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Dataset. The QM9 dataset [1] contains approximately 130,000 molecules made up of H, C, N,
O, and F atoms along with 13 quantum chemical properties (e.g., atomization energy, HOMO, and
LUMO) for each molecule. These molecular properties were calculated using a hybrid quantum
simulation (Gaussian 09) at the B3LYP/6-31G(2df,p) level of theory. In this study, we created a
subset of the QM9 dataset with a limited number of atoms, M ≦ 14, per molecule, which we
refer to as the “QM9under14atoms” dataset in the main text. As the learning/predicting targets,
we selected three kinds of energy properties: atomization energy at 0 K, zero point vibrational
energy, and enthalpy at 298.15 K. The number of data samples in the QM9under14atoms dataset
is approximately 15,000 molecules and we randomly shuffled and split this dataset into training,
development (or validation), and test sets with a ratio of 8:1:1, in which the development set was
used to tune the model and optimization hyperparameters. For large-scale extrapolation evaluation,
we tested the trained QDF model using the “QM9over15atoms” dataset (i.e., M ≧ 15), in which the
number of data samples was approximately 115,000 molecules.

Molecular field definition. Given a moleculeM = {(am, Rm)}Mm=1, we consider spheres with a
radius of s Å, where each sphere covers each atom centered on Rm, and then divide the sphere into
grids (or meshes) in intervals of g Å. These s and g are the hyperparameters and this process yields
many grid points in M. The grid-based field of M is denoted by {r1, r2, · · · , rG} = {ri}Gi=1,
where ri is the 3D coordinate of the ith point and G is the total number of points.

Architectures of FDNN and HKDNN. To implement the DNN-based energy functional FDNN in the
main text, we consider the following vanilla feedforward architecture:

ψ(ℓ+1)(ri) = ReLU(W
(ℓ)
E ψ

(ℓ)(ri) + b
(ℓ)
E ), (1)

where ℓ = 1, 2, · · · , L is the number of hidden layers (ψ(1)(ri) = ψ(ri) and L is the final layer),
ReLU is the nonlinear activation function, W(ℓ)

E ∈ RN×N is the weight matrix in layer ℓ, and
b
(ℓ)
E ∈ RN is the bias vector in layer ℓ. We then sum over {ψ(L)(ri)}Gi=1 in the final layer L

and output an energy (i.e., atomization energy, zero point vibrational energy, or enthalpy) with the
following vanilla linear regressor:

E′
M = w⊤

E

( G∑
i=1

ψ(L)(ri)
)
+ bE , (2)

where wE ∈ RN is the weight vector and bE ∈ R is the bias scalar. Figure 1 illustrates the
architecture of this DNN-based energy functional.
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Using a similar feedforward architecture, the DNN-based HK mapHKDNN is given by:

h(1)(ri) = wρρ(ri) + bρ, (3)

h(ℓ+1)(ri) = ReLU(W
(ℓ)
HKh

(ℓ)(ri) + b
(ℓ)
HK), (4)

V ′
M(ri) = w⊤

V h
(L′)(ri) + bV . (5)

In this HKDNN, each hidden layer is h ∈ RN ′
, where N ′ is a hyperparameter. Figure 2 illustrates

the architecture of this DNN-based HK map.

Optimization. Using back-propagation and an SGD (in practice, this study used the Adam opti-
mizer [2]), we minimize the loss function LE in the main text; in other words, we update the set of
learning parameters ΘE = {{ζn}Nn=1, {cn}Nn=1, {W

(ℓ)
E }Lℓ=1, {b

(ℓ)
E }Lℓ=1,wE , bE} as follows:

ΘE ← ΘE − α
1

B

B∑
k=1

∂LEMk

∂ΘE
, (6)

where LEMk
is the energy loss value of the kth molecule M in the training dataset, α is

the learning rate, and B is the batch size. Additionally, we also minimize the loss function
LV =

∑G
i=1 ||VM(ri) − V ′

M(ri)||2, i.e., we update the set of learning parameters ΘV =

{{ζn}Nn=1, {cn}Nn=1,wρ, bρ, {W(ℓ)
HK}L

′

ℓ=1, {b
(ℓ)
HK}L

′

ℓ=1,wV , bV } as follows:

ΘV ← ΘV − α
1

B

B∑
k=1

∂LVMk

∂ΘV
, (7)

where LVMk
is the potential loss value of the kth moleculeM in the training dataset. We emphasize

that QDF updates ΘE and ΘV “alternately” and note that the learning parameters in the LCAO, i.e.,
{ζn}Nn=1 and {cn}Nn=1, are “shared” in ΘE and ΘV .

Normalization. The LCAO considers the normalization for the coefficients in Eq. (6) in the main
text. This can be implemented by updating the coefficients in the iterative SGD as follows:

c′n ←
c′n
|c′n|

. (8)

Note that c′n is not the nth row vector but the nth column vector of matrix C described in Figure 4
in the main text. Additionally, the normalization term in Eq. (7) in the main text is calculated as
follows:

Z(qn, ζn) =

∫
|D(qn−1)

n e−ζnD
2
n |2dD =

√
(2qn − 3)!!

√
π/2

22(qn−1)ζ
(2qn−1)/2
n

. (9)

Note that because each Gaussian expansion ζn is a learning parameter of the model, Z(qn, ζn) is
recalculated every time the model parameters are updated in SGD.

Hyperparameters. All model and optimization hyperparameters and their values used in this study
are listed in Table 1.
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Figure 1: Architecture of our DNN-based energy functional FDNN.
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Figure 2: Architecture of our DNN-based Hohenberg–Kohn (HK) mapHKDNN.
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Hyperparameter Value
Sphere radius s 0.75 Å
Grid interval g 0.3 Å
# of dimensions N 200
# of hidden layers in FDNN 3 or 6
# of hidden units inHKDNN 200
# of hidden layers inHKDNN 3 or 6
Batch size 4, 16
Learning rate 1e-4 or 5e-4
Decay of learning rate 0.5
Step size of decay 200 or 500 epochs
Iteration 1000 or 3000 epochs

Table 1: List of all model and optimization hyperparameters and their values.
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