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Abstract

Boosting is one of the most successful ideas in machine learning, achieving great
practical performance with little fine-tuning. The success of boosted classifiers
is most often attributed to improvements in margins. The focus on margin ex-
planations was pioneered in the seminal work by Schapire et al. (1998) and has
culminated in the k’th margin generalization bound by Gao and Zhou (2013), which
was recently proved to be near-tight for some data distributions (Grønlund et al.
2019). In this work, we first demonstrate that the k’th margin bound is inadequate
in explaining the performance of state-of-the-art gradient boosters. We then explain
the short comings of the k’th margin bound and prove a stronger and more refined
margin-based generalization bound for boosted classifiers that indeed succeeds in
explaining the performance of modern gradient boosters. Finally, we improve upon
the recent generalization lower bound by Grønlund et al. (2019).

1 Introduction

Boosting is a powerful technique for producing highly accurate voting classifiers by combining less
accurate base learners. Boosting algorithms are typically easy to fine tune and obtain state-of-the-art
performance on many learning tasks. Boosting dates back to the seminal work introducing the
AdaBoost algorithm [4] and much work has gone into understanding and developing better boosting
algorithms. The best performing boosting algorithms are typically variants of gradient boosters [5],
such as LightGBM [10] and XGBoost [2], using Regression Trees as base learners.

Classic experiments [14] showed that boosting algorithms tend to improve their test accuracy even
when training past the point of perfectly classifying the training data. This may seem counter-intuitive,
as adding more base learners, results in a more complex model, that hence might be more prone to
overfitting. This phenomenon is often explained by observed improvements in margins. For binary
classification with a sample spaceX , labels in {−1, 1} and a class of base learnersH ⊆ X → [−1, 1],
a voting classifier f : X → {−1, 1} has the form f(x) = sign(

∑
h∈H αhh(x)) with all αh ≥ 0. A

voting classifier thus takes a weighted “vote” among the base learners to obtain its prediction. When
speaking of margins, we assume

∑
h αh = 1, which can always be achieved by rescaling the α’s by

their sum without changing f . The margin of a training point (x, y) with x ∈ X and y ∈ {−1, 1} is
then defined as y

∑
h αhh(x). The margin is thus a value in [−1, 1] which is positive when f(x) = y

and negative otherwise. Intuitively, large (positive) margins mean that f is not only correct but very
certain in its predictions. Margin theory, starting with the work of Schapire et al. [4], formalized this
by proving generalization bounds demonstrating that large margins imply better generalization. It
was also shown that the theoretical generalization bounds fit very well with the observed behavior
of AdaBoost that tends to keep improving margins even when training past the point of perfectly
classifying the training data [14].
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However, shortly after [4] and [14] was published, Breiman [1] proved a generalization bound
based on the minimal margin (the smallest margin achieved by a training point) that was sharper
than the generalization bound in Schapire et al. [4]. He then designed a new boosting algorithm,
named Arc-GV, that provably optimizes the minimal margin, which AdaBoost does not (see [7]
for the full story of maximizing the minimal margin). In the same paper, Breiman experimentally
showed that Arc-GV produced not just a better minimal margin, but better margins overall, than
AdaBoost. However, AdaBoost still obtained a better generalization and test error. This seemed to
contradict margin theory, as according to margin theory, all other things being equal, then larger
margins should imply better generalization. Later it was shown by Reyzin and Schapire [13] that
Breiman’s experiments did not accurately take into account the complexity of the base learner trees
created by AdaBoost and Arc-GV, as repeating the experiments showed that Arc-GV produced trees
of larger depth than AdaBoost, and deeper trees may be more prone to overfitting. Reyzin and
Schapire then considered the same experiments using stumps as base learners, forcing identical depth
trees between the algorithms, and in this case, AdaBoost produced better margin distributions than
Arc-GV and also generalized better. These findings support the view that better margins provide
better generalization as presented in [4, 14].

Later, [16, 11, 6] showed improved generalization bounds that subsumed both the generalization
bounds by Schapire et al., and Breiman, providing further theoretical support for margin theory. The
current strongest generalization bounds are as follows. LetD be any distribution overX×{−1, 1} and
define LD(f) = Pr(x,y)∼D[f(x) 6= y] as the out-of-sample error of a voting classifier f . Also, for a
set S = {(xi, yi)}mi=1 ofm labeled samples drawn i.i.d. fromD, defineLθS(f) = Pr(x,y)∼S [yf(x) <
θ] as the fraction of points in S with margin less than θ (the notation (x, y) ∼ S denotes a uniform
random point (x, y) in S). With this notation, there are two strongest current generalization bounds.
The first [11] uses Rademacher complexity to show that with high probability over the sample set S,
it holds for every margin θ ∈ (0, 1] and every voting classifier f that:

LD(f) ≤ LθS(f) +O

(√
lg |H|
θ2m

)
. (1)

The k’th margin bound by Gao and Zhou [6] improves this for LθS(f) = o(1/ lgm) and is as follows:

LD(f) ≤ LθS(f) +O

(
lg |H| lgm
θ2m

+

√
LθS(f) · lg |H| lgm

θ2m

)
. (2)

The k’th margin bound subsumes both Breiman’s min margin generalization bound and the original
generalization bound by Schapire et al. For infiniteH, one may replace lg |H| in the above bounds
with the VC-dimension ofH times a lgm factor (as is standard). For simplicity, we focus on the case
of finiteH throughout the paper. Moreover, recent work by Grønlund et al. [8] shows that the margin
bounds above are near-tight. Formally, they show that for (almost) all margins θ, there exists a data
distribution D and a set of base learnersH, such that with constant probability over the sample set S,
there is a voting classifier f such that

LD(f) ≥ LθS(f) + Ω

(
lg |H| lgm
θ2m

+

√
LθS(f) · lg |H|

θ2m

)
. (3)

Moreover, the lower bound holds for any value of LθS(f) ≤ 49/100 and any value of lg |H| [8].

Remark. Many boosting algorithms produce classifiers f =
∑
h αhh where

∑
h αh 6= 1 or where

base learners output values in R rather than [−1, 1]. To apply margin theory, following [15], such
classifiers are rescaled as follows: For each h with output range [ah, bh] and coefficient αh, divide all
outputs of h by ∆h = max{|ah|, |bh|} and multiply αh by ∆h. Afterwards, divide all αh by

∑
h αh.

1.1 Our contribution.

A new margin lower bound: Comparing the current best upper and lower bounds, we see that (2)
and (3) match when LθS(f) approaches 0. Similarly, we see that (2) and (1) match as LθS(f)
approaches a constant. But what is the true behavior in-between? The k’th margin bound (2) gained
the factor LθS(f) inside the

√· but lost a factor lgm compared to (1). Can the lgm factor be removed?
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What is the correct behavior as LθS(f) goes from 0 towards 1? In this work, we show an improved
generalization lower bound of:

LD(f) ≥ LθS(f) + Ω

(
lg |H| lgm
θ2m

+

√
LθS(f) · lg |H| lg(LθS(f)−1)

θ2m

)
. (4)

Our lower bound shows that the lgm factor inside the
√· has to show up as LθS(f) drops to m−ε

for any constant ε > 0. Moreover, our new lower bound completely settles the generalization
performance of boosting in terms of margins whenever LθS(f) is outside the range m−o(1) to o(1). It
also nicely interpolates between the Lθs(f) = 0 and LθS(f) = 1 case. We conjecture that the lower
bound gives the correct margin-based tradeoff, i.e. that it is possible to improve the upper bounds (1)
and (2) to match (4). Our proof is based on the work in [8], and the recent near-tight generalization
lower bound proof for Support Vector Machines shown in [9].

A new refined margin generalization bound: The main part of our paper considers a new refined
margin based generalization bound for voting classifiers (boosting algorithms). First, we present
experiments showing that the classic margin bounds alone fail to explain the performance of state-of-
the art gradient boosting algorithms. More concretely, we show that gradient boosters actually may
produce smaller and smaller margins when run for many iterations, despite the test accuracy staying
the same or even improving. We additionally demonstrate that the classic version of AdaBoost may
produce significantly better margins than gradient boosters, despite gradient boosters obtaining similar
or even better test accuracy and generalization error than AdaBoost. To explain this inconsistency,
we observe experimentally that the trees produced by gradient boosters return very small values
on all but a few training points, thus making minimal changes to most predictions when added to
the voting classifier. We then use this insight to prove a new margin-based generalization bound
for boosting algorithms which also take into account the magnitude of predictions by base learners.
Finally, we run experiments demonstrating that our refined generalization bounds in fact succeed in
explaining and predicting the performance of boosting algorithms. In addition to achieving a better
theoretical understanding of boosting algorithms, in particular gradient boosters, these new insights
may potentially lead to new algorithms with better accuracy by using regularization inspired by our
new generalization bound or more directly optimizing it.

2 Insufficiency of current margin bounds

From the margin-based upper and lower bounds, it may seem that we have all the theory necessary for
understanding the generalization performance of boosters. To confirm the theory, we ran experiments
with AdaBoost and the state-of-the-art gradient booster LightGBM on standard data sets with the
same size trees as base learners. For all experiments we only change the tree size and learning rate of
the LightGBM hyperparameters. For AdaBoost we allow the same tree size, unlimited depth, as well
as forcing a minimum number of elements in each tree learner to be 20 as is default in LightGBM.

Figure 1b shows a plot of the margin distributions for the two boosters trained on the Forest Cover
dataset. From this plot, it is obvious that AdaBoost achieves significantly better margins than
LightGBM. Indeed, the k’th smallest margin of AdaBoost, is much larger than the k’th smallest
margin of LightGBM for all k where at least one of the two margins are non-negative. Thus,
from the generalization bounds (1) and (2), AdaBoost should have a much smaller out-of-sample
error than LightGBM. However, the corresponding test errors in Figure 1a show a very different
story, with LightGBM slightly outperforming AdaBoost. Furthermore, as shown in Section 3,
the trees produced by LightGBM are in fact deeper than the trees produced by AdaBoost. This
gives rise to some concerns regarding the explanatory power of margins. To further underline the
theoretical inconsistency, we examine the two generalization bounds (1) and (2). When applying
the generalization bounds to AdaBoost and LightGBM, then for any choice of p = LθS(f) ∈ [0, 1],
the only parameter that vary between AdaBoost and LightGBM is θ−2. That is, if we choose θ as
the (pm)’th smallest margin, i.e. fix LθS(f) = p, then only the value of θ differ between the two
boosters and the generalization error grows as θ−2. Figure 2a shows a plot of θ−2 as a function
of LθS(f) for the two boosters. Clearly the penalty in the generalization error is much smaller for
AdaBoost, suggesting that AdaBoost should perform much better than LightGBM, despite the test
errors in Figure 1a showing that LightGBM outperforms AdaBoost. To investigate this phenomenon
further, we have plotted the margin distribution of the two boosters after t = 10, 20 and 50 iterations

3



0 25 50 75 100 125 150 175 200
Iterations

0.00

0.05

0.10

0.15

0.20

T
es

t
E

rr
or

lgb mean train

lgb mean test

ada mean train

ada mean test

(a) Mean training and test error over five runs. The
standard deviation of the final test error is 0.00037 for
AdaBoost and smaller for LightGBM.
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(b) Sorted margin values.

Figure 1: Accuracy and margin plots for AdaBoost and LightGBM on the Forest Cover data set.
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(a) Plot of θ−2 when choosing θ as the (pm)’th smallest
margin for p ∈ [0, 1]. The margins are those also shown
in Figure 1b.
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(b) Development in margin distributions for AdaBoost
and LightGBM.

Figure 2: Generalization penalties and margin distributions on the Forest Cover data set.

of training, see Figure 2b. It is clear from this plot that the margins of the gradient booster, learned by
LightGBM, deteriorate quickly with the number of training iterations. To explain why the margins
quickly drops towards 0 for the gradient booster, we take a closer look at the trees produced by
LightGBM compared to AdaBoost. Figure 3 shows a histogram of the predictions made by the
trees produced by LightGBM. It is very striking from this histogram that the trees making up the
LightGBM gradient booster makes very small (in absolute value) predictions on most data points,
whereas AdaBoost always makes predictions in {−1, 1}. Note that each tree always has its largest
prediction among {−1, 1}. Thus, LightGBM produces trees that only significantly change the
predictions of very few data points, while leaving almost all others unchanged. When training more
and more trees, this causes the margins to diminish. To see this, consider as an example a training
point (x, 1) and assume the first trained tree h makes a (correct) prediction of h(x) = 1 and is
assigned a weight of αh = 1. After the first training iteration, the margin of (x, 1) is 1. However, as
training progresses, many more trees may be produced that all predict 0 on x while being assigned a
weight of 1. Since margins are normalized,

∑
h∈H αh = 1, this means that the margin of x drops to

1/t after t rounds of training. The drop in predicted accuracy by the generalization bounds (1) and (2)
seem unreasonable if we think about the data point x (the error is expected to grow as t2 or t). A
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Figure 3: Histogram of base learner predictions for LightGBM on the Forest Cover data set. Only
about 1 in 5000 predictions are larger than 0.95 in absolute value.

possible explanation of the shortcomings of current generalization bounds is thus that they simply
treat base learners as arbitrary functions in X → [−1, 1]. That is, they pay no attention to the fact
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that base learners trained by gradient boosters make very small predictions on almost all data points.
To further support this claim, we note that the proof of the previous generalization lower bound (3) as
well as our improved bound (4) construct a set of base learnersH where all h ∈ H make predictions
among {−1, 1}, i.e. they make no predictions of small magnitude. This further supports the belief
that an explanation based on the magnitude of predictions may be found, which is the focus of the
next section. We have used a tree size of 256 as large tree sizes are used in practice and provide
better test errors. Furthermore, the phenomena we are studying is clearer for large tree sizes. In
Section 3 we show results for both large trees and stumps. We note that base learners with real valued
predictions were first considered by Schapire and Singer [15] that generalized the generalization
bound of Schapire et al. [14] to work with real values but without otherwise changing the bound.

3 Refined margin bounds

Motivated by the empirical observations in the previous section, we prove a more refined margin
based generalization bound for voting classifiers. Define from a voting classifier f the notation
∆(x, h) := |f(x)−h(x)|. Intuitively, if a voting classifier f has a small margin on a training point x,
but this is the result of using mostly base learners h that make small predictions (in absolute value),
then ∆(x, h) will be small for most h in f . Also define from a voting classifier f =

∑
h αhh the

distribution Q(f) over base learners, which simply returns h with probability αh. With this notation,
our new generalization bound states that for any distribution D over X × {−1, 1} and for any margin
θ, it holds with high probability over a set S ∼ Dm that all voting classifiers f satisfy:

LD(f) ≤ LθS(f) +O

(
N lg |H| lgm

m
+

√
LθS(f) · N lg |H| lgm

m

)
, (5)

where N = max{θ−2 ·
(
E(x,y)∼S

[
Eh∼Q(f)

[
∆(x, h)2

](lg(16m))/2
])2/(lg(16m)

, θ−1}.

Never worse. Comparing our bound to the k’th margin bound (2), we see that (5) equals the k’th
margin bound when N = Θ(θ−2). First, we argue that we always have N = O(θ−2), i.e. (5)
is never worse than the k’th margin bound. To see this, observe that ∆(x, h) ≤ 2 since all h ∈
H produce values in [−1, 1]. Thus, ∆(x, h)2 ≤ 4 and Eh∼Q(f)

[
∆(x, h)2

]
≤ 4. This implies(

E(x,y)∼S

[
Eh∼Q(f)

[
∆(x, h)2

](lg(16m))/2
])2/ lg(16m)

≤ 4, hence we always have N = O(θ−2).

Potentially much better. Next, we demonstrate that our new bound may be significantly better than
previous generalization bounds for very natural voting classifiers. For any desired margin θ ∈ (0, 1],
consider an example of a voting classifier f(x) =

∑1/θ
i=1 θhi(x) such that for each training point

(x, y), there is exactly one hypothesis hi with hi(x) = y and all others have hj(x) = 0. This example
is quite similar to the empirical performance of LightGBM seen in Section 2, where most hypotheses
make small predictions on most training points. The voting classifier f has a margin of θ on all training
points and thus the k’th margin bound predicts a generalization error of O(lg |H| lgm/(mθ2)) (since
LθS(f) = 0 when all points have margin θ). Let us now estimate N in (5). First, fix an (x, y) ∈ S
and consider the expression Eh∼Q(f)

[
∆(x, h)2

](lg(16m))/2
=
(∑1/θ

i=1 θ ·∆(x, hi)
2
)(lg(16m))/2

=(
θ · (1− θ)2 + (1− θ)θ2

)(lg(16m))/2
< θ(lg(16m))/2. Since this holds for every (x, y), we have(

E(x,y)∼S

[
Eh∼Q(f)

[
∆(x, h)2

](lg(16m))/2
])2/ lg(16m)

< θ. Plugging that into the definition of N ,

we see that N ≤ max{θ−2 · θ, θ−1} = θ−1. That is, the dependency on the margin has improved by
a factor θ and our new generalization bound predicts LD(f) = O(lg |H| lgm/(mθ)).

Comparison to earlier work. In recent work, Cortes et al. [3], also proved refined generalization
bounds for gradient boosters. Their works shows, that if the q-norm of the vector of leaf predictions
for each tree trained by a gradient booster is small, then the trees have smaller VC-dimension and
hence the voting classifier has better generalization performance (by using previous generalization
bounds). Note that their bound only depends on the leaf predictions and does not take into account
the number of training points in each leaf. Our experiment in Figure 3 shows that for each base
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Figure 4: Generalization penalty N on the Forest Cover data set when choosing θ as the (pm)’th
smallest margin for p ∈ [0, 1].

learner, only a tiny fraction (about 1 in 5000) of training points end in a leaf with large prediction,
which our bound takes into account.

Table 1: Comparing AdaBoost with LightGBM. In this experiment the trees used as bare learners are
of increasing size relative to the data size. Each value shown is the average over several runs and each

run use 200 rounds of boosting. Moment is
(
E(x,y)∼S

[
Eh∼Q(f)

[
∆(x, h)2

](lg(m))/2
])2/ lg(m)

.

Data Set Alg. Train Err Test Err Mean Margin Max Depth Mean Depth Moment

Forest ada 0.0001 0.0331 0.1696 22.0 12.4 0.969
lgb 0.0002 0.0291 0.0280 23.7 13.9 0.025

Boone ada 0.00009 0.0589 0.311 17.5 10.2 0.917
lgb 0.00009 0.0552 0.0818 17.6 10.4 0.0564

Higgs ada 0.178 0.277 0.0747 24.9 13.5 0.99
lgb 0.185 0.251 0.018 26 14.7 0.0289

Diabetes ada 0 0.268 0.148 3.5 2.63 0.973
lgb 0.0264 0.26 0.142 3.5 2.63 0.214

Empirical evaluation. Our new generalization bound carefully takes the magnitude of predictions
made by the base learners into account, thus there is hope that (5) may better explain the experiments
in the previous section. To test this, we have run the experiments again, this time plotting the value of
N as a function of p = LθS(f). That is, we notice that for two voting classifiers produced by AdaBoost
and LightGBM, respectively, the only thing that varies in (5) when choosing the (pm)’th smallest
margin, i.e. p = LθS(f), is the value of N . Thus smaller values of N imply better generalization
according to the theory. Figure 4 shows the result of the experiment. Quite remarkably, the relative
ordering of AdaBoost and LightGBM match the observed test errors from Figure 1a much better, i.e.
LightGBM slightly outperforms AdaBoost. We have repeated the same experiment on more data sets
and summarized the results in Table 1. The parameters for the experiments are shown in Table 2

Table 2: Data sets, all freely available, and parameters considered in the experiments. LR means
learning rate as used in LightGBM. For each experiment we randomly split the data set in half to get
a training set and a test set of equal size. For the Higgs dataset of size 11 million, we sample a subset
of 2 million data points that we randomly split evenly into train and test set. For Forest Cover only
the first two classes are used to make it into a binary classification problem.

Data Set Data Size Tree Size LR Stumps LR Runs

Diabetes 768 5 0.1 0.1 100
Boone 65032 96 0.2 0.6 5
Forest Cover 495141 256 0.3 0.3 5
Higgs 2000000 512 0.3 0.3 5
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In all experiments, the margin distribution, here represented by the mean margin, is much worse for
the LightGBM classifier, while the height of the trees used, both the max height and the mean height,
is larger. Still the LightGBM classifier generalizes at least as well (in fact, slightly better) than the
AdaBoost classifier. Table 1 also shows that the moment value from our generalization bound is
significantly better for the LightGBM classifier. When we consider our new generalization bound,
the theory nicely matches the observed test errors in the same way as was shown in Figure 4 for all
data sets. While not final proof that this is the real or only explanation, it suggests that the success
of gradient boosters, despite having poor margins, may be explained by the many small predictions
made by the base learner trees. The standard deviations of the test statistics are left out since they are
extremely small for the three large data sets (and we have run 100 iterations of the small Diabetes
data set). For completeness we have included the same experiment replacing the large trees with
stumps and shown the results in Table 3. The results for stumps match those from the larger trees,
just with a smaller difference in margins and moment values.

Table 3: Experiments with stumps as base learners. Same setup as in Table 1.
Data Set Alg. Train Err Test Err Mean Margin Moment

Forest ada 0.223 0.224 0.0754 0.987
lgb 0.217 0.218 0.0225 0.0986

Boone ada 0.0781 0.0817 0.138 0.975
lgb 0.0669 0.0744 0.0422 0.239

Higgs ada 0.309 0.31 0.059 0.986
lgb 0.301 0.302 0.0309 0.329

Diabetes ada 0.161 0.246 0.108 0.976
lgb 0.176 0.238 0.138 0.299

4 Generalization Bound Proof

This section is devoted to the proof of our refined margin based generalization bound for voting
classifiers, presented hereafter as Theorem 1. First we recollect some notation. Let X be some ground
set, D a distribution over X × [−1, 1], H ⊆ X → [−1, 1], and C = C(H) be the convex hull of H.
Fix a voting classifier f , then there exists a sequence 〈αh〉h∈H ∈ RH+ such that

∑
h∈H αh = 1 and

f =
∑
h∈H αh · h. Thus f implicitly defines a distribution Q = Q(f) over H, where Prh∼Q[h =

h′] = αh′ for all h′ ∈ H. Finally, let ∆ : X ×H → R be defined by ∆(x, h) := |f(x)− h(x)| for
every x ∈ X , h ∈ H. We show the following.
Theorem 1. Let D be a distribution over X × {−1, 1} where X is some ground set, and let
H ⊆ X → [−1, 1]. For every δ > 0, it holds with probability at least 1− δ over a set of m samples
S ∼ Dm, that for every voting classifier f ∈ C(H) and every margin θ > 0, we have

LD(f) ≤ LθS(f) +O

(
N lg |H|+ lg(1/δ)

m
+

√
N lg |H|+ lg(1/δ)

m
LθS(f)

)
, (6)

where N = O

(
max{θ−2 ·

(
E(x,y)∼S

[
Eh∼Q(f)

[
∆(x, h)2

](lg(16m))/2
])2/(lg(16m)

, θ−1} lgm

)
.

Denote by E = E(δ) the event that for every voting classifier f and every margin θ > 0, the bound in
(6) holds with N as defined in Theorem 1. In these notations we prove that PrS∼Dm [E ] ≥ 1− δ.

Proof overview. Inspired by techniques presented by Schapire et al. [14] and employed by Gao and
Zhou [6], our proof incorporates a discretization of the set of all voting classifiers overH to a discrete
net of classifiers, such that, loosely speaking, every voting classifier overH can be approximated by
a classifier that belongs to the net, and in addition, the size of the net is not too big, and thus union
bounding over the net yields the desired probability bounds. Thus, intuitively speaking, by randomly
rounding every voting classifier f to the net we get an upper bound on the out of sample error for
f . More specifically, N ∈ N+ be some positive integer. We define a net CN of voting classifier
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by CN :=
{

1
N

∑
j∈[N ] hj : 〈hj〉j∈[N ] ∈ HN

}
. For every voting classifier f overH, we then give a

randomized rounding scheme that essentially associates a random net element g ∈ CN with f , and
show that with high probability the out of sample error with respect to g well-approximates that of f .
By choosing N carefully and union bounding over CN we get an upper bound on the out of sample
error for all voting classifiers f . The crux of the proof lies in carefully choosing the size of the net,
namely N . Loosely speaking, the net size N has to be large enough, so that the net is rich enough to
approximate every voting classifier well, but on the other hand small enough, so that union bounding
over the net does not incur too large a cost for the probability bound. By subtly choosing N and
proving refined bounds on the rounding scheme we get the bound in Theorem 1.

Formally we define for everyN ∈ N+, the event EN to be the set of all samples S ∈ (X ×{−1, 1})m
satisfying that for all voting classifiers g ∈ CN and integer ` ∈ [0, N ] it holds that

L`/ND (g) ≤ L`/NS (g) +
8 ln(2δ−1N(N + 1)2|H|N )

m
+ 4

√
ln(N(N + 1)2|H|N/δ)

m
L`/NS (g) ;

and

Pr
(x,y)∼D

[ |f(x)−g(x)| > `/N ] ≤ 2 Pr
(x,y)∼S

[ |f(x)−g(x)| > `/N ]+
8 ln(4δ−1N(N + 1)2|H|N )

m
.

Intuitively speaking, for S ∈ EN , the first bound ensures a good generalization bound for every voting
classifier g in the net, whereas the second bound shows that g approximates f over D almost as well
as it approximates f over S. In turn these two bounds imply that the behavior of f, g over S predicts
their behavior over D. As

∑∞
N=1

1
N(N+1) = 1, the following lemma implies Theorem 1 by applying

a union bound.
Lemma 2. For every N ∈ N+ we have Pr

S∼Dm
[EN ] ≥ 1− δ

N(N+1) , and moreover,
⋂

N∈N+

EN ⊆ E .

The proof of the lemma is quite involved technically, and most of the proof is thus deferred to the
appendix . Our main novelty lies in showing that for our choice of N = N(f, θ), for every sample
set S ∈ supp(Dm), with very high probability over the choice of a point x ∈ X and a net-classifier
g ∈ CN , g approximates f . In turn, this implies that if S ∈ ⋂N∈N+ EN , then for every voting
classifier f and θ > 0, f is well-approximated by a randomized rounding to the net CN . Formally we
show the following for every f and θ.
Lemma 3. Pr(x,y)∼S

g∼QN

[ ∆(x, g) > 49θ/100] ≤ 1
m2 , where

N = N(f, θ) := lg(16m) ·max{256θ−1‖∆(x, h)‖lg(16m), 100/θ ,

128eθ−2 ·
(

E
(x,y)∼S

[
E

h∼Q

[
∆(x, h)2

](lg(16m))/2
])2/(lg(16m)

} .

Proof. Let Z = ∆(x, g), then for every integer r ≥ 1 we conclude from Markov’s inequality that

Pr
(x,y)∼S
g∼QN

[ Z > 49θ/100] = Pr
(x,y)∼D
g∼QN

[Zr > (49θ/100)r] ≤
(

100

49θ

)r
‖Z‖rr . (7)

It is therefore enough to show ‖Z‖rr ≤
(

49θ
100

)r
m−2 for some positive integer r ≥ 1. Let r =

2 · dlg(4m)/2e, then r is an even integer, satisfying lg(4m) = 2 lg(4m)/2 ≤ r ≤ lg(4m) + 2 ≤ N .
Since r is even, then for g = 1

N

∑
j∈[N ] hj we get that

Zr = Z(x, g)r =

 1

N

∑
j∈[N ]

(f(x)− hj(x))

r

=
1

Nr

∑
T=(ji)i∈[r]∈[N ]r

∏
i∈[r]

(f(x)− hji(x)) .

For every T = (ji)i∈[r] ∈ [N ]r let D(T ) := {j ∈ [N ] : ∃i ∈ [r].ji = j} be the set of distinct
indices occurring in T , and for every j ∈ [N ], let cT (j) := |{i ∈ [r] : ji = j}| be the number of
times j occurs in T . Then in these notations we have

Zr =
1

Nr

∑
T∈[N ]r

∏
j∈D(T )

(f(x)− hj(x))cT (j) .

8



As h1, . . . , hN are chosen independently, we get that

E
(hk)k∈[N]∼QN

[Zr] =
1

Nr

∑
T∈[N ]r

∏
j∈D(T )

E
(hk)k∈[N]∼QN

[
(f(x)− hj(x))cT (j)

]
.

Let T ∈ [N ]r, and assume that for some j ∈ D(T ) we have cT (j) = 1, then

E
(hk)k∈[N]∼QN

[
(f(x)− hj(x))cT (j)

]
= E
h∼Q

[f(x)− h(x)] = f(x)− E
h∼Q

[h(x)] = f(x)−
∑
h∈H

αhh(x) = 0 ,

Denote T := {T ∈ [N ]r : ∀j ∈ D(T ). cT (j) > 1}, then

E
(hk)k∈[N]∼QN

[Zr] =
1

Nr

∑
T∈T

∏
j∈D(T )

E
(hk)k∈[N]∼QN

[
(f(x)− hj(x))cT (j)

]
=

1

Nr

∑
T∈T

∏
j∈D(T )

E
h∼Q

[
∆(x, h)cT (j)

]
.

(8)

By Lyapunov’s Theorem (see, e.g. [12]), Eh∼Q[∆(x, h)ξ] is logarithmic convex for ξ ∈ [1,+∞),
and as cT (j) ≥ 2 for all j ∈ D(T ) we get that∏

j∈D(T )

E
h∼Q

[
∆(x, h)cT (j)

]
≤ E
h∼Q

[
∆(x, h)2

]|D(T )|−1 E
h∼Q

[
∆(x, h)r−2|D(T )|+2

]
.

Plugging into (8) we get that

E
(hk)k∈[N]∼QN

[Zr] ≤ 1

Nr

∑
T∈T

E
h∼Q

[
∆(x, h)2

]|D(T )|−1 E
h∼Q

[
∆(x, h)r−2|D(T )|+2

]
. (9)

For every d ∈ N denote Td := {T ∈ T : |D(T )| = d}. Since for every T ∈ T and every j ∈ D(T ),
we know that cT (j) ≥ 2, then for every d > r/2 we get that Td = ∅. Therefore T =

⋃· d∈[r/2] |Td|.
Moreover, for every d ∈ [r/2] and every T ∈ Td, we have

E
h∼Q

[
|h(x)|2

]|D(T )|−1 E
h∼Q

[
|h(x)|r−2|D(T )|+2

]
= E
h∼Q

[
|h(x)|2

]d−1 E
h∼Q

[
|h(x)|r−2d+2

]
.

We therefore refine (9) to get

E
(hk)k∈[N]∼QN

[Zr] ≤ 1

Nr

∑
d∈[r/2]

|Td| E
h∼Q

[
∆(x, h)2

]d−1 E
h∼Q

[
∆(x, h)r−2d+2

]
. (10)

Claim 4. For every d ∈ [r/2], |Td| ≤ rr
√

2eπr
(
Ne
r

)d
.

Proof. Fix some d ∈ [r/2]. There are at most
(
N
d

)
ways to choose a subset Y ⊆ [N ] such that

|Y | = d. Once such a set Y is fixed, there are at most
(
d+(r−2d)−1

r−2d

)
solution to the equation∑

j∈Y yj = r under the constraint that yj ∈ N \ {0, 1} for all j ∈ Y . Moreover, once {yj}j∈Y is
fixed, there are r! ·∏j∈Y (yj !)

−1 ways to form a sequence T satisfying that D(T ) = Y , cT (j) = yj
for all j ∈ Y and cT (j) = 0 otherwise. Note that

∏
j∈Y (yj !) ≥ ((r/d)!)d for every choice of

{yj}j∈Y , and therefore

|Td| ≤
(
N

d

)
·
(
r − d− 1

r − 2d

)
· r!

((r/d)!)d
≤
(
Ne

d

)d
· 2r−d ·

√
2eπr(r/e)r

(
√

2π(r/d)(r/(ed))r/d)d

≤
√

2eπr (Ne)
d · rr−d ≤ rr

√
2eπr

(
Ne

r

)d

9



Plugging into (10) we conclude that

E
(hk)k∈[N]∼QN

[Zr] ≤ 1

Nr

∑
d∈[r/2]

rr
√

2eπr

(
Ne

r

)d
E

h∼Q

[
∆(x, h)2

]d−1 E
h∼Q

[
∆(x, h)r−2d+2

]
=
√

2eπr
( r
N

)r ∑
d∈[r/2]

(
Ne

r

)d
E

h∼Q

[
∆(x, h)2

]d−1 E
h∼Q

[
∆(x, h)r−2d+2

]
As

(
Ne
r

)ξ
,Eh∼Q

[
∆(x, h)2

]ξ−1
,Eh∼Q

[
∆(x, h)r−2ξ+2

]
are all logarithmic convex for ξ ∈

[1, r/2], their product is also logarithmic convex over that range, and thus gets its maximum on either
1 or r/2. Concluding we get that

E
(hk)k∈[N]∼QN

[Zr] ≤ r

2
·
√

2eπr
( r
N

)r ((Ne
r

)
E

h∼Q
[∆(x, h)r] +

(
Ne

r

)r/2
E

h∼Q

[
∆(x, h)2

]r/2)
.

Taking the expectation over (x, y) ∼ D gives

‖Z‖rr ≤
r

2

√
2eπr

( r
N

)r ((Ne
r

)
‖∆(x, h)‖rr +

(
Ne

r

)r/2
E

(x,y)∼D

[
E

h∼Q

[
∆(x, h)2

]r/2])
(11)

To finish the proof of Lemma 3, we show that our bound on N implies that ‖Z‖rr ≤
(

49θ
100

)r
m−2.

Denote

Ψ1 =
r

2
·
√

2eπr
( r
N

)r
·
(
Ne

r

)
‖∆(x, h)‖rr =

r

2
·
√

2eπr

(
r‖∆(x, h)‖r

N

)r
·
(
Ne

r

)
Ψ2 =

r

2
·
√

2eπr
( r
N

)r ((Ne
r

)r/2
E

(x,y)∼D

[
E

h∼Q

[
∆(x, h)2

]r/2])
Plugging into (11) we get that ‖Z‖rr ≤ Ψ1 + Ψ2.

We will show that max{Ψ1,Ψ2} ≤
(

49θ
100

)r · 1
2m2 , which proves the claim. To bound Ψ1, note first

that Ψ1 decreases as a function of N (since r ≥ 2). Since N ≥ 256θ−1 lg(16m) · ‖∆(x, h)‖lg(16m)

we get that

Ψ1 ≤
r

2
·
√

2eπr

(
r · ‖∆(x, h)‖r

256θ−1 lg(16m) · ‖∆(x, h)‖lg(16m)

)r
·
(

256θ−1 lg(16m) · ‖∆(x, h)‖lg(16m) · e
r

)
Since r < lg(16m), and by monotonicity of norms, ‖∆(x, h)‖r ≤ ‖∆(x, h)‖lg(16m) ≤ 2, where
the last inequality is due to the fact that |f(x) − h(x)| ≤ 2 for all h ∈ H, x ∈ X . Moreover,
lg(4m) ≤ r ≤ lg(16m) ≤ 2(lg(4m)), therefore

Ψ1 ≤
r

2
·
√

2eπr

(
θ

256

)r
· 1024eθ−1

≤
(

49θ

100

)r
· 3r3/2125−r ·

(
1024eθ−1

)
≤
(

49θ

100

)r
· 3r3/264− lgm125−2 ·

(
1024eθ−1

)
≤
(

49θ

100

)r
· 1

5
lg3/2(4m) ·m−6θ−1 ≤

(
49θ

100

)r
· 1

2m2
· 1

2
(lg(4m)/m)3/2(m5/2θ)−1

For large enoughm, we have that lg(4m)/m ≤ 5/8, and therefore (lg(4m)/m)3/2 ≤ 1/2. Since θ ≥
1/m we get that Ψ1 ≤

(
49θ
100

)r · 1
2m2 . We now turn to bound Ψ2. Recall that N ≥ 128eθ−2 lg(16m) ·(

E(x,y)∼D

[
Eh∼Q

[
∆(x, h)2

]lg(16m)/2
])2/ lg(16m)

, and therefore

Ψ2 ≤ 3r3/2

 erE(x,y)∼D

[
Eh∼Q

[
∆(x, h)2

]r/2]2/r
128eθ−2 lg(16m)

(
E(x,y)∼D

[
Eh∼Q [∆(x, h)2]

lg(16m)/2
])2/ lg(16m)


r/2

≤
(

49θ

100

)r
· 3r3/2

 rE(x,y)∼D

[
Eh∼Q

[
∆(x, h)2

]r/2]2/r
30 lg(16m)

(
E(x,y)∼D

[
Eh∼Q [∆(x, h)2]

lg(16m)/2
])2/ lg(16m)


r/2
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Since r < log(16m), and by monotonicity of norms of random variables, we get that

E
(x,y)∼D

[
E

h∼Q

[
∆(x, h)2

]r/2]2/r

≤ E
(x,y)∼D

[
E

h∼Q

[
∆(x, h)2

]log(16m)/2
]2/ log(16m)

.

Therefore

Ψ2 ≤
(

49θ

100

)r
· 3r3/2 (30)

−r/2 ≤
(

49θ

100

)r
· 3r3/2 (30)

−(lgm)/2−1 ≤
(

49θ

100

)r
· 1

2m2
· 1

5
r3/2m−2/5

Similarly to before, for large enough m, lg3/2(4m) ·m−2/5 ≤ 5, and therefore we conclude that
Ψ2 ≤

(
49θ
100

)r · 1
2m2 , which completes the proof of the lemma.

5 Generalization lower bound

In this section we state and prove our new generalization lower bound, presented as Theorem 5.
Theorem 5. For every large enough integer N , every θ ∈ (1/N, 1/40), τ ∈ [0, 1] and every(
θ−2 lnN

)1+Ω(1) ≤ m ≤ 2N
O(1)

, if lnN lnm
mθ2 ≤ τ ≤ 1, then there exist a set X , a hypothesis setH

over X and a distribution D over X × {−1, 1} such that ln |H| = Θ(lnN) and with probability at
least 1/100 over the choice of samples S ∼ Dm there exists a voting classifier fS ∈ C(H) such that

1. LθS(fS) ≤ τ ; and

2. LD(fS) ≥ LθS(fS) + Ω

(
ln |H| lnm
mθ2 +

√
τ ln(τ−1) · ln |H|

mθ2

)
.

Our proof is inspired by the constructions in [9, 8] and makes use of the following lemma, whose
proof can be found in [8].
Lemma 6. For every θ ∈ (0, 1/40), δ ∈ (0, 1) and integers d ≤ u, there exists a distribution
µ = µ(u, d, θ, δ) over hypothesis setsH ⊂ X → {−1, 1}, where X is a set of size u, such that the

following holds for N = Θ
(
θ−2 ln d ln(θ−2dδ−1)eΘ(θ2d)

)
.

1. For allH ∈ supp(µ), we have |H| = N ; and

2. For every labeling ` ∈ {−1,+1}u, if no more than d points x ∈ X satisfy `(x) = −1, then

Pr
H∼µ

[∃f ∈ C(H) : ∀x ∈ X . `(x)f(x) ≥ θ] ≥ 1− δ ,

We start by describing the outlines of the proofs. To this end fix some integer N , and fix θ ∈
(1/N, 1/40). Let u be an integer, and let X = {ξ1, . . . , ξu} be some set with u elements. The
distribution D over X × {−1, 1}, is simply the uniform distribution over X × {1}. That is for every
i ∈ [u] and y ∈ {−1, 1}, PrD[(ξi, y)] = 1+y

2u . The following claim is straightforward.

Claim 7. For every f : X → R we have Pr
(x,y)∼D

[yf(x) < 0] = 1
u

∑
i∈[u] 1f(ξi)<0.

We will show that with some constant probability over a random choice S ∼ Dm, an adversarial
voting classifier has a high generalization probability. We additionally show existence of a hypothesis
set Ĥ such that with very high (constant) probability over a random choice of ` ∈ {−1, 1}u, C(Ĥ)
contains a voting classifier that attains high margins with ` over the entire set X . Finally, we conclude
that with positive probability over a random choice of S ∼ Dm both properties are satisfied.

To prove existence of a “rich” yet small enough hypothesis set Ĥ we apply Lemma 6 together with
Yao’s minimax principle. In order to ensure that the hypothesis sets constructed using Lemma 6 is
small enough, and specifically has size NO(1), we need to focus our attention on sparse labelings
` ∈ {−1, 1}u only. That is, the labelings cannot contain more than lnN

θ2 entries equal to −1. To this
end we will focus on d-sparse vectors. More formally, we define a set of labelings of interest L(u, d)
as follows.

L(u, d) := {` ∈ {−1, 1}u : |{i ∈ [u] : `i = −1}| ≤ d} . (12)
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We next show that there exists a small enough (with respect to N ) hypothesis set Ĥ that is rich
enough. That is, with high probability over ` ∈ L(u, d), there exists a voting classifier f ∈ C(Ĥ) that
attains high minimum margin with ` over the entire set X . Note that the following result, similarly to
Lemma 6 does not depend on the size of X , but only on the sparsity of the labelings in question.

Claim 8. If u ≤ 2N
O(1)

and d ≤ lnN
θ2 then there exists a hypothesis set Ĥ such that ln |Ĥ| = Θ (lnN)

and
Pr

`∈RL(u,d)
[∃f ∈ C(Ĥ) : ∀i ∈ [u]. `if(ξi) ≥ θ] ≥ 1− 1/N .

Proof. Let µ = µ(u, d, θ, 1/N), be the distribution whose existence is guaranteed in Lemma 6. Then
for every labeling ` ∈ L(u, d), with probability at least 99/100 over H ∼ µ, there exists a voting
classifier f ∈ C(H) that has minimal margin of θ. That is, for every i ∈ [u], `if(ξi) ≥ θ. By Yao’s
minimax principle, there exists a hypothesis set Ĥ ∈ supp(µ) such that

Pr
`∈RL(u,d)

[∃f ∈ C(Ĥ) : ∀i ∈ [u]. `if(xi) ≥ θ] ≥ 1− 1/N .

Moreover, since Ĥ ∈ supp(µ), then |Ĥ| = Θ
(
θ−2 lnu · ln(Nθ−2 lnu) · eΘ(θ2d)

)
. Since θ ≥ 1/N ,

lnu ≤ NO(1), and d ≤ lnN
θ2 , and thus eθ

2d = N we get that there exists some universal constant
C > 0 such that |Ĥ| = Θ(NC), and thus ln |Ĥ| = Θ(lnN).

Let u = lnN
16τθ2 , and let d = lnN

16e28θ2 . We next introduce some notation. With every set T ⊆ [u] we
associate the classifier hT : X → {−1, 1} satisfying that for every x ∈ X , hT (x) = −1 if and only
if x ∈ T . For every m-point sample S ∈ (X × {1})m and every i ∈ [u], let bSi be the number of
times ξi is sampled into S. If the set S is clear from context, we simply denote bi. In these notations,
LS(hT ) = 1

m

∑
i∈T b

S
i for every T ⊆ [u]. Given a sample set S Let T ∗ = T ∗(S) ⊆ [u] be a random

set of size d that minimizes LS(hT∗(S)) =
∑
i∈T∗(S) b

S
i . We will show the following.

Lemma 9. With probability at least 1/100 over the choice of sample S ∼ Dm, the following holds.

1. There exists a voting classifier fS ∈ C(Ĥ) such that fS(ξi)hT∗(S)(ξi) ≥ θ for all i ∈ [u];
and

2. LS(hT∗(S)) ≤ d
u

(
1−

√
ln(u/2d)

9m/u

)
.

Note that as τ ≥ lnN lnm
mθ2 we know that u = lnN

16τθ2 ≤ m
16 lnm and therefore ln(u/2d)

9m/u ≤
u ln(e28/τ)

9m ≤
ln(e28/τ)
144 lnm ≤ 1

2 for large enough N , and therefore the bound in the second part of Lemma 9 is
meaningful. We first show that the lemma implies Theorem 5.

Proof of Theorem 5. Fix some lnN lnm
mθ2 ≤ τ ≤ 1. From Lemma 9 with probability 1/100 over the

choice of a sample S ∼ Dm there exists a voting classifier fS ∈ C(Ĥ) such that fS(ξi)hT∗(S)(ξi) ≥
θ for all i ∈ [u] and moreover LS(hT∗(S)) ≤ τ . Consider fS , and note first that

LD(fS) =
1

u

∑
i∈[u]

1fS(ξi)<0 =
1

u

∑
i∈[u]

1hT∗(S)(ξi)<0 =
|T ∗(S)|

u
=
d

u
.

Additionally, since for every i ∈ [u], fS(ξi) ≤ 0 if and only if fS(ξi) ≤ θ, then

LθS(fS) = LS(fS) = LS(hT∗(S)) ≤
d

u

(
1−

√
ln(u/2d)

9m/u

)
≤ d

2u
≤ τ .

Summing up we get also that

LD(fS)− LθS(fS) ≥ d

u

√
ln(u/2d)

9m/u
= Ω

(
τ

√
u ln(τ−1)

m

)
= Ω

(√
lnNτ ln(τ−1)

mθ2

)
.
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For the rest of the section we therefore prove Lemma 9. First note that since D is uniform over
X × {1}, and since given S ∼ Dm, T ∗ is sampled uniformly over all subsets T ∈

(
[u]
d

)
such that

the sum
∑
i∈T b

S
i is minimized, we get that for every T ∈

(
[u]
d

)
, PrS∼Dm [T ∗(S) = T ] =

(
u
d

)−1
. In

other words, for every h ∈ L(u, d), PrS∼Dm [hT∗(S) = h] =
(
u
d

)−1
. Therefore hT∗(S) is uniformly

distributed over L(u, d). From claim 8 it follows that for large enough N , the probability over the
choice of S ∼ Dm that there exists fS ∈ C(Ĥ) such that fS(ξ)hT∗(S)(ξi) ≥ θ for all i ∈ [u] is at
least 99/100. In order to prove Lemma 9, it is therefore enough to show that with probability at

least 1/50 over the choice of S ∼ Dm, LS(hT∗(S)) ≤ d
u

(
1−

√
ln(u/2d)

9m/u

)
. We will show that with

probability at least 1/50 over the choice of S there exist i1, . . . , id ∈ [u] such that for every j ∈ [d],

bSij ≤ m
u

(
1−

√
ln(u/2d)

9m/u

)
. Since T ∗(S) minimizes

∑
i∈T∗(S) b

S
i , it follows that

LS(hT∗(S)) =
1

m

∑
i∈T∗(S)

bSi ≤
1

m

∑
j∈[d]

bSij ≤
d

u

(
1−

√
ln(u/2d)

9m/u

)
.

To this end, fix some i ∈ [u]. For every j ∈ [m], let ISj be an indicator for the event that the
jth element selected into S is (ξi, 1). Then bSi =

∑
j∈[m] I

S
j , and as D is uniform, we get that

E[bSi ] =
∑
j∈[m] E[ISj ] = m/u. We will use the following reverse Chernoff bound and show that

with good enough probability, bSi is far from its expectation.
Lemma 10. Letm ∈ N+ and let I1, . . . , Im be independent indicator random variables with success
probability 1/u. Then for every

√
3/(m/u) ≤ δ ≤ 1/2 we have

Pr

∑
j∈[m]

Ij ≤ (1− δ)mp

 ≥ e−9mδ2/u .

Denote δ :=
√

ln(u/2d)
9m/u . As we have shown earlier, δ ≤ 1/2. Moreover, since u

2d ≥ e27τ−1 ≥ e27,

we get that δ ≥
√

27
9m/u =

√
3

m/u . We can therefore conclude from Lemma 10 that

Pr[bSi ≥ (1− δ)m/u] ≥ e−9mδ2/u = e− ln(u/2d) =
2d

u
.

Let BSi be the indicator for the event bSi ≥ (1 − δ)m/u, then E[BSi ] ≥ 2d
u . Finally, let BS =∑

i∈[u]B
S
i , then E[BS ] ≥ 2d. We will show that with probability at least 1/8 ≥ 1/50 we have

BS ≥ d. This implies that there exist i1, . . . , id such that for every j ∈ [d], bSij ≤ m
u (1− δ) =

m
u

(
1−

√
ln(u/2d)

9m/u

)
. To show BS ≥ d with reasonable probability, we use the Paley-Zigmund

inequality.

Pr[BS ≥ d] = Pr

[
BS ≥ 1

2
E[BS ]

]
≥ E[BS ]2

4E[(BS)2]
.

Since BS1 , . . . , B
S
u are negatively correlated, we have that E[BSi B

S
j ] ≤ E[BSi ][BSj ] = E[BS1 ]2 for

every i, j ∈ [u]. Moreover, as BS1 , . . . , B
S
u are indicators, E[(BSi )2] = E[BSi ] for all i ∈ [u].

Therefore

E[(BS)2] =
∑
i,j∈[u]

E[BSi B
S
j ] ≤ (u2 − u)E[BS1 ]2 + uE[BSi ]

≤ u2E[BS1 ]2 + E[BS ] = E[BS ]2 + E[BS ] ≤ 2E[BS ]2 ,

where the last inequality is due to the fact that E[BS ] ≥ 2d ≥ 1. We conclude that

Pr[BS ≥ d] ≥ E[BS ]2

4E[(BS)2]
≥ 1

8
.

The proof of the lemma, and therefore of Theorem 5 is now complete.
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Statement of potential broader impact

In this work, we have empirically shown that gradient boosters produce voting classifiers where many
base learners make predictions of small magnitude. We then used this observation to prove stronger
generalization bounds that better explain the practical performance of gradient boosters. We hope and
believe that our findings may not only advance our theoretical understanding of boosting algorithms,
but potentially also lead to algorithms with better accuracy by using regularization inspired by our
new generalization bound or more directly optimizing it.
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A Proof of Lemma 2

We start by handling the first part of the lemma, namely that for every N ∈ N+, with high probability
over S ∼ Dm, S ∈ EN .
Claim 11. For every N ∈ N+, g ∈ CN and ` ∈ [0, N ], with probability at least 1− δ

N(N+1)2|H|N
over S ∼ Dm we have

L`/ND (g) ≤ L`/NS (g) +
8 ln(4δ−1N(N + 1)2|H|N )

m
+ 4

√
ln(4N(N + 1)2|H|N/δ)

m
L`/NS ; (13)

and

Pr
(x,y)∼D

[ |f(x)−g(x)| > `/N ] ≤ 2 Pr
(x,y)∼S

[ |f(x)−g(x)| > `/N ]+
8 ln(4δ−1N(N + 1)2|H|N )

m
.

(14)

We draw the reader’s attention to the fact that by union bounding over all g ∈ CN and ` ∈ [0, N ] we
get that PrS∼Dm [EN ] ≥ 1− δ

N(N+1) for every N ∈ N+, which proves the first part of Lemma 2.The
proof of Claim 11 is quite involved technically, and is therefore deferred to the appendix .

Proof. First note that if L`/ND (g) ≤ 8m−1 ln(4δ−1N(N + 1)2|H|N ) then (13) holds for all S, and
thus with probability 1 over S ∼ Dm. Assume therefore that L`/ND (g) > 8m−1 ln(2δ−1N(N +
1)2|H|N ). Denote S = {(xj , yj)}j∈[m], then

L`/NS (g) = Pr
(x,y)∼S

[yg(x) ≤ `/N ] =
1

m

∑
j∈[m]

1yg(xj)≤`/N .

Moreover E[1yg(xj)≤`/N ] = L`/ND (g) for all j ∈ [m], and therefore E[L`/NS (g)] = L`/ND (g). Let

γ :=

√
2 ln(4N(N+1)2|H|N/δ)

mL`/N
D

. Then γ ∈ (0, 1/2), and therefore a Chernoff bound gives the following

two inequalities.

Pr
S∼Dm

[
L`/NS (g) < (1− γ)L`/ND (g)

]
≤ e−γ2mL`/N

D (g)/2 ≤ δ

4N(N + 1)2|H|N

Pr
S∼Dm

[
L`/NS (g) > 2L`/ND (g)

]
≤ e−mL

`/N
D (g)/3 ≤ δ

4N(N + 1)2|H|N ,

where the last inequality follows from the fact that L`/ND (g) ≥ 8m−1 ln(2δ−1N(N + 1)2|H|N ).
Therefore with probability at least 1− δ/(2N(N + 1)2|H|N ) we get that

L`/ND (g) ≤ (1−γ)−1L`/NS (g) ≤ (1+2γ)L`/NS (g) ≤ (1+2γ)L`/NS (g)+
8 ln(2δ−1N(N + 1)2|H|N )

m
,

(15)
and moreover

γ =

√
2 ln(N(N + 1)2|H|N/δ)

mL`/ND (g)
≤
√

4 ln(N(N + 1)2|H|N/δ)
mL`/NS (g)

(16)

Plugging (16) into (15) and summing up we get

L`/ND (g) ≤ L`/NS (g) +
8 ln(2δ−1N(N + 1)2|H|N )

m
+ 4

√
ln(N(N + 1)2|H|N/δ)

m
L`/NS (g) .
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Next note once again that if Pr(x,y)∼D[ |f(x)− g(x)| > `/N ] ≤ 8m−1 ln(4δ−1N(N + 1)2|H|N )
then (14) holds for all S, and thus with probability 1 over S ∼ Dm. Assume therefore that
Pr(x,y)∼D[ |f(x)− g(x)| > `/N ] > 8m−1 ln(4δ−1N(N + 1)2|H|N ). Similarly to the first part of
the proof a Chernoff bound gives the following inequality.

Pr
S∼Dm

[
Pr

(x,y)∼S
[ |f(x)− g(x)| > `/N ] > 2 Pr

(x,y)∼D
[ |f(x)− g(x)| > `/N ]

]
≤ e−mPr(x,y)∼D[ |f(x)−g(x)|>`/N ]/3 ≤ δ

4N(N + 1)2|H|N ,

where the last inequality follows from the fact that Pr(x,y)∼D[ |f(x) − g(x)| > `/N ] ≥
8m−1 ln(2δ−1N(N+1)2|H|N ). Therefore with probability at least 1−δ/(2N(N+1)2|H|N ) we get
(14). Union bounding we get that with probability with probability at least 1− δ/(N(N + 1)2|H|N )
over the choice of S ∼ Dm we have both (13) and (14).

We turn now to prove the second part of Lemma 2, namely that
⋂
N∈N+ EN ⊆ E . To this end, let

S ∈ ⋂N∈N+ EN . Let f be some voting classifier and let θ > 0. As f is a voting classifier, then there
exists a sequence 〈αh〉h∈H ∈ RH+ such that

∑
h∈H αh = 1 and f =

∑
h∈H αh · h. Thus f implicitly

defines a distribution Q = Q(f) over H, where Prh∼Q[h = h′] = αh′ for all h′ ∈ H. Recall that
∆ : X ×H → R is defined by ∆(x, h) := |f(x)− h(x)| for every x ∈ X , h ∈ H.
Definition 1. Let X be a random variable, and let r ∈ N, then the rth moment of X is defined by
‖X‖rr := E[Xr]. The rth norm of X is defined by ‖X‖r := r

√
E[Xr].

Set hereafter
N := lg(16m) ·max{256θ−1‖∆(x, h)‖lg(16m), 100/θ ,

128eθ−2 ·
(

E
(x,y)∼S

[
E

h∼Q

[
∆(x, h)2

](lg(16m))/2
])2/(lg(16m)

}

The product distributionQN defines a distribution overHN . By identifying anN -tuple h1, . . . , hN ∈
H with the corresponding classifier 1

N

∑
j∈[N ] hj we can think of QN also as a distribution over CN .

We first observe that
LD(f) ≤ Pr

(x,y)∼D,g∼QN
[yf(x) ≤ 0 ∧ yg(x) ≤ θ/2] + Pr

(x,y)∼D,g∼QN
[yf(x) ≤ 0 ∧ yg(x) > θ/2]

≤ Pr
(x,y)∼D,g∼QN

[yg(x) ≤ θ/2] + Pr
(x,y)∼D,g∼QN

[ |f(x)− g(x)| > θ/2]

(17)

To bound the first summand, let ` ∈ [0, N ] be the smallest integer such that θ/2 ≤ `/N . Such `
clearly exists as θ ∈ [0, 1]. Moreover we know that θ/2 ≤ `/N ≤ θ/2 + 1/N ≤ 51θ/100. Since
S ∈ EN we get that

Pr(x,y)∼D
g∼QN

[yg(x) ≤ θ/2] ≤ Pr
(x,y)∼D
g∼QN

[yg(x) ≤ `/N ] = E
g∼QN

[
Pr

(x,y)∼D
[yg(x) ≤ `/N ]

]

≤ E
g∼QN

[
Pr

(x,y)∼S
[yg(x) ≤ `/N ] + εN (g)

]
≤ Pr

(x,y)∼S
g∼QN

[yg(x) ≤ 51θ/100] + E
g∼QN

[εN (g)] ,

where εN (g) = 8 ln(2δ−1N(N+1)2|H|N )
m + 4

√
ln(N(N+1)2|H|N/δ)

m L`/NS (g). Similarly to (17) we get
that

Pr
(x,y)∼S
g∼QN

[yg(x) ≤ 51θ/100] ≤ Pr
(x,y)∼S

[yf(x) ≤ θ] + Pr
(x,y)∼S
g∼QN

[ |f(x)− g(x)| > 49θ/100] ,

and therefore

Pr
(x,y)∼D
g∼QN

[yg(x) ≤ θ/2] ≤ Pr
(x,y)∼S

[yf(x) ≤ θ]+ Pr
(x,y)∼S
g∼QN

[ |f(x)−g(x)| > 49θ/100]+ E
g∼QN

[εN (g)] .

(18)
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Moreover, since S ∈ EN we get the following bound over the second summand in (17).

Pr
(x,y)∼D
g∼QN

[ |f(x)− g(x)| > θ/2] ≤ Pr
(x,y)∼D
g∼QN

[ |f(x)− g(x)| > (`− 1)/N ]

≤ 2 Pr
(x,y)∼S
g∼QN

[ |f(x)− g(x)| > (`− 1)/N ] +
8 ln(2δ−1N(N + 1)2|H|N )

m

≤ 2 Pr
(x,y)∼S
g∼QN

[ |f(x)− g(x)| > 49θ/100] +
8 ln(2δ−1N(N + 1)2|H|N )

m

(19)

Plugging (18) and (19) into (17) we get that

LD(f) ≤ Pr
(x,y)∼S

[yf(x) ≤ θ] + 3 Pr
(x,y)∼S
g∼QN

[ |f(x)− g(x)| > 49θ/100]

+
16 ln(2δ−1N(N + 1)2|H|N )

m
+ E
g∼QN

[√
ln(N(N + 1)2|H|N/δ)

m
L`/NS (g)

] (20)

From Lemma 3 we get that by Jensen’s inequality and sub-additivity of square root

E
g∼QN

[√
ln(N(N + 1)2|H|N/δ)

m
L`/NS (g)

]
≤
√

ln(N(N + 1)2|H|N/δ)
m

E
g∼QN

[
L51θ/100
S (g)

]
≤
√

ln(N(N + 1)2|H|N/δ)
m

(
LθS(f) +

1

m2

)

≤ 1

m
+

√
ln(N(N + 1)2|H|N/δ)

m
LθS(f) ,

(21)

and therefore

LD(f) ≤ LθS(f) +O

(
N lg |H|+ lg(1/δ)

m
+

√
N lg |H|+ lg(1/δ)

m
LθS(f)

)
,

which concludes the proof of Theorem 1.
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