼ TS denote image and sentence augmentations, respectively.1 For
the data augmentation details, please refer to Sec. 4.1. Specifically, we sample a minibatch of Nc

image-caption pairs and apply two separate augmentation strategies to each modality, resulting in
2Nc image-caption pairs. For every positive pair, its negative pairs are not sampled explicitly, but

1Note that in the interest of coherence, we describe data augmentation with contrastive learning in Stage 2,
the augmented data can be used to train BERT encoders in Stage 1.
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instead we take the other 2(Nc − 1) augmented image-caption pairs within a minibatch as negatives.
We adapt the contrastive loss introduced in [50, 51] to our cross-modal scenario. The single-modality
contrastive loss LSCL(i, j) and cross-modality contrastive loss LXCL(i, j) for a positive image-caption
pair 〈{Ii, Ij}, {Si, Sj}〉 are defined as:

LSCL(i, j) = − log
eZ

v,v
i,j∑2Nc

k=1 1[k 6=i]e
Zv,v

i,k

− log
eZ

w,w
i,j∑2Nc

k=1 1[k 6=i]e
Zw,w

i,k

(6)

LXCL(i, j) = −
∑

m∈{i,j}

∑
n∈{i,j}

(
log
( eZ

v,w
m,n∑2Nc

k=1 1[k 6=m]e
Zv,w

m,k

)
+ log

( eZ
w,v
m,n∑2Nc

k=1 1[k 6=m]e
Zw,v

m,k

))
(7)

where 1[k 6=i] ∈ {0, 1} is an indicator function,Zx,y
i,j = ((zx

i
>zy

j )/(‖zx
i ‖‖z

y
j ‖))/τ denotes the cosine

similarity between zx
i and zy

j , zv and zw are the nonlinear projections of vectorized relationship
matrices Rv and Rw projected using MLP projection head [50], and τ is a temperature hyper-
parameter [52]. The final loss is computed across all positive image-caption pairs in a mini-batch
LCL-all = 1

2Nc

∑
i,j [LSCL(i, j) +LSCL(j, i) +LXCL(i, j)]. Note that LXCL is invariant to the order of

sample indices (i, j) and thus is included just once in LCL-all.

In this stage, the overall training objective is: LStage2 = LS
Probe + LCL-all.

4 Experiments

4.1 Datasets and implementation details

Pretraining corpus. To enlarge the training data, recent VL pretraining works [17, 16, 53, 18]
use combined pretraining corpora such as Conceptual Captions (CC) [54], SBU captions [55],
MSCOCO [56, 57, 58], Flickr30K [59], VQA [1], GQA [2], VG [5], BooksCorpus (BC) [60], and
English Wikipedia (EW), etc. In contrast, we only aggregate pretraining data from the train (113k)
and validation (5k) splits of MSCOCO [58]. Specifically, with each MSCOCO image associated
with five independent caption annotations, MSCOCO provides us an aligned VL dataset of 591K
image-and-sentence pairs on 118K distinct images. Table 1 summarizes the corpus used by different
pretraining methods.

Table 1: Comparisons of the corpus used by different pretraining methods.
Method Source Total Method Source Total

LXMERT [17] MSCOCO,GQA,VQA,VGQA,VG-Cap 9.2M VL-BERT [22] CC,BC,EW 3.3M
OSCAR [19] MSCOCO,GQA,VQA,VGQA,CC,SBU,Flickr30K 6.5M VilBERT [16] CC 3.1M
UNITER [40] MSCOCO,CC,VG,SBU 5.6M VisualBERT [53] MSCOCO 0.6M
Unicoder-VL [18] CC,SBU 3.8M Ours: SSRP MSCOCO 0.6M

Data augmentation. Instead of combining the existing VL datasets, we expand the pretraining corpus
with data augmentation on both images and sentences, as shown in Table 2. For data augmentation on
images, we employ horizontal flipping (HFlip) at the image level and a few augmentations at the RoI
feature level including HFlip, rotations (90o, 180o, and 270o) and bounding box jittering (with scale
factors selected from the range of [0.8, 1.2]). We enrich the training sentences through two pretrained
back-translators [61]: English→German→English (En-De-En) and English→Russian→English (En-
Ru-En). Our augmentation strategies can generate significantly more training samples: 1.65M at RoI
level and 1.77M at sentence level, while largely preserving the semantic information.

Table 2: Number of training samples at image, RoI, and sentence levels.

Split Image RoI features of Raw & HFlip images Sentence

Raw HFlip HFlip Rotate(90◦,180◦,270◦) Jitter[0.8,1.2] Raw En-De-En En-Ru-En

Train 118k 118k 118k×2 354k×2 236k×2 591k 591k 591k

Pretraining setting. We pretrain our three SSRP variants shown in Fig. 1. We set the numbers of
layers for the intra-modality encoders of fS↔S

Intra and fV↔V
Intra to 9 and 5, respectively, and the number

of layers for the inter-modality encoders of fV S
Inter, f

S→V
Inter , and fV↔S

Inter to 5. For each transformer block,
we set its hidden size to 768 and the number of heads to 12. To keep the sizes the same for the
relationship matrices, the maximum numbers of words and objects are equally set to 36.
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Pretraining is divided into two stages. In stage 1, we train with LStage 1. At each iteration, we
randomly mask input words and RoIs with a probability of 0.15. All models are initialized with
BERT pretrained weights and the respective pretraining corpus is listed in Table 2. For cross-modality
matching, we replace each sentence with a mismatched one with a probability of 0.5. We use Adam
optimizer [62] with a linear learning-rate schedule [13] and a peak learning rate of 1e−4. The training
is carried out with four Tesla V100 GPUs with a batch size of 128 for 10 epochs. After stage 1,
we freeze the parameters of the intra-modality and inter-modality encoders and further train the
relationship probes with LStage 2. The syntactic dependency tree for each sentence is built by [49]. All
variants of SSRP are trained for 30 epochs with Adam, a batch size of 512, and a learning of 5e−5.

Fine-Tuning tasks. We fine-tune the pretrained models to handle multiple downstream tasks: three
VL understanding tasks (NLVR2 [63], VQA [1], and GQA [2]) and a generation task (image
captioning), following the standard fine-tuning settings for downstream tasks in [17, 53]. For
VL understanding tasks, we use linearly-fused probed relationships and visual-textual alignment
prediction falign in Eq. 4 as features. For image captioning, we utilize the Up-Down [64] framework
and incorporate the refined object features learned by SSRPVisual. The captioning model is first trained
with cross-entropy loss and is then followed by reinforcement learning loss [65].

4.2 Experimental results & analysis

We first perform ablation experiments over a few design choices of our method on NLVR2. We then
show the comparison results on VQA, GQA and image captioning tasks.

Table 3: Ablation study on NLVR2. The reported
results are accuracy numbers on Dev set.

Method falign(Stage 1) falign(Stage 1) + Rel.(Stage 2)

Raw Aug. Rv Rw Rv+Rw

SSRPShare 60.53 61.67 62.52 62.66 64.25
SSRPVisual 69.92 70.75 71.23 71.24 72.03
SSRPCross 74.35 74.48 74.25 74.68 75.71

Effect of data augmentation. Table 3 shows
the ablation study results. For the ‘Raw’ set-
ting, we pretrain our models only on the original
corpus, while in the ‘Aug.’ setting, we augment
the original corpus with the augmentation tech-
niques mentioned in Table 2. It is evident that
our data augmentation strategy indeed improves
the performance of all three models. Note that
we employ data augmentation only during pretraining, but not during fine-tuning.

Effect of attention. Comparing the three variants that use different attention settings in Table 3, we
observe that SSRPCross performs the best, and SSRPVisual is better than SSRPShare. This confirms the
benefits of the cross-attention structures that enable the features of one modality to attend to the other.

Table 4: Online VQA/GQA results on the ‘test-
standard’ splits, where ‘*’ indicates the used cor-
pus is larger than VisualBERT and ours.

Method VQA GQA

Binary Number Other Accu Accu

BUTD* [64] 86.6 48.6 61.5 70.3 –
LXMERT* [17] 88.2 54.2 63.1 72.5 60.3
VilBERT* [16] – – – 70.9 –
VL-BERT* [22] 87.9 54.8 62.5 72.2 –
OSCARB* [19] – – – 73.4 61.2
UNITER-Base* [40] – – – 72.9 –

VisualBERT [53] 87.5 52.3 61.0 71.0 –
SSRPCross 87.8 54.4 62.7 72.2 60.0

Effect of relationship probing. To analyze the
effectiveness of the visual and textual relation-
ships learned via pretraining, we concatenate
the visual-textual alignment representation falign
and relationships (Rel.) to form a relationship-
aware feature vector for answer prediction. Ta-
ble 3 shows that using language relationships
Rw leads to better results than using visual re-
lationships Rv. This is due to the available
dependency tree for supervising the language
model during training, while the visual relation-
ships are learned in a completely self-supervised
way. Combining visual and textual relationships
achieves the best results. Our method SSRPCross (75.71) outperforms LXMERT (74.9) and Visual-
BERT (67.4) on NLVR2 dev-set, demonstrating that the probed relationships are beneficial for the
reasoning task.

Results on VQA& GQA. Table 4 shows the performance of our SSRPCross on VQA and GQA. Our
method outperforms VilBERT and VisualBERT, while being highly competitive with the best method
that is trained with considerably larger training corpora.

Results on image captioning. Unlike the recent VL pretraining methods, which cannot be applied
to single-modality vision tasks such as image captioning due to the cross attention used in pretraining,
our SSRPShare and SSRPVisual models do not have such a limitation. Thus, we apply the stronger
model SSRPVisual to image captioning using its refined object features and the learned implicit visual
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relationships. Table 5 shows the quantitative results, where SSRPVisual outperforms the baselines,
indicating that the learned relationship-aware image representations can benefit image captioning.
Note that the online results of BUTD are achieved with model ensemble, while we use a single model.

Table 5: Results of image captioning on MSCOCO test split and online test server, where B@n, M, C
and S are abbreviations for BLEU-n, METEOR, CIDEr, and SPICE, respectively.

Method B@1 B@4 M C S Method B@1 B@4 M C S

SCST [65] – 33.3 26.3 111.4 – Up-Down [64] (Our Impl.) 81.2 36.9 28.3 120.8 21.6
BUTD [64] 79.8 36.3 27.7 120.1 21.4 SSRPVisual 82.0 38.1 28.8 126.7 22.3

Results on the online MSCOCO test server

BUTD [64] (c5) 80.2 36.9 27.6 117.9 – SSRPVisual (c5) 81.5 37.5 28.3 119.8 –
BUTD [64] (c40) 95.2 68.5 36.7 120.5 – SSRPVisual (c40) 95.3 68.6 37.2 122.4 –
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Figure 3: Examples of generated relationships for different augmented images and sentences. The
bottom part shows the dependency trees resulted from SSRPCross outputs. Black edges above each
sentence are the gold tree provided by Stanza [49], and red edges are provided by our SSRPCross.
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Figure 4: A visualization of the retrieved images on MSCOCO validation set. The ‘Obj.’ method
averages object features and computes the cosine similarities between images. The ‘Obj. + Rel.’
method enhances the object features according to the predicted relationships.

What do probes learn during training? To answer that, we visualize in Fig. 3 the heat-maps of a
few relationship examples generated by SSRPCross, where a darker color indicates a closer relationship.
Particularly, the first row shows the example images and their augmented counterparts, each of which
contains objects and their probed visual relationships represented by straight lines with varying color
intensity values. The second row presents the visual relationship distance graphs for the corresponding
images. The bottom rows show the distance graphs and dependency trees for augmented captions.
Fig. 3 shows that the probed dependency trees closely resemble the gold dependency trees. In addition,
the distance graphs of the original data samples and their augmented counterparts for sentences and
images are also close to each other, validating our assumption that the visual/linguistic relationships
should be preserved even when data augmentation is applied. Remarkably, the learned implicit
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relationships between objects are stable across differently augmented images, despite the fact that no
gold visual relationships are provided in training.

Are visual relationships useful for visual tasks? To further verify the benefits of implicit visual re-
lationships in single-modality visual tasks, we perform image retrieval on MSCOCO with SSRPVisual.
Fig. 4 shows the top-2 image retrieval results. As shown, ‘Obj. + Rel.’ retrieves better visually-
matching images that are consistent with the object relationships in query images. For example, in
the third example, the person in the top-1 retrieved image is next to a pizza, similar to the original
image. This suggests that our model can capture the complex underlying visual relationships.

5 Conclusion

We have proposed a self-supervised visual relationship probing method that implicitly learns visual
relationships without training on ground-truth relationship annotations. Our method transfers the
textual relationships from image descriptions to image objects and explores the visual relationships by
maximizing the agreement between differently augmented images via contrastive learning. Through
our relationship probes, we have demonstrated that relationship structures in images and sentences
can be well explored with well-designed distance and contrastive learning objectives. We believe
such implicit relationships in images and languages can help improve many existing vision-language
tasks, especially in the scenarios with limited annotations.

Broader Impact

Current representation learning models such as BERT and alike follow a similar structure. We think
it is important to discover or probe the implicit knowledge that these models capture about language
and vision. Our research on self-supervised relationship probing is a push in that direction and can be
used for grounding the relationships expressed in language.

In this paper, we introduce SSRP, a self-supervised relationship probing method for visual and textual
relationship extraction. Our research could be used to enrich the current scene graph generation
methods and to complete the missing relationships between objects. The visual relationships generated
by our method could be applied to a wide range of vision and vision-language applications including
image captioning, image retrieval, object detection, visual question answering, visual reasoning, and
visual-textual cross-modal retrieval, etc.

Here, we discuss the broader impact on the two important example applications (image retrieval and
image captioning) which can benefit greatly from the implicit relationships obtained with our method.
By performing image retrieval using the implicit visual relationships discovered with our method,
visual search engines can provide higher-quality results that better respect the visual relationships
contained in query images to users. This provides a smoother visual search experience and helps
users find their desired images. On the other hand, for image captions/descriptions, with the implicit
visual relationships generated by our method, richer and improved descriptions of images that more
accurately describe the scenes in images can be obtained. This can help blind or visually-impaired
people [66] ‘see’ their surrounding environments better.

In terms of technical impacts, our method opens a new direction to better model visual object
relationships, which is completely different from current visual relation models that heavily rely on
human-annotated explicit visual relation labels. Annotating visual relationships is a highly subjective
process where different annotators are likely to annotate quite differently. Relations are also very
diverse and there is no clear definition. Our approach bypasses all these challenges of annotating
relations by advocating to discover rich implicit relations directly from natural images and their
textual descriptions in a self-supervised manner without using any explicit relation annotations. Thus,
our method leads to richer and fairer visual relation model.

In addition, in terms of dataset, our method also goes beyond current pretraining models that prefer to
combine more and more datasets together for self-supervised training. Instead, our proposed method
is developed specifically to work effectively with augmented data that can be cheaply obtained with
the proposed augmentation strategies and can be nicely integrated into the self-supervision objectives.

Overall, our method makes VL pretraining and visual relationship modeling more accessible to the
masses.
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