
A Proof of Theorem 1

Proof. We first show (28). By definition of π(w) in (20), we have

∇w log π(w) = ∇w log(g(Ψrw)) +∇w log(π0(w)). (35)

For the second term, by definition of π0 in (19), we have

∇w log(π0(w)) = ∇w log pr0(Ψrw) =
∇wpr0(Ψrw)

pr0(Ψrw)
, (36)

where by definition of pr0(Ψrw) in (17) we have

∇wpr0(Ψrw) =

∫
X⊥

∇wp0(Ψrw + ξ)dξ =

∫
X⊥

ΨT
r ∇xp0(Ψrw + ξ)dξ = ΨT

r ∇xpr0(Ψrw). (37)

The first term ∇w log(g(Ψrw)) in (35) can be derived similarly by the definition of g in (16) and
(17).

Next, we proceed to prove the equivalence (29) and (30) at the first step ` = 0. Then the equivalence
for steps ` > 0 follows by induction. By the parameter decomposition x = xr + x⊥ with xr = Prx,
we denote η0 and η as the prior and posterior for the projected parameter xr, given by

η0(xr) = p0(Prx) and η(xr) = pr(Prx), (38)

where pr is the projected density defined in (13) with optimal profile function g = g given in (16).
Equivalently, by the property of the projection PrPrx = Prx, we have

η(xr) =
1

Zr
g(xr)η0(xr). (39)

We can write the transport map (4) for the projected parameter xr in the steepest direction ϕ0 as

T (xr) = xr + εϕ0(xr), (40)

where ϕ0 is given by
ϕ0(·) = Exr∼η0 [Aηκ(xr, ·)], (41)

with the kernel κ(xr, x̃r) = k(Prx, Prx̃) for any x, x̃ ∈ Rd and the Stein operator

Aηκ(xr, ·) = ∇xr log η(xr)κ(xr, ·) +∇xrκ(xr, ·). (42)

By definition of the kernel in (9), we have

k(Prx, Prx̃)

= exp

(
− 1

h
(Prx− Prx̃)T (Prx− Prx̃)

)
= exp

(
− 1

h
(w − w̃)TΨT

r Ψr(w − w̃)

)
= exp

(
− 1

h
||w − w̃||22

)
(43)

where we used the relation Prx = Ψrw and Prx̃ = Ψrw̃ in the second equality and the orthonormal-
ity ΨT

r Ψr = I in the generalized eigenvalue problem (11) in the third. Therefore, by definition (27),
we have

kr(w, w̃) = κ(xr, x̃r). (44)
Moreover, for the gradient of the kernel we have

∇xrκ(xr, x̃r) = − 2

h
κ(xr, x̃r)(xr − x̃r)

= − 2

h
κ(xr, x̃r)Ψr(w − w̃).

(45)

On the other hand, we have

∇wkr(w, w̃) = − 2

h
kr(w, w̃)(w − w̃), (46)
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which yields
∇wkr(w, w̃) = ΨT

r ∇xrκ(xr, x̃r). (47)

For the posterior η defined in (38), we have

∇xr log η(xr) =
∇xr (g(xr)η0(xr))

g(xr)η0(xr)
, (48)

while for the posterior π defined in (20), we have

∇w log π(w) =
∇w(g(Ψrw)π0(w))

g(Ψrw)π0(w)
. (49)

By chain rule, it is straightforward to see that

∇wg(Ψrw) = ΨT
r ∇xrg(xr). (50)

Under assumption π0(w) = p0(Prx) in Theorem 1, and p0(Prx) = η0(xr) by definition (38), we
have

∇wπ0(w) = ΨT
r ∇xrη0(xr). (51)

Therefore, combining (50) and (51), we have

∇w log π(w) = ΨT
r ∇xr log η(xr). (52)

To this end, we obtain the equivalence of the Stein operators

Aπkr(w, w̃) = ΨT
r Aηκ(xr, x̃r) (53)

for xr = Ψrw and x̃r = Ψrw̃. Since the prior densities η0(xr) = π0(w), we have the equivalence

Ew∼π0
[Aπkr(w, w̃)] = ΨT

r Exr∼η0 [Aηκ(xr, x̃r)], (54)

which concludes the equivalence of the transport map (29) by w = ΨT
r x

r with the same ε at ` = 0.
Moreover, by induction we have

T r` (w`) = ΨT
r T`(Prx

`), (55)

which concludes.

B A linear inference problem

This example is presented to test the accuracy of the proposed algorithm with analytically given
posterior distribution for a linear inference problem. We consider a linear parameter-to-observable
map A : Rd → Rs, which is given by

Ax = O ◦Bx, (56)

where B : x→ u is a linear discrete solution map of the diffusion reaction equation (∆ is the Laplace
operator)

−∆u + u = x, in (0, 1), (57)

with boundary condition u(0) = 0 and u(1) = 1, which is solved by a finite element method.
The continuous parameter x and solution u are discretized by finite elements with piecewise linear
elements in a uniform mesh of size d. x ∈ Rd and u ∈ Rd are the nodal values of x and u. The
parameter x is assumed to follow a Gaussian distribution N (0, C) with covariance C = (−0.1∆ +
I)−1, which leads to a Gaussian parameter x ∼ N (0,Σx), with covariance Σx ∈ Rd×d as a
discretization of C.

O : Rd → Rs in (56) is an observation map that take s components of u that are equally distributed in
(0, 1). For s = 15, we have Ou = (u(1/16), . . . , u(15/16))T . We assume an additive 1% Gaussian
noise ξ ∼ N (0,Σξ) with Σξ = σ2I and σ = max(|Ou|)/100 for data

y = Ax+ ξ, (58)
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then the likelihood function is given by

f(x) = exp

(
−1

2
||y −Ax||2

Σ−1
ξ

)
. (59)

Because of the linearity of the inference problem, the posterior of x is also Gaussian N (xMAP,Σy)

with the MAP point xMAP = ΣyA
TΣ−1

ξ y and covariance

Σy = (ATΣ−1
ξ A+ Σ−1

x )−1. (60)

We run SVGD and pSVGD (projection with r = 8 basis functions and λ9 < 10−4) with 256 samples
and 200 iterations for different dimensions, both using line search to seek the step size ε`. The
RMSE (of 10 trials and their average) of the samples variances compared to the ground truth (60) are
shown in Figure 5, which indicates that SVGD deteriorates with increasing dimension while pSVGD
performs well for all dimensions.
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Figure 5: RMSE of pointwise sample variance in L2-norm, with 256 samples, SVGD and pSVGD
both terminated at ` = 200 iterations, parameter dimension d = 2n + 1, with n = 4, 6, 8, 10.

C Application to COVID-19 modeling

Social distancing has played a key role in flattening the curve of the spread of COVID-19. In this
example, we apply pSVGD to infer a time-dependent parameter that represents the reduction in
contacts due to social distancing, given observation data. We consider a compartmental model with
8 compartments for the modeling of the transmission and outcome of COVID-19, as illustrated by
the diagram in Figure 6. The corresponding model is given by the system of ordinary differential
equations
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Figure 6: Diagram of a compartmental epidemic model with 8 compartments for modeling of
transmission and outcome of infectious diseases such as COVID-19.

CE(t) = (1− α(t))(1− q) I(t)

N
+ (1− α(t))

A(t)

N
,

CQ(t) = (1− α(t))q
I(t)

N
,

dS(t)

dt
= −βCE(t)S(t)− βCQ(t)S(t),

dE(t)

dt
= βCE(t)S(t)− τσE(t)− (1− τ)σE(t),

dQ(t)

dt
= βCQ(t)S(t)− ρηQQ(t)− (1− ρ)γQQ(t),

dA(t)

dt
= (1− τ)σE(t)− γAA(t),

dI(t)

dt
= τσE(t)− πηII(t)− (1− π)γII(t),

dH(t)

dt
= πηII(t) + ρηQQ(t)− νµH(t)− (1− ν)γHH(t),

dR(t)

dt
= γAA(t) + (1− π)γII(t) + (1− ν)γHH(t) + (1− ρ)γQQ(t),

dD(t)

dt
= νµH(t).

(61)

In this model, α(t) ∈ [0, 1] represents the effective contact reduction due to social distancing at time
t, i.e., the fractional reduction in contacts relative to no social distancing. This is the time-varying
parameter we infer. The other parameters are defined as folows: N is the total population for a given
region; β is transmission rate; q is quarantined rate; σ is latency rate; ηI , ηQ are hospitalized rates;
γA, γI , γQ, γH are recovery rates from each compartment; µ is deceased rate; and τ, ρ, π, ν are the
proportions of cases going from E to I , Q to H , I to H , and H to D. We assume these parameters
are scalar and do not change over time. For the observational data, we use the daily number of
currently hospitalized patients H (7 days’ moving average) in New York state over the period March
16–June 4, 2020 obtained from https://github.com/COVID19Tracking, and assume that the
observational noise is i.i.d. N(0, 1) for the logarithm of the daily number to create the likelihood
function.
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First, we solve a deterministic optimization problem to infer all parameters by minimizing the data
misfit between the logarithm of the predicted and observed daily numbers of hospitalized patients.
Then we freeze all the parameters at their inferred values, except for the social distancing function
α(t). We assume that

α(t) =
1

2
(tanh(x(t)) + 1)

is a stochastic process with Gaussian process x(t) ∼ N (x̂(t), C), where x̂(t) = arctanh(2α̂(t)−1) is
evaluated at the deterministic optimal values of the social distancing function α̂(t) obtained from the
deterministic optimization problem, and C = −(δ4t)−1 with Laplacian operator4t and a scaling
parameter δ = 10. After discretization in time with step of one day over 96 days, we obtain a discrete
parameter x = (x1, . . . , xd) of dimension d = 96. We run pSVGD and SVGD with line search,
128 samples with 8 samples on each of 16 processor cores, and update the bases for pSVGD every
10 iterations for a total of 200 iterations. The results are shown in Figure 7. We can observe a fast
decay of eigenvalues and a low intrinsic dimension. The bottom two figures display the samples,
their means, and 90% confidence interval of the reduction factor α for social distancing and the
number of hospitalized cases by SVGD (top) and pSVGD (bottom). We can observe from the right of
Figure 7 that pSVGD provides much more accurate prediction of the data (the number of hospitalized
patients) with tighter confidence interval than SVGD. Meanwhile, the 90% confidence interval of
pSVGD covers the deterministic optimal value, which is also close to the posterior mean of pSVGD,
while that of SVGD does not. The mean of the reduction factor α for SVGD is nearly 1 for a period
of time, which corresponds to complete shutdown without any transmission, which is not realistic.
We remark that the sharp increase of the social distancing factor in late March/early April is due
to the implemented mitigation measure of lockdown, which demonstrate the efficacy of pSVGD
for compartmental model based Bayesian inference, which also quantifies the uncertainty of the
parameters. Inference of other parameters with quantified uncertainty, e.g., time-dependent infection
hospitalization ratio, hospitalization fatality ratio, given data of confirmed, hospitalized, and deceased
cases, can be found in [15], which is used for stochastic optimal mitigation design under parameter
uncertainty in [9].

D Remarks on computational cost of pSVGD and pSVN

In comparison with pSVN [14], pSVGD uses only gradient information of the log-likelihood, which
is available for many models, while pSVN requires Hessian information, which is challenging for
complex models and codes in practical applications. Moreover, computing the Hessian in pSVN could
be much more demanding — (1) evaluating the full Hessian would be d times more expensive than
evaluating the gradient for d-dimensional parameter inference problem, (2) evaluating a Gaussian–
Newton approximation of the Hessian requires Jacobian, which is s times more expensive for
s-dimensional data, (3) a low-rank approximation with rank r of the Hessian is O(r) times more
expensive by efficient randomized algorithm. In contrast, the gradients of the log-likelihood at each
sample used by pSVGD are already computed in SVGD, which are the dominant computational cost.
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Figure 7: Top: Decay of the eigenvalues of (11) at different iteration numbers `. Bottom-left: samples
of α (contact reduction due to social distancing): posterior mean in blue with 90% confidence
interval in grey and deterministic optimal α̂ in black. Bottom-right: the number of hospitalized cases:
posterior mean in blue with 90% confidence interval in grey compared to reported data for New York
state in black. The results are at iteration ` = 200.
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