A Proofs of Section 3

In all proofs in this paper, for a sequence © = (xg, x1, ..., Z,), We Use Z4.p to denote its consecutive
subsequence (Zq, Tat1s---5Tp)-

A.1 Proof of Theorem

Let w; be i.i.d. with zero mean and covariance matrix W. Suppose the controller has k > 1
predictions. Then, the optimal control policy at each step t is given by:

k—1
w = —(R+ B PB)"'BT (PAxt +y (AT - ATPH>iPwt+i> : @
=0

where P is the solution of DARE in Equation (I). The cost under this policy is:

k—1
STO, = Tr{ <P ~ > P(A-HPA)H(AT - ATPH)Z'P> W}, @)

=0

where H = B(R+ B"PB)™'B".

Proof. Our proof technique closely follows that in Section 4.1 of [16]. To begin, note that the
definition of S TO% has a structure of repeating min’s and [E’s. We use dynamic programming to
compute the value iteratively. In particular, we apply backward induction to solve the optimal cost-to-
go functions, from time step 7" to the initial state. Given state x; and predictions wy, . .., Wi4k—1, We
define the cost-to-go function:
T—1
Vi(xy; wppqek—1) = min E min--- E min Z(:EZTQ:EZ + uiTRui) + x; Qrxr (5)

Ut Wik Ut+1 W —1 UT —k, ", UT—1 < i
1=

= :L‘;I—QZL't + IT’LILIH(U:R’UJt + E [W+1(Al‘t + But + wy; wt+1:t+k)]>

Wtk

with Vp(zp;...) = x} Qyxr. Note that E,,, ,, has no effect for ¢ > T" — k. This function measures
the expected overall control cost from a given state to the end, assuming the controller makes the
optimal decision at each time.

We will show by backward induction that for every t = 0,..., T, Vi(z¢; wieyn—1) = 2] Pawy +
vtT x + q¢, where P;, v, g; are coefficients that may depend on wy.;4—1. This is clearly true for
t = T'. Suppose this is true at ¢t + 1. Then,

Vi (25 Wt k-1)
=z Qz + min (uTRu + (Az + Bu+ w;) " Pry1 (Az + Bu + wy)
+ wIFik[th]T(Ax + Bu+wy) + wIEik[th])

= aj‘TQ.’E —+ (AJI —|— wt)TPt_H(Ax + ’U)t) + Ek[vt_,_l]T(Ax + wt) + E [qt+1]
Wik w

t+k
+ min <’LLT(R + BTPt+1B)U + UTBT <2Pt+1AI’ + 2Pt+1wt + E [UH_ﬂ)) .
u Witk

The optimal u is obtained by setting the derivative to be zero:

1
w'=—(R+B'P1B)"'BT (Pt+1A$ +Piwg+ 5 E [UtJrl})‘ (6)

2 Witk
Let H, = B(R+ BTP,,1B)"'B". Plugging u* back into V;, we have
Vi@ e k1)

=2'Qz+ (Az+w) Pyi(Az +w) + E [v1] (Az+w) + E [qus1]

Wik Wtk
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T
1 1
- <Pt+1AZ‘ + Pt+1wt + 5 E ['Ut-l-l]) Ht (Pt+1Al‘ + Pt+1’u}t + 5 E ['Ut+1}>
Wtk w

t+k

=2 (Q+ A" Piy1A— APy HiPy A)x

+ zT <(AT — ATPt+1Ht) wE [vt+1] + Q(AT — ATPt+1Ht)Pt+1wt>

t+k

+ w;(Pt_l'_l — Pt+1HtPt+1)’U)t + w;(l — Pt+1Ht) IE ['Ut-&-l}

Wtk

1
— 2 E [vi1] He E [vpea] + E [ge).
Witk Witk

Wtk

Thus, the recursive formulae, which parallel [16], are given by:

P,=Q+ AP 1A~ ATP 1 H P A, (7a)
v = (AT — ATP Hy) wIEik[th] +2(AT = AT Py Hy) Pryqwy, (7b)
qr = w;r(PtJrl - Pt+1HtPt+1)wt + w;r(f - Pt+1Ht) wIElk[UtJrl]

(7¢)

E [Ut+1]THth e+ E [ge].

4 W4k t+k

AsT —t — oo, P, and H, converge to P and H respectively, where P is the solution of discrete-time
algebraic Riccati equation (DARE) P = Q+A"PA—- ATPHPA,and H = B(R+B'PB)"'B'.
Note that v = 0 and g = 0. Then,

v, =2 (AT — ATPH)* Pw,,, (8)

N
=

s
Il
=)

1
¢ =w; (P — PHP)w, +w, (I — PH) E [v;41] — 1.E [es1] H E [vepa] + E [qeg),
Witk Witk Witk

Witk
9)
k—1 ‘
E [vi1] =2 (AT — ATPH) Pw,y;. (10)
ek i=1
Taking the expectation of g; over all randomness, namely wq, w1, wa, . .., we have
k—1 ‘ 4
Elq] = Te{(P — PHP)W} - > Tr{P(A— HPA)'H(A" — ATPH)'PW} + E[gs4:]
i=1
k—1 ' 4
= ﬂ{ (P — Y P(A—HPA)'H(A" - ATPHyP) W} + Elgi41], (11)
i=0

where in the first equality we use E[w;] = 0 and the independence of the disturbances. Thus, as
T — oo, in each time step, a constant cost is incurred and the average cost STOj, is exactly this
value.

o1 .1 o1
STOw = fim 7STOL = lim 7 EVa(woivos)] = i 7 Elao

T-1 k-1
~ lim > Elg] — Elgisa] = Tr{ <P —) P(A—HPA)YH(AT - ATPH)iP> W}.
=0

T—oo T ;
t 1=0
The explicit form of the optimal control policy is obtained by combining Equations (6) and (T0). O

A.2 Proof of Theorem 3.3

In Algorithm let Qf = P. Then, the MPC policy with k predictions is also given by Equation .
Assuming i.i.d. disturbance with zero mean, the MPC policy is optimal.
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Proof. Due to the greedy nature, MPC policy is given by the solution of a length-%k optimal control

problem, given deterministic wy, - - - , W¢4+k—1. In other words, we want to derive the optimal policy
(ug, ..., utyk—1) that minimizes
t+k—1

Z (z{ Qui +u] Ru;) + x, ), Prosy,

i=t

where x;11 = Ax; + Bu; + w;, given x¢, wy, . . . , Wyt k—1. Define the cost-to-go function at time 4
given T, Wy, . . ., Wit k—1:
t+k—1
Vi(zi; wityr—1) = ulrtn:,? 1 Z (ijij + ujTRuj) + 2, Poogy
Jj=t

= xZTva + HllLln(UjRUz + Vig1(Az; + Buy + wis Wit 1:44k—1))-

Note that Vi k(xi4k) = :ctT +kPwt+k. Similar to the proof of Theorem we can inductively

show that V;(z;; wi.t4k-1) = x;r Px; + UiT x; + q; for some v; and ¢;. Note that the second-degree
coefficient no longer depends on the index ¢ as in the previous proof because we start from P, the
solution of DARE. We then have the followings equations that parallel with Equations (€) and (8):

t+k—i—1 1
2 : J+
vV; = 2 }7—r P’UJH_]',
Jj=0

1
u!=—(R+B'"PB)"'BT (PAiUi + Pw; + 2vi+1>

t+k—i—1 )
=—(R+B'PB)"'B"[PAz;+ Y  F"'Pu;
§=0

The case i = t gives:

k-1
uj = —(R+BTPB)'BT | PAx, + > F "' Pu., |,
§=0

which is the MPC policy at time step ¢, and is same as Equation (2)). [

B Proofs of Section d

B.1 Proof of Theorem [4.1]
The optimal control policy with general stochastic disturbance is given by:
k—1 ) 0o )
uy = —(R+B"PB)"'BT (PAxt +Y FUPwii+ Y FT P,ut+,»|t+k_1>, @
i=0 i=k

where pi, = Elwy |wo, ..., wi]. Under this policy, the marginal benefit of obtaining an extra
prediction decays exponentially fast in the existing number k of predictions. Formally, for k > 1,

STOk — STOk41 = O(||[F¥|1?) = O(N*F).

Proof. Similar to the proof of Theorem 3.2} we assume
V(e wopsk—1) = x;rptxt + x:”t + qt,

where V; has a similar definition as in Equation @) but may further depend on wy, . . ., w;—1 because
the disturbance sequence is no longer Markovian. In this case, P;, v; and ¢, still satisfy the recursive
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forms in Equation (7). However, the expected values of w; and v, are different since we have a more
general distribution now. Let T' — t — o0, puyy = E[wy [wo, ..., w¢] and ' = A — HPA. Then,

k—1 0o
i+1 i+1
vf =23 FT7 Pw +2) FT7 Puyyipanot, (12)
i=0 i=k
. 1
q; = w (P — PHP)w; +w/ (I - PH) W]Ek [Ufﬂ] - ZwEk[UH—l] H E [’Uf-i-l] "‘wEk [qfﬂ]’

where the superscript k£ denotes the number of predictions.

The optimal policy in this case has the same form as Equation (6). Plugging Equation (I2) into it, we
obtain the optimal policy in the theorem.

Further,
Bldt - o] ~E[ul (1- P (B [ha] - B [ut])] (130
Wtk Wt4k41
1
+3 ]E[ E ) 0 E i) - B b B mlﬂ (13b)
Wit k+1 W4 k+1 W4k
+E[q) 1 — i, (13¢)
where the expectation E is taken over all randomness. Part (13a) is zero because
E [v7,] = E [vf7 -
Wik Witk Wt k+1
1 T
PW@D4E<E[EFE@%DH(EMH—EM®]
t+k Wttk+1 Witk Wt k41 Wtk
[zk +H 2z, t]

where

o0
k i
2kt = r' P(wt+k - Mt+k\t+k71) + E F' P(Mt+z‘\t+k - Nt+i|t+k71)-
i=k+1

k
Note that z ; = F T z—1441 = F ' 20.4+%. Thus,

k
STO, —STOky1 = ngr;o T E[qo — q0+1]

=
lim —ZE ZktHZkt]

T—oo T

T—1
. 1 k
lim — ) E[zOT,HkF’“HFT ZO,M}

T—o0
t=0

T-1
lim lZTK{FkHF E [20,t+k20 t+k]}

T—oo T
=0

. 1 T-1
R D SR
t=0

IN

where in the last line we use the fact that if A is symmetric, then Tr{AB} < Apax(A) Tr{B}.
Finally we just need to show the last item Tr E [Zo)t+kz(;|: o k} is uniformly bounded for all ¢. This

is straightforward because the cross-correlation of each disturbance pair is uniformly bounded, i.e.,
there exists m > 0 such that for all ¢,¢' > 1, E[w, wy ] < m.

TrE[z0,29 4 Z TYE[PFZFT Pt — batjie—1) (Besile — Hetije—1)
1,7=0
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Z Tr{PFiFTJPE{,ut_._j\tML”t - Mt+j\t—1/1';r+i|t—1:| }

4,5=0

oo

4,7=0

AN

> eXieN||P|*2m = 2

4,5=0

IN

C
WIIPIIQm

for some constant ¢ from Gelfand’s formula. Thus Tr E [Zo,t Z(I t] is bounded by a constant indepen-
dent of ¢. Thus,
STOk — STOk 41 = O(||F*[*).
O

B.2 Proof of Theorem 4.4

MPCS; — MPCSy.1 = O(||F*||?) = O(A\?*). Moreover; in Example[4.3) MPCS), — MPCSj;; =
O F*|1?).

Proof. To recursively calculate the value of JMPC+ we define:

T-1
VMPCk (2 k1) = Z (2] Qu; +u; Ru;) + 27 Qe

i—t
= 2] Qu; +u; Ruy + Vip1 (Azy + Buy + wi; wo:psk)

as the cost-to-go function with MPC as the policy, i.e., u; is the control at time step ¢ from the MPC
policy with & predictions. Similar to the previous proofs, we assume VtMPC’“‘ (z) =2 Prt+aTv+q
(which turns out to be correct by induction) and T' — ¢ — oo so that P, = P. Then,

VtMPCk (x4 woip4k—1) = &, Qg +u) Ruy + (Axy + Buy + wy) ' P(Azy + Buy + wy)
+ (Az; + Buy + wt)T’Ut+1 + qt+1
=u) (R+ B"PB)u; +2u; BT (PAz; + Pw; + vi41/2)

—+ I;FQIf + (A.It —+ ’lUt)TP(A.Tt —+ ’U_)t) —+ (ACCf + ’lUt)TUt_;,_l + qt+1-
(14

Let F = A — HPA. Plugging in the formula of u; in Theorem [3.3] we have

k-1 T k-1
1 i 1 i
VtMPCk (JUt;wo:t-s-k—l) = <2Ut+1 - E I Pwt+i> H<2’Ut+1 - E I Pwt+z‘>
i=1

i=1
1 ’ 1
— (PAI’t + Pwt + 2’Ut+1) H(PA(Z?t + Pwt + 2Ut+1>

+ 2] Qry + (A +wy) " P(Axy + wy) + (Azy +wi) " ves1 + gy
=2/ (Q+ATPA—ATPHPA)x, + 2] (F vy 4+ 2F T Pwy,)

1 k-1 T 1 k-1
+ <21}t+1 — ZFT Pwt+i> H<2Ut+1 - ZFT Pwt+i>

i=1 i=1
T
1 1 T T
— | Pwy + ivt—H H( Pw; + §Ut+1 + w, Pw + wy Vi1 + Qeg

:x:th—l—x:vt—i—qt.

Thus,

Ti+1

v =FTop +2F Puy =2 F'" Puwyy;.

=0
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Then, we can plug v, into ¢;:

gt = Qi1 + (Z FTZPth) H (Z FTlP’LUtJri)
i=k

i=k
o0 T o0 o0
- (Z FTletﬂ-) H (Z FTZPth) + w, Pwy + 2w, (Z FT’Pwm) . (15)
=0 =0 =1

Note that Equation is for MPC with k predictions. With the disturbance sequence {w;} fixed,
we can compare the per-step cost of MPC with k predictions and that with k£ 4 1 predictions:

oo T oo
i i
@ - =qf, - qfill+<§ FTPwt+i> H(E FTPUJtﬂ)
i—k

i=k

o] . T el .
- ( > FTZPth) H( > FTleM)

i—k+1 i=k+1

k > %
=q/ — @ +w/  PFFHET (Pwt+k +2) FT Pwtﬂ%). (16)
=1

Thus,

k k
Elgf — i — (¢fs — )] =E

w,  PFEHFT (wa +2)° FT' Pwsys +,€>]

i=1
— Tr{PF’“HFTk (PE[wka;k] +2 Z FT'PE [wHka;k}) }
i=1
- Tr{PF’“HFTkZM},
where 7, ; = PIE[wka;:_k} +23 00, FTlPE[wHka;k]. Note that Zy, ; = Zk—1 4+1-

. 1
MPCS; — MPCS4; = lim — Elqf —af™']

T-1

. 1 k
= lm ;Tr{PF’“HFT ZM}
1=
< Jim LS P e 2

t=0

where in the last line we use the fact that if A is symmetric, then Tr{ AB} < ||A|| Tr{B}. Similarly
to the last part in the proof of Theorem now we just need to show the last term Tr{Z}, ,} is
uniformly bounded for all ¢. Again, this is because the cross-correlation of each disturbance pair is
uniformly bounded.

To{Zi} < 1PN T [wesiy,] +2 3 I1PI|F| B

i=1

E gj wt+l+kwt+k)‘|

J

<||P||m + 220/\1 |P|jm = ||P||m + 20

i=1

5 I1Pllm

where ¢ is some constant, and in the first line, we use the fact that Tr{AB} < [|A[|>_; 0;(B)

with ¢;(-) denoting the j-th singular value. Thus, Tr{Z ;} is uniformly bounded. Therefore,
MPCS;, — MPCSi.1 = O(||F¥[]?). O
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B.3 Proof of Theorem 4.6

Reg®(MPCy) = MPCS} — STOL = O(||[F*|]2T + 1) = O(A\*T + 1), where the second term
results from the difference between finite/infinite horizons.

Proof. To calculate the dynamic regret, we cannot simply let 7' — t — oo as we did before Equa-
tion (T4) in the proof of Theorem [.4]and instead need to handle the expressions in a more delicate
manner. In particular, we need to rigorously analyze the impact of finite horizon. Let A; = P, — P.

VtMPCk (745 wort4 k1)
=) (R+ BT Py 1B)uy +2u BT (Pyy1Azy + Prywy +v41/2)
+ 2, Qx4+ (Azy + wy) " Py (Azy 4+ wy) + (Azy 4+ wy) "vi1 + @i
=) (R+ B"PB)uy +2u BT (PAz; + Pw; + vi41/2)
+ 2] Quy + (Amy +wy) T P(Azy + wy) + (Azy + we) "vig1 + G
+ u:BTAtHBut + 2u:BTAt+1(Axt +w) + (Azy + wt)TAtH(Aact + wy).
Plugging in the MPC policy as in Theorem[3.3] we have:
VtMPCk (T¢; Wo:t+k—1)

Q+ATPA—ATPHPA)x, + 2] (F vy +2F T Pwy)
T
1
§Ut+1 Z I Pwt-ﬂ) (Ut+1 ZF Pwt+z>

= x—r(

i 1
<Pwt + Ut+1) H(Pwt + 2Ut+1) + ’LU;FP’lUt + thvt_H + qi+1
£

_|_

k—1 T k—1
+ Fﬂ]‘t + wy — Z F P’LUt_H) At+1 (Fﬂft + wy — Z FTZPwt+i>
=0

=2/ (Q+ATPA- ATPHPA+ FTAF)z

k-1 )
+ x;r <FT’Ut+1 + 2FTP'lUt + 2FTAt+1 <’LUt — ZFTZPwt+i>>
=0

(Ut+1 ZF Pwt+z> (Ut+1 ZF Pwt+z>

T
1 1
— <Pwt + 2vt+1) H(Pwt + 2vt+1) + thPwt =+ thth + qit+1

T

k—1 ) k—1 )
+ (’LUt — Z FTlet+i> At+1 (wt — Z .F‘—r Pwt+i>

=0 =0

Comparing this with the induction hypothesis VPt = 2T (P 4+ A,)x; + x] v¢ + ¢;, we obtain the
recursive formulae for A¢, vy, q;.

Tt T—t
Ay=F At F=F"" ApFT=t=F"" 7 (Q; — P)FT".
This implies that P; converges to P exponentially fast, i.e., [|A|| = O(|FT~||?) = O(N2T—Y).
k=1
= FTUt+1 + QFTP’LUt + 2FTAt+1 (wt — ZFT Pwt+i>
=0
T—t—1 - . k=1
=2 Z <FT]+ Pwij + FT7 A <wt+j - ZFTZPthF“i))
=0

Jj=0
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T—t—1 T—t—1 k—1

Ti+1 Tj+1 Ti

=2 E F Pwtﬂ- +2 E F At-i—j—i—l Wiy — E F PwH_j_H .
=0 7=0 =0

Denote the second term by 2d;. We have

T—t—1 k—1
i+1 i
dy = Z FUT A (wt+j - Z FT Pwt+j+i>
j=0 i=0
T—t—1
— O(/\j)\Q(T t—3) ) O()\T t)
§=0
T k
df —dit = )" FUTU A0 T Pw (17)
3=0
—t—k—

= O(AjA2<T*f*j>HF’“||> = O\T=HF | ).
=0

Finally, we have a formula for ¢; that parallels Equation (T3):

T—t-1 T T—t-1
3 3
Gt = qt+1 + (dt+1 + Z FT Pwt+i> H<dt+1 + Z FT Pwt+i>

i=k i=k

T-t-1 T T—t-1
_ (dt+l + Z FT Pwt+i> H(dt_H + Z FT Pwt+i)

=0 =0

T—t-1
+ thPwt + 2th (dt+] + Z FTletH) .
i=1
Taking the difference between k and k + 1 predictions, we have
9 —a = (gt —a)

T—t—k—1
k i+k
= (kaPFk (dt+1 df—tll) VH (dt+1 + dfrll + F T Pwgy +2 E FT Pwt+i+k>
i=1

(13)
i Tkl
= (w4, PF* + O(ATt”Fk))H(O()\Tt) + F ' Pwgyy, + 2 Z P Pwt+1¢+k>7
i=1
and thus
Egf — gt = (a1 — ari)] = OUF* (A + [F¥|])).

=
L

Elgh —ai] = Elgf — g™ — (¢f1 — aiD)]

H\T
,_.o

Z (FFIOT+ 1E4])

O(|IF¥|PPT + | F*])).
]E[vé“—vo} =2(dg — dg) = O\ F*])).

EJMPC B M — B[V (a0) — Vi (o)
=E[zg (v§ — v ) + (a6 + a0)]
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= O(|F*|IPT + || F*|)). (19)

By definition, JMPC7 is the cost of MPC policy given all future disturbances before making any
decisions. It almost equals to min,, J, the optimal policy given all future disturbances, except that
during optimization, MPC assumes the final-step cost to be xJ. Pz instead of z. Qrxr. This will
incur at most constant extra cost, i.€.,

JMPET —minJ = O(P — Qf) = O(1). (20)

By Equations (19) and (20),
Reg® (MPCy) = EJMPC: — EminJ = O(||F*|?>T + |[F*|| + 1) = O(|F*|*>T + 1).

B.4 Proof of Theorem[d.7]

The optimal dynamic regret Regy” = STOF — STOX = O(||F¥|]>T 4 1) = O(\**T + 1) and
there exist A, B, Q, R, Qy, xo, and W such that Regy” = O(|[F*|*(T — k)).

Proof. The first part follows from Theorem and that fact that Regy < Reg®(MPCy,).

The second part is shown by Example[#.3] i.e., suppose n = d = 1 and the disturbance are i.i.d. and
zero-mean. Additionally, let @y = P and x¢ = 0. In this case, MPC has not only the same policy but
also the same cost as the optimal control policy. Also, P, = P for all ¢. To calculate the total cost,
we follow the approach used in the proof of Theorem[3.2] Since 7 is finite now, we have a similar (to
Equation (8)) but different form of v;:

min{k—1,T—t—1}
i+1
Ve = 2 E FT Pwtﬂ-.

=0
Thus,
min{k—1,T—t—1} )
Elg] =Tl [ P - > PF'HFT'P |W 3 4 Elgi11]-

1=0

T-1 min{k—1,T—t—1} ,

Elgo] = Trq > [ P - > PF'HFT'P|W
t=0 =0

Let qf denote g; in the scenario of k predictions.

T—k—1T—t—1 )
Reg®" =E[¢h —¢l] = Tr{ >y PF%’HF“PW}

t=0 i=k

> (T — k) Tr{PFkHFTkPW} = Q(|F*|X(T — k).

On the other hand,

Reg®" —E[gf — i) < (T - km{zpmwpw} = O(IF* (T — k).
i=k

Therefore, Reg®™ = O(||[F*||*(T — k)). O

C Proofs of Section 3

C.1 Proof of Theorem [5.1]
Fork > 1, ADVy — ADVy.y1 = O(|[F*[|?) = O(\?%),
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Proof. This proof is based on Theorem[5.3] It turns out that the behavior of the MPC policy and its
cost is easier to analyze than the optimal one, especially in the adversarial setting.

ADVj, — ADVy41 < ADV — ADVos < MPCA; — ADVo = > MPCA; — MPCA, 1.
i=k
By Theorem[5.3]

MPCA, ~ MPCAy: < O([[F|7) < O [J##[*[[F* ) < o[+ x7e-).

Thus,
ADV), — ADV4; < O <||F’“||2 i A%’—k)) = O(|F*||?).
i=k -
C.2  Proof of Example
Let A= B =Q =R =1and Q = [—1,1]. In this case, one prediction is enough to leverage the

full power of prediction. Formally, we have ADV, = ADV o, = 1. In other words, for all k > 1,
ADV}y = 1. The optimal control policy (as T — 00) is a piecewise function:
—(z 4+ w) ,—l<z+w<l1
u(z,w) = —(x+w)+3_T‘/5(x+w—l) ,x+w>1
—@+w)+ 3B @t wt1) rw< -1

The proof leverages two different cost-to-go functions for the min player and the sup player.

Proof. We will show ADV; = 1 and ADV,, = 1 separately. The system dynamics is given by
Tpp1 = T + ug + wy with wy € [—1,1] and

T-1

ADVT = maxmin- - - max min E (x7 +u?) + x3.
wo uQ wr—1 UT—1 —0

We will calculate the results of each min and max by dynamical programming. In particular, we will
define two cost-to-go functions for the min player and the max player respectively. Let z; = x; + w;.
Then, z; can be regarded as the disturbed state. This is natural since the controller has one prediction
and decides w; after knowing w,. Thus, the system dynamics can be split into two stages: z; = x;+wy
and Ti41 = 2t + Ug. Let
T—1
fi(2:) = minmax min - - - max min Z(uf + 27 1)
Ut W41 Ut41 wWr—1UT-—1 i—t

= rr;in(uf + (2 + ut)2 + gev1(2ze + Ut))»
t

T—1
g+(2¢) = maxmin - - - max min E (u? + x12+1)
wt Ut wr—1ur—1 4 p
1=

= max fi(z; + wy).
Wt

Fort =T — 1, we have

2
fr-1(z) =minu?® + (z + u)? = =
z 4+ w)? x|+ 1)2
SR ) G (- B Vil
w 2 2
We will prove by backward induction that g;(x) = a;x? + 2bs|x| + ¢; where ay, by, ¢; are some
coefficients with 0 < b; < 1. Assuming this is true at ¢, we will show this is true at £ — 1.

frer(2) = min(u® + (2 + 1) + g (2 + )
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= myin((y -2+ +ay)

= min((y —2)* +y* + ay® + 2bily| + )
= min((a; + 2)y* — 2(z — by sign(y))y + 2° + ¢1),
y

where y = z + u = x + w + u is the state after the control policy is applied. Let function y(z) map
from the disturbed old state to the new state. The optimal y is given by:

y*(z) = argmin, ((a; + 2)y® — 2(z — by sign(y))y + 2% + ;)

o 0 7_bt S z S bt (21)
B 72_1’;3%’ &) otherwise
Thus, for z < —b; or z > b;, we have

_ (z=bsign(2))* |,

ft—l(Z)— @+ 2 + 27+
292 b?
_ _E el b s
a¢ —|— 2
o ag + 1 2 th b%
_at—|—22 +at+2|2’|+ct at+2.

For z € [—b, ], the value of f;(z) is not needed in the calculation of g;(x) because 0 < by < 1
(induction hypothesis) and the adversary — who wants to maximize f;(z;), a convex, even function
— will never choose w; such that z; = x4 + w; € (—1, 1) since w; can be chosen from [—1, 1].

gi—1(x) = max fi(x +w) = fi(z + sign(z))
a;+ 1 2, b2

2
= 2 1 1 -
at+2(x + 2|z| + )+at+2(\x|+ )+ P
1 2 by + 1 14 2b, — b7
_atl oo 2actbt )\x|—|—ct+at+ +2b, — by
a4 2 ar +2 a; + 2

as_ 122 4+ 2by g |x| 4+ crq.

Now, we have obtained the recursive formulae for a;, b, ¢;. The initial values are ap_1 = bp_1 =
cr—1 = 2.

Let f; be the i-th Fibonacci number with fo = 0,f; = 1. Then, ar—; = fit1/fit2- Asi — oo,
ar—; — @

For by, we have 1 — byp_(;41) = (1 — br_;)/(ar—; + 2). When i is large, 1 — br_; approaches 0
but is always positive. Thus, by_; approaches 1 but is always less than 1.

For ¢;, we have
Cr—(i+1) = ¢r—i +1—
and thus cp_(;41) — cp—; — 1. Therefore, ADV; = 1.

The optimal control policy is obtained by plugging the above values back into Equation I)):

) ) 0 ,—1<zrz+w<l1
u*(z,w) = —(z+w) +y*(r+w) = —(z+w) + M’%ﬂfzm , otherwise
2

For ADV,, we will show that STO,, = 1 at a specific disturbance sequence: w; = 1 for all ¢.
Because STO,, < ADV,, < ADV; = 1, we know that ADV, = 1.

According to Equations (8)) and (9) with k& — oo,
T-1

.1 . — i
STOw = lim — ;(mtwt — Pw? — Hy?) with ¢, = ; F'Pw,;.

Solving the Riccati equation, we have P = 1+T‘/5, H=F-= 3_—2‘/5 When w; = 1 for all ¢,
STO, = 1. OJ
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C.3 Proof of Theorem[5.3]
MPCA;, — MPCA,,1 = O(||F*||?) = O(\2F).

Proof. Note that Equation (T6)) in the proof of Theorem [.4]does not rely on the type of disturbance,
i.e., Equation holds for adversarial disturbance as well. Let 7 = sup,,cq |w]|,-

o0
, k i
af — a4, = (4t — arfy) = wi PEYHF T (Pwt+k +2) FT Pwt+i+k>

i=1

IA

ekl E | F4|| <||P|||wt+k|| +2Y) HFZ‘||P||wt+Z-+k|>
i=1

< |1Fk|f(1 23 ||Fi||) P

i=1

2 C)\ 2
<EM( 1+ 25 JIHINPI*
1—X
for some constant c.
1
MPCA; — MPCAg 41 = lim —(max qlg — max qgﬂ)
T—oo T w w
1
< 1 = k k+1
< lim - max(gy — gy )
=
< Jim = ; max(q; — " = (@1 — af1))
2 cA 9
< P (12225 eI = 01 ).

C.4 Proof of Theorem 5.3
Reg*(MPCy,) = O(| F*|>T + 1) = O(A*T + 1).

Proof. We follow the notations in the proof of Theorem .6 Equation (I8)) does not rely on the type
of disturbance, so it holds for adversarial disturbance as well. By Equation (I8) and the fact that w,
is bounded, we have

af —a; ™ = (gt — ai) = O(IFF (AT + [|F*))),

where the constant in the Big-Oh notation does not depend on the disturbance sequence w. Thus,

T-1
k k k k k k k
max(qf —qg) < D max(qf — g — (afy — @) = O([F"|PT + ||F*]).
t=0

By Equation (T7) and the boundedness of w;,
max(ef — vf) = 2max(df — df ) = O(NTTH|[F¥|).
max(JMP — JMPCr) = max (Vi (o) — Vi (20)) < max(ag (¢ — o)) + max(gh — af)
= O(|F*IIPT + | F*|).
As Equation , JMPCT _min,, J = O(1). Thus,
Reg?(MPCy) = mT?X(JMPC"' - muin J) < IHUE}X(JMPC’“ — JMEPCTy 4 mSX(JMPCT — muin J)

= O(|F*|I’T + | F*|| + 1) = O(|F*|*T + 1).
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C.5 Proof of Theorem

Regl™ = O(||F*|?T + 1) = ON**T + 1). Moreover; there exist A, B, Q, R, Qy, wo, and S such
that Regi®™ = Q(||F*|2(T — k)).

Proof. The first part of the theorem follows from Theorem and the fact that Reg,?* <
Reg?(MPCy,).

We reduce the second part of this theorem to the second part of Theorem .7 Since the proof of
Theorem 4.7 works for any fixed distribution of w, (with finite second moment), we can restrict that
distribution to have bounded support. Denote this bounded support by 2. Then, we have

* . . . . ’
Regd” = sup minsup--- min sup min (J(u7 w)— min J(u 7w))
wo, e WE—1 YO wy, UT —k—1 qp_q YT —ks""" UT—1 UQyee s, Wy

> E mnE.--- mn E min (J(u,w) —  min J(u’,w))

W, WEr—1 U0 Wk UT—k—1 WT—1 UT—f, ", UT—1 LTYS TV

Regy” = O(|F*|*(T — k).
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