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Abstract

In this study, we demonstrate that the linear combination of atomic orbitals
(LCAO), an approximation introduced by Pauling and Lennard-Jones in the 1920s,
corresponds to graph convolutional networks (GCNs) for molecules. However,
GCNs involve unnecessary nonlinearity and deep architecture. We also verify
that molecular GCNs are based on a poor basis function set compared with the
standard one used in theoretical calculations or quantum chemical simulations.
From these observations, we describe the quantum deep field (QDF), a machine
learning (ML) model based on an underlying quantum physics, in particular the
density functional theory (DFT). We believe that the QDF model can be easily
understood because it can be regarded as a single linear layer GCN. Moreover, it
uses two vanilla feedforward neural networks to learn an energy functional and a
Hohenberg—Kohn map that have nonlinearities inherent in quantum physics and
the DFT. For molecular energy prediction tasks, we demonstrated the viability of
an “extrapolation,” in which we trained a QDF model with small molecules, tested
it with large molecules, and achieved high extrapolation performance. We believe
that we should move away from the competition of interpolation accuracy within
benchmark datasets and evaluate ML models based on physics using an extrap-
olation setting; this will lead to reliable and practical applications, such as fast,
large-scale molecular screening for discovering effective materials.

1 Introduction

Recently, graph convolutional networks (GCNs) [1, 2] have been applied to molecular graphs. Al-
though numerous variants of the molecular GCN have been developed [3, 4, 5] (Section 2.1), they
have a basic computational procedure: the GCN model (1) considers that each node (i.e., atom)
of a molecular graph has a multidimensional variable (i.e., the atom feature vector), (2) uses the
convolutional operation to update the feature vectors according to the graph structure defined by
the adjacency or distance matrix between the atoms in the molecule, and finally (3) outputs a value
(e.g., the energy of the molecule) via a readout function (e.g., the sum/mean of the updated vectors).
Deep neural networks (DNNs) are used in the convolutional operation. Therefore, GCNs involve
strong nonlinearity when modeling the molecular graph structure and have achieved good prediction
performance on large-scale benchmark datasets, such as QM9 [6].

In this study, from the perspective of quantum physics, we demonstrate that extant molecular GCNs
involve unnecessary nonlinearity and deep architecture. We first describe an approximation of quan-
tum physics introduced by Pauling and Lennard-Jones in the 1920s [7, 8, 9], which states that the
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Figure 1: Overview of the computational graph of our proposed quantum deep field (QDF) frame-
work from the input molecule M to the output energy E. The energy functional predicts £ and the
Hohenberg—Kohn (HK) map imposes the potential constraint on the electron density p.

superposition of atomic wave functions (called orbitals) is based on their linear combination (Sec-
tion 2.2). We demonstrate that this linear superposition/combination corresponds to the convolu-
tional operation in GCNs; that is, the nonlinear DNN used in the above (2) is not required for
modeling the molecular structure (Section 3). Additionally, in the linear superposition/combination,
although the number of wave functions/orbitals (or basis functions) and the types of each basis func-
tion are important, the molecular GCNs do not consider these points. In particular, the reason for
performance degradation in deeper GCNss has been discussed recently in [2, 10]; however, it is trivial
with regard to molecules. The molecular GCNs are built on a poor and incorrect basis function set
compared with the standard one used in theoretical calculations or quantum chemical simulations.

From these observations, we describe the quantum deep field (QDF), a machine learning (ML)
model based on an underlying quantum physics, in particular the density functional theory
(DFT) [11]. The model is separated into linear and nonlinear components. The former is the lin-
ear combination of atomic orbitals (LCAO) [7, 8, 9], which is implemented through matrix—vector
multiplication; the latter is the energy functional that has nonlinearity inherent in quantum physics.
This study implements this nonlinear functional using a vanilla feedforward DNN (Section 4.1).
Additionally, over the entire model, we impose a physical constraint based on the Hohenberg—Kohn
theorem [12], which has nonlinearity inherent in DFT and can therefore be implemented using
a vanilla feedforward DNN (Section 4.2). The components and constraint can be represented as a
computational graph that learns the energy in a supervised fashion (Figure 1), and all model parame-
ters are trained by back-propagation and stochastic gradient descent (SGD) algorithms (Section 4.3).
For atomization energy prediction with the QM9 dataset [6], our QDF model was competitive with
a state-of-the-art model called SchNet [13] but with a million fewer parameters (Section 5.1).

Furthermore, this study demonstrated an “extrapolation” [14, 15] with regard to predicting the ener-
gies of totally unknown molecules, in which we trained a QDF model with small molecules, tested it
with large molecules, and achieved high extrapolation performance (Section 5.2). In a standard ML
evaluation, the training and test sets have the same data distribution; in other words, the molecular
sizes and structures in both sets are the same or very similar. Under this “interpolation” evalua-
tion, if a highly nonlinear DNN model is trained, it can easily fit to a physically meaningless but
high-accuracy function that maps the input molecules into the output energies; this is because DNN
can easily learn many non-linear properties inside the training data distribution [16, 17] unrelated
with physics. However, the ML evaluation is mainly interested in the final output (i.e., interpolation
accuracy within a benchmark dataset), and even if the energy prediction performs well, the model
parameters may not always reflect physics. The extrapolation can evaluate ML models focusing on
physical validity; this will lead to the development of more reliable and practical ML applications.

2 Background: molecular GCN and LCAO

2.1 Molecular GCN. A molecule is defined as M = {(a1, R1), (ag, R2), -+, (an, Rym)} =
{(am, Rn)}M_,, where a,, is the mth atom (e.g., H and O), R,, is the 3D coordinate of a,,,



and M is the number of atoms in M. We consider a graph representation of M, in which the node
is a,, and the edge between a,, and a,, is defined by the atomic distance D,,,, = ||R,, — Ry||- In
other words, the molecular graph Gy = (V, D) is a fully connected graph, where V' is the set of
atoms and D € RM*M g the corresponding distance matrix.

Given G, we initialize each atom with a d-dimensional vector and denote the atom vector as a,,,,
where d is a hyperparameter. For example, a,, = [a1,as,- - ,aq], in which each element is a
feature value (e.g., the atomic charge, hybridization, and acceptor/donor) used in [3, 4, 5], or is
randomly initialized and then learned via back-propagation and SGD [18, 13]. We then consider the
convolutional operation to update a,, iteratively according to the graph structure G4 as follows:

M
all™ = " w(Dpmn)h, (1)
n=1

where a%H) is the mth atom vector in layer ¢ 4+ 1 (where layer means the number of up-

dates or iterations), hgf ) is the hidden vector of agf ) obtained by a neural network (e.g., hgf ) =

ReLU(W(Z)ag) + b)), and w(D,y,,) is a function of the weight of h!? determined by the atomic
distance. Various weight functions (or edge features) have been used; for example, the chemical
bond type [3, 5], distance bin [4], inverse: w(D,,,) = 1/D,,y,, Gaussian kernel transformation:
W(Dpn) = exp(—7||Dmn — p||?) [18, 13], and learnable vector: w(Dny) = W, € R?[19].
Note that, if we consider the molecular graph represented by the adjacency matrix A instead of the
distance matrix D, we have the binary weight w(D,,,,) = {0, 1} that corresponds to the bond.

2.2 LCAO. Herein, for the readers who are not familiar with quantum physics and chemistry, we
start from a slightly incorrect but understandable description of LCAO (also called the linear su-
perposition of wave functions) introduced by Pauling and Lennard-Jones in the 1920s [7, 8, 9].
We then provide a correct description to facilitate comparison of the equivalence and differences
between molecular GCN and LCAO in Section 3.

@)

We first consider that each atom a,,, has an inherent -
wave-like spread in 3D space centered on R,,,; this is
known as the electron cloud. As shown in Figure 2(a),
we can consider this wave as a probability distribu-
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M Figure 2: (a) Superposition between ¢g
Y(r) = Z Cm&m(r — Ry, (2) and ¢y corresponding to the chemical bond
m—1 O-H in H,O. (b) “Orbitals” in a quantum

. . view and “orbits” in a classical view.
where v(r) is the value on 7, ¢, (r — R,,) is the value

on r derived from the wave whose origin is R,,,, and
cm 1s the coefficient in this linear combination. In
quantum physics or chemistry, we refer to ¢ as the atomic wave function or atomic orbital and
1) as the molecular wave function or molecular orbital. For example, in a water molecule H,O, the
above linear combination can be expressed as follows:

Y(r) = cudu(r — Ru) + cudu(r — Ruwr) + codo(r — Ro). 3)

Note that because the two hydrogen atoms in H,O have the same characteristics, its atomic orbital
and coefficient are the same (i.e., ¢y and cy), but we distinguish their different positions using Ry
and Ry in Eq. (3).

However, Eq. (3) is incorrect because the oxygen atom O has multiple electrons and we need to
consider multiple atomic orbitals for O. That is, we rewrite the term O in Eq. (3) as follows:

¥(r) = cudu(r — Ru) + engu(r — Rur) + Z c§)63 (r = Ro), “)
%

where k is the number of atomic orbitals for the oxygen. Additionally, we have various choices for
representing each atomic orbital in Eq. (4). Here, it is natural to represent an orbital using a large
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Figure 3: Both calculations involve the summation of the vector—scalar multiplications. (a) In the
molecular GCN, the vectors are the atomic features and the scalars are their weights. (b) In the
LCAO, the vectors are the coefficients and the scalars are the values of the atomic basis functions
on 7. Roughly, with a standard 6-31G basis set, we have six basis functions for the 1s orbital of the

oxygen, which we denote as (bom , (bo(z), e ,¢0<6) Additionally, we have four (i.e., 3+ 1 = 4)

basis functions for the 1s orbital of the hydrogen ‘and the 2s/2p orbitals of the oxygen, which we
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number of known valid (e.g., Gaussian) basis functions. That is, we further rewrite Eq. (4) using
qb(') which is called the atomic basis function as follows:

Z Do (r — Ry) + Z Aol (r— R )+ D> Mo (r = Ro).  (9)
7 k

Thus, Eq. (5) has a nested structure, in which the molecular orbital () has multiple atomic orbitals
¢a(r — R,) and each atomic orbital has multiple atomic basis functions qu;) (r — Rg). Generally,
we flatten this nested structure and describe it as follows:

N N
V()= endn(r = Ry) st > 2 =1, (6)
n=1 n=1

where N is the total number of basis functions and the coefficients are normalized. Eq. (3) has
only three terms when M = H,0, whereas, Eq. (6) can have a large number of terms (in principle,
infinite) for better approximating 1. The set of basis functions (i.e., the basis set) determines the
level of computational accuracy in theoretical calculations or quantum chemical simulations. For
example, with a standard basis set, such as 6-31G [9] that is widely used in theoretical calculations,
H,O has more than 30 basis functions (i.e., N > 30) and C¢H¢ (benzene) has more than 100 basis
functions (i.e., N > 100).

In addition to the number of basis functions, the types of each basis function are important. The
theoretical calculations often use the Gaussian-type orbital (GTO) as follows:

1
On(r = Rn) = ——= DI e =t Pn, (7)
(Q’ﬂv Cn)
where D,, = ||r — Ry||, gn = 1,2, - - - is the principle quantum number, ¢, is the control parameter
of the Gaussian expansion (called the orbital exponent), and Z(g¢y, (,) is the normalization term.

Note that this GTO is simplified in terms of the sphencal harmonics. In Eq. (7), D(q” allows
the orbital to shift the peak of the Gaussian expansion, which corresponds to the classical “orbit”
shown in Figure 2(b). This is because the wave function is referred to as the “orbital.”

We finally provide the correct description of LCAO. Indeed, the LCAO has N multiple molecular
orbitals and represents the linear combination using the coefficient vector c,, € RY as follows:

N
) = Z CTL¢7L<T - Rn)a (8)
n=1



where 1(r) € RY is the vector-format molecular orbitals on 7 and its nth element (i.e., ¥, (r)) is
the nth molecular orbital. Note that an initial assumption in LCAQ is that the number of molecular
orbitals is equal to the number of atomic orbitals (or basis functions). In other words, the vector
dimensionality N and the number of basis functions IV are the same. Thus, as we enhance the
computational accuracy for approximating t(r) by increasing the number of basis functions, the
dimensionality of v(r) also increases.

3 Equivalence and difference between molecular GCN and LCAO

Herein, in the molecular GCN, we rewrite the left side of Eq. (1) as a (“'1) = a(Hl)(Rm) be-
cause the atom vector is defined on the atomic position R,, Addltlonally, we transpose two terms

w(Dmn)hgf) on the left side of Eq. (1) (i.e., the weight—vector) to hg)w(Dmn) (i.e., the vector—
weight). In the practical calculation of LCAQO, we create a grid field of M and position 7 in contin-
uous space is regarded as a discrete point r; in the grid field (see Supplementary Material). Addi-
tionally, we rewrite the right side of Eq. (8) as ¢,,(r; — R,) = ¢, (D;,) because the atomic basis
function is a function of the distance D;,, = ||r; — R,||, except for the other parameters g, and (.

Therefore, Eq. (1) and Eq. (8) can be represented as follows:

(“’1) Z h(é) mn and ’ll) ’I“Z Z Cn¢n l’ﬂ )

Thus, the two equations are easier to compare (Figure 3). In the f0110w1ng subsections, we find and
discuss the equivalence and difference between the molecular GCN and LCAO.

3.1 Atom vector a“*Y(R,,) € R? and molecular orbital 1(r;) € RY. On the left side of
both equations in Eq. (9), the GCN has the d-dimensional vector on the atomic position R, and
the LCAO has the N-dimensional vector on the field position ;. We believe that this difference,
in terms of the positions of the multidimensional variables, is not a serious problem in this case.
We can assume R as a representative point that the GCN considers. Actually, this is reasonable
for modeling the molecule and its energy because the molecular energy can often be calculated as
the summation of atomic energy contributions [20]. For example, in physical chemistry the neural
network potential [20, 21, 14] based on the embedded atom method [22] has been proposed; this
method considers the LCAO, molecular orbital, and electron density on the atomic position R, and
not on the field position r; [23]. Furthermore, d is a hyperparameter in the GCN and N is the number
of basis functions in the LCAO, which can be varied. When d = N, both the GCN and LCAO have
information with the same expressive power on a position in 3D space.

3.2 Hidden vector h!” € R? and coefficient vector ¢, € RV. On the right side of both
equations in Eq. (9), the GCN has the hidden (i.e., nonlinear transformed atom) vector th) =

ReLU(W(Z)asf ) + b®), which often contains various atomic features (e.g., the charge, hybridiza-
tion, and acceptor/donor) in its elements [3, 4, 5]. On the other hand, the LCAO has the coefficient

)

vector c,, and we can find that h,;,” corresponds to cn However c,, does not contain the atomic fea-

tures and only has the normalization condition Zn 1 c2 = 1in Eq. (6). Although h ) and c, have
such different characteristics, if both vectors are optimized for predicting/minimizing the energy of
a molecule, their role is the same. Furthermore, we emphasize that the number of parameters and
model complexity of the GCN are significantly greater than those of the LCAO, which is derived
from W(e), a nonlinear activation ReLU, and a ¢ times iterative procedure in the GCN.

3.3 Weight w(D,,,,) € R and basis function ¢,(D;,) € R. In Eq. (9), we have the weight
w(Dypy) on the hidden vector in the GCN and find that w(D,,,,) corresponds to the basis func-
tion ¢, (D;y,) in the LCAO. We emphasize that the d-dimensional hidden vectors are summed and
weighted by the distances in the GCN; in contrast, the basis functions by the distances are combined
linearly with the d-dimensional coefficient vectors in the LCAO. For example, in a GCN model, if
the weight function is a Gaussian kernel transformation (e.g., w(Dnp) = exp((Don — p)?/0?)), it

has similar characteristics to the GTO; however, this does not include the term D(q" D in Eq. (7).
Therefore, this does not satisfy the original symmetry and cannot represent the dlfferent peaks in
Figure 2(b). In particular, when a molecule is represented as a discrete graph using an adjacency
matrix (i.e., w(Dyy) = {0, 1}), the atomic basis function (or orbital/wave function) is 0 or 1.
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Figure 4: Intuitive explanation of the linear combination of atomic orbitals (LCAO) using batch-
processing based matrix—vector multiplication (e.g., in PyTorch). The set of molecular orbitals on
all points in the gird field, ¥ = {4 (r;)}%,, is efficiently obtained (i.e., processed as a batch on a
GPU) by matrix-vector multiplication between the Gaussian-type orbital (GTO) matrix (i.e., each
element is the atomic basis function ¢(D;,, )) and the set of coefficient vectors C.

3.4 Number of atoms )/ and number of basis functions /N. Let us focus on the number of
terms in Eq. (9). We can find that the GCN has M number of terms (atoms), where, for example,
M = 3 when M = H,0. In contrast, the LCAO has N number of terms (basis functions), where,
for example, N > 30 when M = H,O using a standard basis set (e.g., 6-31G, as mentioned in
Section 2.2). The difference is more than 10 times; that is, the GCN has a very poor basis set.
Recent studies have pointed out that GCNs cannot improve their performance by increasing the
number of convolutional layers [2, 10]. While we are not familiar with GCN applications for other
kinds of graph data, such as social, biological, and financial networks, for the molecular GCN and
its variants, the above problem is trivial: the number of basis functions is insufficient and the type of
each basis function is incorrect. The overparameterized, deeply hierarchical, and highly nonlinear
GCN model builds on such poor and incorrect basis sets. Note that while the molecular GCN uses
the M x M distance matrix, the LCAO uses the G x N GTO matrix, where N is larger than M and
G is much larger than M (Figure 4). This is inevitable in the LCAO but a computational drawback
(in particular, for the memory) compared with the GCN.

3.5 Dimensionality of the atom vector d and number of basis functions N. The dimensionality d
of the atom vector in the GCN corresponds to the number of atomic features; the dimensionality N of
the coefficient vector in the LCAO corresponds to the number of basis functions, which determines
the level of computational accuracy in theoretical calculations or quantum chemical simulations.
Considering this along with Section 3.4, although it seems to enhance the expressive power of the
GCN by increasing d, this is not physically meaningful owing to the fixed M, where M is both the
molecular size and the number of basis functions. For example, even if we use the dimensionality
d = 1000 when M = H;0, the number of basis functions is still only three in the GCN. In
contrast, in LCAO, N is not only the dimensionality of coefficient vector but also the number of basis
functions. Therefore, increasing N is physically meaningful for approximating % (r; ) and improving
the computational accuracy. Furthermore, N is usually determined by a basis set; therefore, we can
assume that NV is an automatically determined value and not a hyperparameter, like in ML models.

A molecular GCN is regarded as a neural message passing algorithm [4], in which the atom is an
object (i.e., a node) that has a message (i.e., a feature vector), and the atom messages are passed
through the molecular graph structure using the adjacency or distance matrix in a nonlinear deep
fashion; however, this is incorrect. More precisely, the atomic orbital or wave function is repre-
sented by the basis functions, and their linear combination or superposition is calculated using the
multidimensional coefficients; this is the LCAO (see again Figure 3). Table 1 summarizes the char-
acteristics of the molecular GCN and LCAO discussed in this section.

4 Learning energy functional and imposing physical constraint

4.1 Energy functional. Thus far, we have described the linearity in obtaining molecular orbitals
from atomic orbitals. However, the relationship between molecular orbitals and energy has non-
linearity inherent in quantum physics. Here, we use a neural network to estimate this nonlinear



relationship, which is called an energy functional (i.e., function F of function f(x), F[f(z)]) be-
cause the energy F is a function of ¢ and ¢ is a function of 7.

As shown in Figure 4, we have the set of /N-dimensional vector-format molecular orbitals: ¥ =
{ap(r;)}$.,. We consider Fpnn, which is a DNN-based energy functional as follows:

E\( = Fonn|[¥], (10)
where E; is the predicted energy of M. This study uses a vanilla feedforward DNN for the

implementation of Fpnn (see Supplementary Material). We finally minimize the loss function:
Lg = ||[Epm — E\4||*, where E( is the actual energy provided by the training dataset.

4.2 Physical constraint based on the Hohenberg—Kohn theorem. Unfortunately, only minimiz-
ing L does not result in a physically meaningful learning model. Since the DNN-based energy
functional has strong nonlinearity, Fpnn may output the actual energy even if its input molecular
orbitals ¥ are incorrect. To address this, we impose a physical constraint in learning the model
based on the Hohenberg—Kohn theorem [12], which ensures that “the external potential V(r) is a
unique functional of the electron density p(r).” V(r) can be determined by the atomic charges
Zm (e.g., Zy = 1 and Zp = 8) and their positions R,,. Additionally, p(r) can be obtained by1
p(r) = Zgﬂ [, (1)]?. Furthermore, the aforementioned statement indicates that a relationship
between V () and p(r) has a nonlinearity but one-to-one correspondence inherent in DFT. Here, we
also use a neural network to estimate this nonlinear relationship; this is called a Hohenberg—Kohn
(HK) map [24, 25]. The HK map works as the constraint on t)(r), which is the input of Fpnn, and
results in a physically meaningful learning model as a whole (see again Figure 1).

Formally, we first consider a Gaussian- based external potential [26, 24] on 7; as follows:

Va(r) = ZZ e~ IIri=Rmll®, a1
m=1
Thus, this is the Gaussian expansions of atomic charges in 3D space. Note that the model assumes
Vi (r;) to be the correct external potential of M that is, Va4 (r;) is used as a target for minimizing
loss in the model. Additionally, we have the electron density on r; as

N
= [alra)? (12)
=1
and consider H/Cpnn, which is a DNN-based HK map as follows:
Vi (ri) = HKpan (p(73)), (13)

where V{(r;) is the predicted external potential of M. This study uses a vanilla feedforward DNN
for the implementation of HKpnn (see Supplementary Material). We finally minimize the loss
function: Ly = ||V (ri) — Vi, ()2

4.3 Learning. As a total learning model, we minimize £ g for predicting £ and Ly, for imposing the
potential constraint on p “alternately.” We believe that this is similar to the learning strategy of gen-
erative adversarial networks (GANs) [27]. The entire model optimizes all parameters in the LCAO,
Fpnn, and HKpnw using only the back-propagation and SGD algorithms. This is our proposed QDF
framework and we describe its optimization details in Supplementary Material.

It is important to note that QDF must consider the following physical condition:

N
Nelee = / dT’ = /Z |'¢n ‘ dr ~ Z Z |¢7L(Ti)|27 (14)

i=1n=1
where N is the total electrons in M (e.g., when M = H;0, Nge. = 10). In other words, we
must “keep” the total electrons in learning/updating the molecular orbitals with the iterative SGD
algorithm. We implement this by transforming ), in the SGD as follows:

Nelec '¢n
P NN gl

Note that 1), is not the nth row vector but the nth column vector of matrix ¥ described in Figure 4.
The model requires other physical normalizations in learning (see Supplementary Material).

15)

'This density is based on the one electron approximation. Precisely, 4 (r) is not the true molecular orbital
and is called the Kohn—Sham orbital [11], which is a molecular orbital in a fictitious system of non-interacting
electrons that provides the same density as the system of interacting electrons.



l | GCN ] LCAO | Model Size MAE

# of terms M (fixed) N ~ o0 GCN 483,631  1.58
weight/basis w(D) | Dle=De—<D? DTNN [18] — 151
vector dim d N ~ 00 SchNet [13] 1,676,133 1.23
parameters WO O a c QDF 495,262 1.21
nonlinearity e.g., ReLU nothing Chemical accuracy 1.00

Table 1: Characteristics of the molecular graph Table 2: Model size and mean absolute er-
convolutional network (GCN) and the linear com- ror (MAE; kcal/mol) on the QM9underl14atoms
bination of atomic orbitals (LCAO). dataset.

S Evaluation: prediction and extrapolation

5.1 Energy prediction. We first describe the prediction performance for the atomization energy
at 0 K of the QM9underl4atoms dataset, which is a subset of the QM9 dataset [6] (the dataset
and training details are given in Supplementary Material). Table 2 shows the model sizes and final
prediction errors (mean absolute error (MAE), lower is better) of the baseline GCN, proposed QDF,
and other methods [18, 13] as references. SchNet, which is a variant of the deep tensor neural
network (DTNN) proposed earlier, is a standard state-of-the-art deep learning model. We argue that
the GCN is not a weak baseline because it achieves a reasonable performance that is similar to that
of the DTNN. Additionally, we believe that the QDF outperforms or competes with SchNet in terms
of the prediction error. However, in terms of the model size, SchNet has more than 1.5 million
learning parameters. In contrast, QDF, which has less than half a million parameters, is much more
compact. We note that these results can vary with the careful tuning of its hyperparameters and
SchNet may outperform QDF; however, our main aim in this study is not to build a competitive
model with regard to “interpolation” performance within a single benchmark dataset.

5.2 Energy extrapolation. Using a more practical evaluation setting, we demonstrate that the QDF
can capture the physically meaningful energy functional. In physics, we can assume that if an
ML model could capture fundamental quantum characteristics (i.e., the orbital/wave function ) and
electron density p), the model would be able to conduct a prediction for totally unknown molecules.
In other words, the QDF would be able to perform an “extrapolation” in predicting the energy
of totally different sized and structured molecules. To substantiate this, we trained a model with
small molecules consisting of fewer than 14 atoms (QM9underl4atoms) and tested it with large
molecules consisting of more than 15 atoms (QM9over15atoms) in the QM9 dataset (Figure 5(a)).
Additionally, we used three kinds of energy properties provided by the QM9 dataset: the atomization
energy at 0 K, zero point vibrational energy, and enthalpy at 298.15 K. As shown in Figure 5(b), (c),
and (d), in each energy prediction, the GCN achieved accuracy comparable (or superior) to that of
the QDF in interpolation; however, the QDF could maintain this accuracy even when the molecular
size increased, whereas the GCN could not. We believe that these low MAE:s in predicting unknown
large molecules are evidence that the QDF can capture the physically meaningful energy functional
and the fundamental quantum characteristics of molecules.

However, we also believe that the extrapolation performance for the atomization energy and enthalpy
have room to improve. The current QDF uses the simplified GTO ignoring the spherical harmon-
ics [15], simplified Gaussian external potential [24] that cannot reproduce the potential and density
close to the nucleus, and two vanilla feedforward DNNs. To improve extrapolation performance,
improvements to these factors (e.g., using Slater-type orbitals (STOs), not GTOs) will be required.

In terms of computational cost, although the LCAO requires the G x N matrix described in Figure 4
and Section 3.4, training a QDF model using 10k molecules of the QM9under14atoms dataset can
be done within 6 hours on a standard single (e.g., GTX 1080Ti) GPU. Once the model is trained, the
prediction for 100k molecules of the QM9over15atoms dataset can be done within a few minutes.

6 Discussion, conclusion, and future directions

Our current implementation of the QDF model has some limitations. In this implementation, orbital
exponents {¢, }_, and coefficient vectors {c,, }'_, in the LCAO are the global common learning
parameters for all molecules (i.e., are not specific to each molecular structure). These parameters
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Figure 5: (a) Data distribution of training (interpolation) and test (extrapolation) samples. The
number of test samples of the QM9over15atoms dataset is 115k molecules, which is 10 times more
than that of training samples of the QM9under14atoms dataset. (b), (c), and (d) are the mean absolute
errors (MAEs) of the atomization energy, zero point vibrational energy, and enthalpy of this large-
scale extrapolation, respectively.

actually differ for each real molecule in theoretical calculations or quantum chemical simulations,
and this is considered in standard GCNss via iterative nonlinear convolutional operations. However,
we believe that our global parameters and the linearity prevent the model from being too flexible for
each molecule in the training dataset; this is a general and practical trade-off problem in optimizing
a model. Considering this trade-off, the current implementation of QDF is reasonable in terms of
reducing the model parameters and complexity, resulting in robust extrapolation. Additionally, N
is also different for each real molecule; however, ML models need to set a global N common for
all molecules in a dataset. Indeed, the QM9 dataset includes only small organic molecules compris-
ing H, C, N, O, and F atoms, and the maximum molecular size M is 29. Considering these and a
standard basis set called 6-31G, we set N = 200 as a valid value in theoretical calculations (for
other hyperparameters, see Supplementary Material). Furthermore, this study considers an extrapo-
lation evaluation setting in terms of the number of atoms; however, some studies have demonstrated
extrapolation in terms of heavy atoms [14, 15]. It is important to design various extrapolations us-
ing various much larger datasets (e.g., the ANI-1 [14] and Alchemy [28]), which will require more
efficient implementation and learning of QDF with dozens of GPUs, in the future.

This study described the QDF framework, which is different from other graph-based deep learning
approaches for molecules; in other words, QDF is not an extension of existing molecular GCN
and SchNet models. Our aim was to design a simple ML model consistently based on physics
without incorporating complicated DNN techniques/architectures. Recently, some ML approaches
have been proposed [29, 15, 23, 30, 31] as supervised learning models for the orbital/wave function
1) and electron density p. In contrast, our QDF can be viewed as an unsupervised model to reproduce
p, originated from ), using only a large-scale dataset of energy properties; other training strategies,
not the current GAN-like one (Section 4.3) that may be unstable, will be considered in the future.

More generally, QDF can be viewed as one of the approaches such as the physics-informed, Hamil-
tonian, Fermionic, and Pauli neural networks [32, 33, 34, 35, 36, 37, 38]; these solve the physical
problems and equations using physically meaningful modeling. QDF is designed as a self-consistent
learning machine for DFT or to solve the Kohn—Sham equations [11] with minimal (three) compo-
nents: LCAO, Fpnn, and H/pnn. We believe that integrating a supervised model with a dataset of
the electron density [39] (i.e., p in Figure. 1 is given as a target) and an unsupervised but physically
informed and meaningful model with a dataset of the atomization energy, HOMO-LUMO gap, and
other properties [28] will yield an interesting hybrid ML model.

In the future, QDF will allow extensions for not only molecules but also for crystals [40, 19, 41]
and other practical applications in materials informatics. In particular, the viability of extrapolation
will lead to the development of applications with transfer learning for polymers [42], catalysts [43],
photovoltaic cells [44, 45], and fast, large-scale screening for discovering effective materials.

Code availability. Our implementation is available at https://github.com/masashitsubaki.
This provides the pre-trained model and model extensions with other datasets can be created.

Broader Impact

This study will provide benefit for ML researchers who are interested in quantum physics/chemistry
and applications for materials science/informatics.
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