
A Proofs of Section 3

In all proofs in this paper, for a sequence x = (x0, x1, . . . , xn), we use xa:b to denote its consecutive
subsequence (xa, xa+1, . . . , xb).

A.1 Proof of Theorem 3.2

Let wt be i.i.d. with zero mean and covariance matrix W . Suppose the controller has k ≥ 1
predictions. Then, the optimal control policy at each step t is given by:

ut = −(R+B>PB)−1B>

(
PAxt +

k−1∑
i=0

(A> −A>PH)iPwt+i

)
, (2)

where P is the solution of DARE in Equation (1). The cost under this policy is:

STOk = Tr

{(
P −

k−1∑
i=0

P (A−HPA)iH(A> −A>PH)iP

)
W

}
, (3)

where H = B(R+B>PB)−1B>.

Proof. Our proof technique closely follows that in Section 4.1 of [16]. To begin, note that the
definition of STOT

k has a structure of repeating min’s and E’s. We use dynamic programming to
compute the value iteratively. In particular, we apply backward induction to solve the optimal cost-to-
go functions, from time step T to the initial state. Given state xt and predictions wt, . . . , wt+k−1, we
define the cost-to-go function:

Vt(xt;wt:t+k−1) := min
ut

E
wt+k

min
ut+1

· · · E
wT−1

min
uT−k,··· ,uT−1

T−1∑
i=t

(x>i Qxi + u>i Rui) + x>TQf xT (5)

= x>t Qxt + min
ut

(
u>t Rut + E

wt+k

[Vt+1(Axt +But + wt;wt+1:t+k)]

)
with VT (xT ; . . . ) = x>TQf xT . Note that Ewt+k

has no effect for t ≥ T − k. This function measures
the expected overall control cost from a given state to the end, assuming the controller makes the
optimal decision at each time.

We will show by backward induction that for every t = 0, . . . , T , Vt(xt;wt:t+k−1) = x>t Ptxt +
v>t xt + qt, where Pt, vt, qt are coefficients that may depend on wt:t+k−1. This is clearly true for
t = T . Suppose this is true at t+ 1. Then,

Vt(x;wt:t+k−1)

= x>Qx+ min
u

(
u>Ru+ (Ax+Bu+ wt)

>Pt+1(Ax+Bu+ wt)

+ E
wt+k

[vt+1]
>

(Ax+Bu+ wt) + E
wt+k

[qt+1]
)

= x>Qx+ (Ax+ wt)
>Pt+1(Ax+ wt) + E

wt+k

[vt+1]
>

(Ax+ wt) + E
wt+k

[qt+1]

+ min
u

(
u>(R+B>Pt+1B)u+ u>B>

(
2Pt+1Ax+ 2Pt+1wt + E

wt+k

[vt+1]

))
.

The optimal u is obtained by setting the derivative to be zero:

u∗ = −(R+B>Pt+1B)−1B>
(
Pt+1Ax+ Pt+1wt +

1

2
E

wt+k

[vt+1]

)
. (6)

Let Ht = B(R+B>Pt+1B)−1B>. Plugging u∗ back into Vt, we have

Vt(x;wt:t+k−1)

= x>Qx+ (Ax+ wt)
>Pt+1(Ax+ wt) + E

wt+k

[vt+1]
>

(Ax+ wt) + E
wt+k

[qt+1]
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−
(
Pt+1Ax+ Pt+1wt +

1

2
E

wt+k

[vt+1]

)>
Ht

(
Pt+1Ax+ Pt+1wt +

1

2
E

wt+k

[vt+1]

)
= x>

(
Q+A>Pt+1A−A>Pt+1HtPt+1A

)
x

+ x>
(

(A> −A>Pt+1Ht) E
wt+k

[vt+1] + 2(A> −A>Pt+1Ht)Pt+1wt

)
+ w>t (Pt+1 − Pt+1HtPt+1)wt + w>t (I − Pt+1Ht) E

wt+k

[vt+1]

− 1

4
E

wt+k

[vt+1]
>
Ht E

wt+k

[vt+1] + E
wt+k

[qt+1].

Thus, the recursive formulae, which parallel [16], are given by:

Pt = Q+A>Pt+1A−A>Pt+1HtPt+1A, (7a)

vt = (A> −A>Pt+1Ht) E
wt+k

[vt+1] + 2(A> −A>Pt+1Ht)Pt+1wt, (7b)

qt = w>t (Pt+1 − Pt+1HtPt+1)wt + w>t (I − Pt+1Ht) E
wt+k

[vt+1]

− 1

4
E

wt+k

[vt+1]
>
Ht E

wt+k

[vt+1] + E
wt+k

[qt+1].
(7c)

As T − t→∞, Pt andHt converge to P andH respectively, where P is the solution of discrete-time
algebraic Riccati equation (DARE) P = Q+A>PA−A>PHPA, andH = B(R+B>PB)−1B>.
Note that vT = 0 and qT = 0. Then,

vt = 2

k−1∑
i=0

(A> −A>PH)i+1Pwt+i, (8)

qt = w>t (P − PHP )wt + w>t (I − PH) E
wt+k

[vt+1]− 1

4
E

wt+k

[vt+1]
>
H E

wt+k

[vt+1] + E
wt+k

[qt+1],

(9)

E
wt+k

[vt+1] = 2

k−1∑
i=1

(A> −A>PH)iPwt+i. (10)

Taking the expectation of qt over all randomness, namely w0, w1, w2, . . . , we have

E[qt] = Tr{(P − PHP )W} −
k−1∑
i=1

Tr
{
P (A−HPA)iH(A> −A>PH)iPW

}
+ E[qt+1]

= Tr

{(
P −

k−1∑
i=0

P (A−HPA)iH(A> −A>PH)iP

)
W

}
+ E[qt+1], (11)

where in the first equality we use E[wt] = 0 and the independence of the disturbances. Thus, as
T → ∞, in each time step, a constant cost is incurred and the average cost STOk is exactly this
value.

STOk = lim
T→∞

1

T
STOT

k = lim
T→∞

1

T
E[V0(x0;w0:k−1)] = lim

T→∞

1

T
E[q0]

= lim
T→∞

1

T

T−1∑
t=0

E[qt]− E[qt+1] = Tr

{(
P −

k−1∑
i=0

P (A−HPA)iH(A> −A>PH)iP

)
W

}
.

The explicit form of the optimal control policy is obtained by combining Equations (6) and (10).

A.2 Proof of Theorem 3.3

In Algorithm 1, let Q̃f = P . Then, the MPC policy with k predictions is also given by Equation (2).
Assuming i.i.d. disturbance with zero mean, the MPC policy is optimal.
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Proof. Due to the greedy nature, MPC policy is given by the solution of a length-k optimal control
problem, given deterministic wt, · · · , wt+k−1. In other words, we want to derive the optimal policy
(ut, . . . , ut+k−1) that minimizes

t+k−1∑
i=t

(x>i Qxi + u>i Rui) + x>t+kPxt+k,

where xi+1 = Axi +Bui + wi, given xt, wt, . . . , wt+k−1. Define the cost-to-go function at time i
given xi, wi, . . . , wt+k−1:

Vi(xi;wi:t+k−1) = min
ui:t+k−1

t+k−1∑
j=i

(x>j Qxj + u>j Ruj) + x>t+kPxt+k

= x>i Qxi + min
ui

(u>i Rui + Vi+1(Axi +Bui + wi;wi+1:t+k−1)).

Note that Vt+k(xt+k) = x>t+kPxt+k. Similar to the proof of Theorem 3.2, we can inductively
show that Vi(xi;wi:t+k−1) = x>i Pxi + v>i xi + qi for some vi and qi. Note that the second-degree
coefficient no longer depends on the index i as in the previous proof because we start from P , the
solution of DARE. We then have the followings equations that parallel with Equations (6) and (8):

vi = 2

t+k−i−1∑
j=0

F>
j+1

Pwi+j ,

u∗i = −(R+B>PB)−1B>
(
PAxi + Pwi +

1

2
vi+1

)

= −(R+B>PB)−1B>

PAxi +

t+k−i−1∑
j=0

F>
j
Pwi+j

.
The case i = t gives:

u∗t = −(R+B>PB)−1B>

PAxt +

k−1∑
j=0

F>
j
Pwt+j

,
which is the MPC policy at time step t, and is same as Equation (2).

B Proofs of Section 4

B.1 Proof of Theorem 4.1

The optimal control policy with general stochastic disturbance is given by:

ut = −(R+B>PB)−1B>

(
PAxt +

k−1∑
i=0

F>
i
Pwt+i +

∞∑
i=k

F>
i
Pµt+i|t+k−1

)
, (4)

where µt′|t = E[wt′ |w0, . . . , wt]. Under this policy, the marginal benefit of obtaining an extra
prediction decays exponentially fast in the existing number k of predictions. Formally, for k ≥ 1,

STOk − STOk+1 = O(‖F k‖2) = O(λ2k).

Proof. Similar to the proof of Theorem 3.2, we assume

Vt(xt;w0:t+k−1) = x>t Ptxt + x>t vt + qt,

where Vt has a similar definition as in Equation (5) but may further depend on w0, . . . , wt−1 because
the disturbance sequence is no longer Markovian. In this case, Pt, vt and qt still satisfy the recursive
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forms in Equation (7). However, the expected values of wt and vt are different since we have a more
general distribution now. Let T − t→∞, µt′|t = E[wt′ |w0, . . . , wt] and F = A−HPA. Then,

vkt = 2

k−1∑
i=0

F>
i+1

Pwt+i + 2

∞∑
i=k

F>
i+1

Pµt+i|t+k−1, (12)

qkt = w>t (P − PHP )wt + w>t (I − PH) E
wt+k

[
vkt+1

]
− 1

4
E

wt+k

[
vkt+1

]>
H E

wt+k

[
vkt+1

]
+ E
wt+k

[
qkt+1

]
,

where the superscript k denotes the number of predictions.

The optimal policy in this case has the same form as Equation (6). Plugging Equation (12) into it, we
obtain the optimal policy in the theorem.

Further,

E
[
qkt − qk+1

t

]
= E

[
w>t (I − PH)

(
E

wt+k

[
vkt+1

]
− E
wt+k+1

[
vk+1
t+1

])]
(13a)

+
1

4
E
[

E
wt+k+1

[
vk+1
t+1

]>
H E

wt+k+1

[
vk+1
t+1

]
− E
wt+k

[
vkt+1

]>
H E

wt+k

[
vkt+1

]]
(13b)

+ E
[
qkt+1 − qk+1

t+1

]
, (13c)

where the expectation E is taken over all randomness. Part (13a) is zero because

E
wt+k

[
vkt+1

]
= E
wt+k,wt+k+1

[
vk+1
t+1

]
.

Part (13b) =
1

4
E

wt+k

[(
E

wt+k+1

[
vk+1
t+1

]
− E
wt+k

[
vkt+1

])>
H

(
E

wt+k+1

[
vk+1
t+1

]
− E
wt+k

[
vkt+1

])]
= E
wt+k

[
z>k,tHzk,t

]
,

where

zk,t = F>
k
P (wt+k − µt+k|t+k−1) +

∞∑
i=k+1

F>
i
P (µt+i|t+k − µt+i|t+k−1).

Note that zk,t = F>zk−1,t+1 = F>
k
z0,t+k. Thus,

STOk − STOk+1 = lim
T→∞

1

T
E
[
qk0 − qk+1

0

]
= lim
T→∞

1

T

T−1∑
t=0

E
[
z>k,tHzk,t

]
= lim
T→∞

1

T

T−1∑
t=0

E
[
z>0,t+kF

kHF>
k
z0,t+k

]
= lim
T→∞

1

T

T−1∑
t=0

Tr
{
F kHF>

k E
[
z0,t+kz

>
0,t+k

]}
≤
∥∥F k∥∥2‖H‖ lim

T→∞

1

T

T−1∑
t=0

TrE
[
z0,t+kz

>
0,t+k

]
where in the last line we use the fact that if A is symmetric, then Tr{AB} ≤ λmax(A) Tr{B}.
Finally we just need to show the last item TrE

[
z0,t+kz

>
0,t+k

]
is uniformly bounded for all t. This

is straightforward because the cross-correlation of each disturbance pair is uniformly bounded, i.e.,
there exists m > 0 such that for all t, t′ ≥ 1, E

[
w>t wt′

]
≤ m.

TrE
[
z0,tz

>
0,t

]
=

∞∑
i,j=0

TrE
[
PF iF>

j
P (µt+j|t − µt+j|t−1)(µt+i|t − µt+i|t−1)>

]
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=

∞∑
i,j=0

Tr
{
PF iF>

j
P E

[
µt+j|tµ

>
t+i|t − µt+j|t−1µ

>
t+i|t−1

]}
≤

∞∑
i,j=0

∥∥F i∥∥∥∥F j∥∥‖P‖2 E[w>t+jwt+i − w>t+jwt+i]
≤

∞∑
i,j=0

cλicλj‖P‖22m = 2
c2

(1− λ)2
‖P‖2m

for some constant c from Gelfand’s formula. Thus TrE
[
z0,tz

>
0,t

]
is bounded by a constant indepen-

dent of t. Thus,
STOk − STOk+1 = O(‖F k‖2).

B.2 Proof of Theorem 4.4

MPCSk −MPCSk+1 = O(‖F k‖2) = O(λ2k). Moreover, in Example 4.3, MPCSk −MPCSk+1 =
Θ(‖F k‖2).

Proof. To recursively calculate the value of JMPCk , we define:

V MPCk
t (xt;w0:t+k−1) =

T−1∑
i=t

(x>i Qxi + u>i Rui) + x>TQf xT

= x>t Qxt + u>t Rut + Vt+1(Axt +But + wt;w0:t+k)

as the cost-to-go function with MPC as the policy, i.e., ut is the control at time step t from the MPC
policy with k predictions. Similar to the previous proofs, we assume V MPCk

t (x) = x>Ptx+x>vt+qt
(which turns out to be correct by induction) and T − t→∞ so that Pt = P . Then,

V MPCk
t (xt;w0:t+k−1) = x>t Qxt + u>t Rut + (Axt +But + wt)

>P (Axt +But + wt)

+ (Axt +But + wt)
>vt+1 + qt+1

= u>t (R+B>PB)ut + 2u>t B
>(PAxt + Pwt + vt+1/2)

+ x>t Qxt + (Axt + wt)
>P (Axt + wt) + (Axt + wt)

>vt+1 + qt+1.
(14)

Let F = A−HPA. Plugging in the formula of ut in Theorem 3.3, we have

V MPCk
t (xt;w0:t+k−1) =

(
1

2
vt+1 −

k−1∑
i=1

F>
i
Pwt+i

)>
H

(
1

2
vt+1 −

k−1∑
i=1

F>
i
Pwt+i

)

−
(
PAxt + Pwt +

1

2
vt+1

)>
H

(
PAxt + Pwt +

1

2
vt+1

)
+ x>t Qxt + (Axt + wt)

>P (Axt + wt) + (Axt + wt)
>vt+1 + qt+1

= x>t (Q+A>PA−A>PHPA)xt + x>t (F>vt+1 + 2F>Pwt)

+

(
1

2
vt+1 −

k−1∑
i=1

F>
i
Pwt+i

)>
H

(
1

2
vt+1 −

k−1∑
i=1

F>
i
Pwt+i

)

−
(
Pwt +

1

2
vt+1

)>
H

(
Pwt +

1

2
vt+1

)
+ w>t Pwt + w>t vt+1 + qt+1

= x>t Pxt + x>t vt + qt.

Thus,

vt = F>vt+1 + 2F>Pwt = 2

∞∑
i=0

F>
i+1

Pwt+i.
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Then, we can plug vt+1 into qt:

qt = qt+1 +

( ∞∑
i=k

F>
i
Pwt+i

)>
H

( ∞∑
i=k

F>
i
Pwt+i

)

−

( ∞∑
i=0

F>
i
Pwt+i

)>
H

( ∞∑
i=0

F>
i
Pwt+i

)
+ w>t Pwt + 2w>t

( ∞∑
i=1

F>
i
Pwt+i

)
. (15)

Note that Equation (15) is for MPC with k predictions. With the disturbance sequence {wt} fixed,
we can compare the per-step cost of MPC with k predictions and that with k + 1 predictions:

qkt − qk+1
t = qkt+1 − qk+1

t+1 +

( ∞∑
i=k

F>
i
Pwt+i

)>
H

( ∞∑
i=k

F>
i
Pwt+i

)

−

( ∞∑
i=k+1

F>
i
Pwt+i

)>
H

( ∞∑
i=k+1

F>
i
Pwt+i

)

= qkt+1 − qk+1
t+1 + w>t+kPF

kHF>
k

(
Pwt+k + 2

∞∑
i=1

F>
i
Pwt+i+k

)
. (16)

Thus,

E
[
qkt − qk+1

t − (qkt+1 − qk+1
t+1 )

]
= E

[
w>t+kPF

kHF>
k

(
Pwt+k + 2

∞∑
i=1

F>
i
Pwt+i+k

)]

= Tr

{
PF kHF>

k

(
P E

[
wt+kw

>
t+k

]
+ 2

∞∑
i=1

F>
i
P E

[
wt+i+kw

>
t+k

])}
= Tr

{
PF kHF>

k
Zk,t

}
,

where Zk,t = P E
[
wt+kw

>
t+k

]
+ 2

∑∞
i=1 F

>iP E
[
wt+i+kw

>
t+k

]
. Note that Zk,t = Zk−1,t+1.

MPCSk −MPCSk+1 = lim
T→∞

1

T
E
[
qk0 − qk+1

0

]
= lim
T→∞

1

T

T−1∑
t=0

Tr
{
PF kHF>

k
Zk,t

}
≤ lim
T→∞

1

T

T−1∑
t=0

‖P‖‖H‖
∥∥F k∥∥2

Tr{Zk,t},

where in the last line we use the fact that if A is symmetric, then Tr{AB} ≤ ‖A‖Tr{B}. Similarly
to the last part in the proof of Theorem 4.1, now we just need to show the last term Tr{Zk,t} is
uniformly bounded for all t. Again, this is because the cross-correlation of each disturbance pair is
uniformly bounded.

Tr{Zk,t} ≤ ‖P‖TrE
[
wt+kw

>
t+k

]
+ 2

∞∑
i=1

‖P‖
∥∥F i∥∥E[∑

j

σj(wt+i+kw
>
t+k)

]

≤ ‖P‖m+ 2

∞∑
i=1

cλi‖P‖m = ‖P‖m+ 2c
λ

1− λ
‖P‖m

where c is some constant, and in the first line, we use the fact that Tr{AB} ≤ ‖A‖
∑
j σj(B)

with σj(·) denoting the j-th singular value. Thus, Tr{Zk,t} is uniformly bounded. Therefore,
MPCSk −MPCSk+1 = O(‖F k‖2).
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B.3 Proof of Theorem 4.6

RegS(MPCk) = MPCSTk − STOT
T = O(‖F k‖2T + 1) = O(λ2kT + 1), where the second term

results from the difference between finite/infinite horizons.

Proof. To calculate the dynamic regret, we cannot simply let T − t → ∞ as we did before Equa-
tion (14) in the proof of Theorem 4.4 and instead need to handle the expressions in a more delicate
manner. In particular, we need to rigorously analyze the impact of finite horizon. Let ∆t = Pt − P .

V MPCk
t (xt;w0:t+k−1)

= u>t (R+B>Pt+1B)ut + 2u>t B
>(Pt+1Axt + Pt+1wt + vt+1/2)

+ x>t Qxt + (Axt + wt)
>Pt+1(Axt + wt) + (Axt + wt)

>vt+1 + qt+1

= u>t (R+B>PB)ut + 2u>t B
>(PAxt + Pwt + vt+1/2)

+ x>t Qxt + (Axt + wt)
>P (Axt + wt) + (Axt + wt)

>vt+1 + qt+1

+ u>t B
>∆t+1But + 2u>t B

>∆t+1(Axt + wt) + (Axt + wt)
>∆t+1(Axt + wt).

Plugging in the MPC policy as in Theorem 3.3, we have:

V MPCk
t (xt;w0:t+k−1)

= x>t (Q+A>PA−A>PHPA)xt + x>t (F>vt+1 + 2F>Pwt)

+

(
1

2
vt+1 −

k−1∑
i=1

F>
i
Pwt+i

)>
H

(
1

2
vt+1 −

k−1∑
i=1

F>
i
Pwt+i

)

−
(
Pwt +

1

2
vt+1

)>
H

(
Pwt +

1

2
vt+1

)
+ w>t Pwt + w>t vt+1 + qt+1

+

(
Fxt + wt −

k−1∑
i=0

F>
i
Pwt+i

)>
∆t+1

(
Fxt + wt −

k−1∑
i=0

F>
i
Pwt+i

)
= x>t (Q+A>PA−A>PHPA+ F>∆t+1F )xt

+ x>t

(
F>vt+1 + 2F>Pwt + 2F>∆t+1

(
wt −

k−1∑
i=0

F>
i
Pwt+i

))

+

(
1

2
vt+1 −

k−1∑
i=1

F>
i
Pwt+i

)>
H

(
1

2
vt+1 −

k−1∑
i=1

F>
i
Pwt+i

)

−
(
Pwt +

1

2
vt+1

)>
H

(
Pwt +

1

2
vt+1

)
+ w>t Pwt + w>t vt+1 + qt+1

+

(
wt −

k−1∑
i=0

F>
i
Pwt+i

)>
∆t+1

(
wt −

k−1∑
i=0

F>
i
Pwt+i

)

Comparing this with the induction hypothesis V MPCk
t = x>t (P + ∆t)xt + x>t vt + qt, we obtain the

recursive formulae for ∆t, vt, qt.

∆t = F>∆t+1F = F>
T−t

∆TF
T−t = F>

T−t
(Qf − P )FT−t.

This implies that Pt converges to P exponentially fast, i.e., ‖∆t‖ = O(‖FT−t‖2) = O(λ2(T−t)).

vt = F>vt+1 + 2F>Pwt + 2F>∆t+1

(
wt −

k−1∑
i=0

F>
i
Pwt+i

)

= 2

T−t−1∑
j=0

(
F>

j+1
Pwt+j + F>

j+1
∆t+j+1

(
wt+j −

k−1∑
i=0

F>
i
Pwt+j+i

))

18



= 2

T−t−1∑
i=0

F>
i+1

Pwt+i + 2

T−t−1∑
j=0

F>
j+1

∆t+j+1

(
wt+j −

k−1∑
i=0

F>
i
Pwt+j+i

)
.

Denote the second term by 2dt. We have

dt =

T−t−1∑
j=0

F>
j+1

∆t+j+1

(
wt+j −

k−1∑
i=0

F>
i
Pwt+j+i

)

=

T−t−1∑
j=0

O(λjλ2(T−t−j)) = O(λT−t).

dkt − dk+1
t =

T−t−k−1∑
j=0

F>
j+1

∆t+j+1F
>kPwt+j+k (17)

=

T−t−k−1∑
j=0

O(λjλ2(T−t−j)‖F k‖) = O(λT−t+k‖F k‖).

Finally, we have a formula for qt that parallels Equation (15):

qt = qt+1 +

(
dt+1 +

T−t−1∑
i=k

F>
i
Pwt+i

)>
H

(
dt+1 +

T−t−1∑
i=k

F>
i
Pwt+i

)

−

(
dt+1 +

T−t−1∑
i=0

F>
i
Pwt+i

)>
H

(
dt+1 +

T−t−1∑
i=0

F>
i
Pwt+i

)

+ w>t Pwt + 2w>t

(
dt+1 +

T−t−1∑
i=1

F>
i
Pwt+i

)
.

Taking the difference between k and k + 1 predictions, we have

qkt − qk+1
t − (qkt+1 − qk+1

t+1 )

= (w>t+kPF
k + (dkt+1 − dk+1

t+1 )>)H

(
dkt+1 + dk+1

t+1 + F>
k
Pwt+k + 2

T−t−k−1∑
i=1

F>
i+k

Pwt+i+k

)
(18)

= (w>t+kPF
k +O(λT−t‖F k‖))H

(
O(λT−t) + F>

k
Pwt+k + 2

T−t−k−1∑
i=1

F>
i+k

Pwt+i+k

)
,

and thus

E
[
qkt − qk+1

t − (qkt+1 − qk+1
t+1 )

]
= O(‖F k‖(λT−t + ‖F k‖)).

E
[
qk0 − qT0

]
=

T−1∑
t=0

E
[
qkt − qk+1

t − (qkt+1 − qk+1
t+1 )

]
=

T−1∑
t=0

O(‖F k‖(λT−t + ‖F k‖))

= O(‖F k‖2T + ‖F k‖).

E
[
vk0 − vT0

]
= 2(dk0 − dT0 ) = O(λT+k‖F k‖).

E JMPCk − E JMPCT = E
[
V k0 (x0)− V T0 (x0)

]
= E

[
x>0 (vk0 − vT0 ) + (qk0 + qT0 )

]
19



= O(‖F k‖2T + ‖F k‖). (19)

By definition, JMPCT is the cost of MPC policy given all future disturbances before making any
decisions. It almost equals to minu J , the optimal policy given all future disturbances, except that
during optimization, MPC assumes the final-step cost to be x>T PxT instead of x>TQf xT . This will
incur at most constant extra cost, i.e.,

JMPCT −min
u
J = O(P −Qf ) = O(1). (20)

By Equations (19) and (20),

RegS(MPCk) = E JMPCk − Emin
u
J = O(‖F k‖2T + ‖F k‖+ 1) = O(‖F k‖2T + 1).

B.4 Proof of Theorem 4.7

The optimal dynamic regret RegSk
∗

= STOT
k − STOT

T = O(‖F k‖2T + 1) = O(λ2kT + 1) and
there exist A, B, Q, R, Qf , x0, andW such that RegSk

∗
= Θ(‖F k‖2(T − k)).

Proof. The first part follows from Theorem 4.6 and that fact that RegSk
∗ ≤ RegS(MPCk).

The second part is shown by Example 4.3, i.e., suppose n = d = 1 and the disturbance are i.i.d. and
zero-mean. Additionally, let Qf = P and x0 = 0. In this case, MPC has not only the same policy but
also the same cost as the optimal control policy. Also, Pt = P for all t. To calculate the total cost,
we follow the approach used in the proof of Theorem 3.2. Since T is finite now, we have a similar (to
Equation (8)) but different form of vt:

vt = 2

min{k−1,T−t−1}∑
i=0

F>
i+1

Pwt+i.

Thus,

E[qt] = Tr


P − min{k−1,T−t−1}∑

i=0

PF iHF>
i
P

W
+ E[qt+1].

E[q0] = Tr


T−1∑
t=0

P − min{k−1,T−t−1}∑
i=0

PF iHF>
i
P

W
.

Let qkt denote qt in the scenario of k predictions.

RegS
∗

= E
[
qk0 − qT0

]
= Tr

{
T−k−1∑
t=0

T−t−1∑
i=k

PF iHF>
i
PW

}
≥ (T − k) Tr

{
PF kHF>

k
PW

}
= Ω(‖F k‖2(T − k)).

On the other hand,

RegS
∗

= E
[
qk0 − qT0

]
≤ (T − k) Tr

{ ∞∑
i=k

PF iHF>
i
PW

}
= O(‖F k‖2(T − k)).

Therefore, RegS∗ = Θ(‖F k‖2(T − k)).

C Proofs of Section 5

C.1 Proof of Theorem 5.1

For k ≥ 1, ADVk − ADVk+1 = O(‖F k‖2) = O(λ2k).
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Proof. This proof is based on Theorem 5.3. It turns out that the behavior of the MPC policy and its
cost is easier to analyze than the optimal one, especially in the adversarial setting.

ADVk − ADVk+1 ≤ ADVk − ADV∞ ≤ MPCAk − ADV∞ =

∞∑
i=k

MPCAi −MPCAi+1.

By Theorem 5.3,

MPCAi −MPCAi+1 ≤ O
(∥∥F i∥∥2

)
≤ O

(∥∥F k∥∥2∥∥F i−k∥∥2
)
≤ O

(∥∥F k∥∥2
λ2(i−k)

)
.

Thus,

ADVk − ADVk+1 ≤ O

(∥∥F k∥∥2
∞∑
i=k

λ2(i−k)

)
= O(‖F k‖2).

C.2 Proof of Example 5.2

Let A = B = Q = R = 1 and Ω = [−1, 1]. In this case, one prediction is enough to leverage the
full power of prediction. Formally, we have ADV1 = ADV∞ = 1. In other words, for all k ≥ 1,
ADVk = 1. The optimal control policy (as T →∞) is a piecewise function:

u∗(x,w) =


−(x+ w) ,−1 ≤ x+ w ≤ 1

−(x+ w) + 3−
√

5
2 (x+ w − 1) , x+ w > 1

−(x+ w) + 3−
√

5
2 (x+ w + 1) , x+ w < −1

.

The proof leverages two different cost-to-go functions for the min player and the sup player.

Proof. We will show ADV1 = 1 and ADV∞ = 1 separately. The system dynamics is given by
xt+1 = xt + ut + wt with wt ∈ [−1, 1] and

ADV T
1 = max

w0

min
u0

· · ·max
wT−1

min
uT−1

T−1∑
t=0

(x2
t + u2

t ) + x2
T .

We will calculate the results of each min and max by dynamical programming. In particular, we will
define two cost-to-go functions for the min player and the max player respectively. Let zt = xt +wt.
Then, zt can be regarded as the disturbed state. This is natural since the controller has one prediction
and decides ut after knowingwt. Thus, the system dynamics can be split into two stages: zt = xt+wt
and xt+1 = zt + ut. Let

ft(zt) = min
ut

max
wt+1

min
ut+1

· · ·max
wT−1

min
uT−1

T−1∑
i=t

(u2
i + x2

i+1)

= min
ut

(
u2
t + (zt + ut)

2 + gt+1(zt + ut)
)
,

gt(xt) = max
wt

min
ut

· · ·max
wT−1

min
uT−1

T−1∑
i=t

(u2
i + x2

i+1)

= max
wt

ft(xt + wt).

For t = T − 1, we have

fT−1(z) = min
u
u2 + (z + u)2 =

z2

2
,

gT−1(x) = max
w

(x+ w)2

2
=

(|x|+ 1)2

2
.

We will prove by backward induction that gt(x) = atx
2 + 2bt|x| + ct where at, bt, ct are some

coefficients with 0 < bt < 1. Assuming this is true at t, we will show this is true at t− 1.

ft−1(z) = min
u

(
u2 + (z + u)2 + gt(z + u)

)
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= min
y

(
(y − z)2 + y2 + gt(y)

)
= min

y

(
(y − z)2 + y2 + aty

2 + 2bt|y|+ ct
)

= min
y

(
(at + 2)y2 − 2(z − bt sign(y))y + z2 + ct

)
,

where y = z + u = x+ w + u is the state after the control policy is applied. Let function y(z) map
from the disturbed old state to the new state. The optimal y is given by:

y∗(z) = arg miny
(
(at + 2)y2 − 2(z − bt sign(y))y + z2 + ct

)
=

{
0 ,−bt ≤ z ≤ bt
z−bt sign(z)

at+2 , otherwise
. (21)

Thus, for z < −bt or z > bt, we have

ft−1(z) = − (z − bt sign(z))2

at + 2
+ z2 + ct

= −z
2 − 2bt|z|+ b2t

at + 2
+ z2 + ct

=
at + 1

at + 2
z2 +

2bt
at + 2

|z|+ ct −
b2t

at + 2
.

For z ∈ [−bt, bt], the value of ft(z) is not needed in the calculation of gt(x) because 0 < bt < 1
(induction hypothesis) and the adversary — who wants to maximize ft(zt), a convex, even function
— will never choose wt such that zt = xt + wt ∈ (−1, 1) since wt can be chosen from [−1, 1].

gt−1(x) = max
w

ft(x+ w) = ft(x+ sign(x))

=
at + 1

at + 2
(x2 + 2|x|+ 1) +

2bt
at + 2

(|x|+ 1) + ct −
b2t

at + 2

=
at + 1

at + 2
x2 +

2(at + bt + 1)

at + 2
|x|+ ct +

at + 1 + 2bt − b2t
at + 2

= at−1x
2 + 2bt−1|x|+ ct−1.

Now, we have obtained the recursive formulae for at, bt, ct. The initial values are aT−1 = bT−1 =
cT−1 = 1/2.

Let fi be the i-th Fibonacci number with f0 = 0, f1 = 1. Then, aT−i = fi+1/fi+2. As i → ∞,
aT−i →

√
5−1
2 .

For bt, we have 1 − bT−(i+1) = (1 − bT−i)/(aT−i + 2). When i is large, 1 − bT−i approaches 0
but is always positive. Thus, bT−i approaches 1 but is always less than 1.

For ct, we have

cT−(i+1) = cT−i + 1− (1− bT−i)2

aT−i + 2
and thus cT−(i+1) − cT−i → 1. Therefore, ADV1 = 1.

The optimal control policy is obtained by plugging the above values back into Equation (21):

u∗(x,w) = −(x+ w) + y∗(x+ w) = −(x+ w) +

{
0 ,−1 ≤ x+ w ≤ 1
x+w−sign(x+w)

√
5+3
2

, otherwise .

For ADV∞, we will show that STO∞ = 1 at a specific disturbance sequence: wt = 1 for all t.
Because STO∞ ≤ ADV∞ ≤ ADV1 = 1, we know that ADV∞ = 1.

According to Equations (8) and (9) with k →∞,

STO∞ = lim
T→∞

1

T

T−1∑
t=0

(2wtψt − Pw2
t −Hψ2

t ) with ψt =

∞∑
i=0

F iPwt+i.

Solving the Riccati equation, we have P = 1+
√

5
2 , H = F = 3−

√
5

2 . When wt = 1 for all t,
STO∞ = 1.
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C.3 Proof of Theorem 5.3

MPCAk −MPCAk+1 = O(‖F k‖2) = O(λ2k).

Proof. Note that Equation (16) in the proof of Theorem 4.4 does not rely on the type of disturbance,
i.e., Equation (16) holds for adversarial disturbance as well. Let r = supw∈Ω ‖w‖2.

qkt − qk+1
t − (qkt+1 − qk+1

t+1 ) = w>t+kPF
kHF>

k

(
Pwt+k + 2

∞∑
i=1

F>
i
Pwt+i+k

)

≤ ‖wt+k‖‖P‖‖H‖
∥∥F k∥∥2

(
‖P‖‖wt+k‖+ 2

∞∑
i=1

∥∥F i∥∥‖P‖‖wt+i+k‖)

≤
∥∥F k∥∥2

(
1 + 2

∞∑
i=1

∥∥F i∥∥)‖H‖‖P‖2r2

≤
∥∥F k∥∥2

(
1 + 2

cλ

1− λ

)
‖H‖‖P‖2r2

for some constant c.

MPCAk −MPCAk+1 = lim
T→∞

1

T
(max
w

qk0 −max
w

qk+1
0 )

≤ lim
T→∞

1

T
max
w

(qk0 − qk+1
0 )

≤ lim
T→∞

1

T

T−1∑
t=0

max
w

(qkt − qk+1
t − (qkt+1 − qk+1

t+1 ))

≤
∥∥F k∥∥2

(
1 + 2

cλ

1− λ

)
‖H‖‖P‖2r2 = O(‖F k‖2).

C.4 Proof of Theorem 5.5

RegA(MPCk) = O(‖F k‖2T + 1) = O(λ2kT + 1).

Proof. We follow the notations in the proof of Theorem 4.6. Equation (18) does not rely on the type
of disturbance, so it holds for adversarial disturbance as well. By Equation (18) and the fact that wt
is bounded, we have

qkt − qk+1
t − (qkt+1 − qk+1

t+1 ) = O(‖F k‖(λT−t + ‖F k‖)),
where the constant in the Big-Oh notation does not depend on the disturbance sequence w. Thus,

max
w

(qk0 − qT0 ) ≤
T−1∑
t=0

max
w

(qkt − qk+1
t − (qkt+1 − qk+1

t+1 )) = O(‖F k‖2T + ‖F k‖).

By Equation (17) and the boundedness of wt,

max
w

(vk0 − vT0 ) = 2 max
w

(dk0 − dT0 ) = O(λT+k‖F k‖).

max
w

(JMPCk − JMPCT ) = max
w

(V k0 (x0)− V T0 (x0)) ≤ max
w

(x>0 (vk0 − vT0 )) + max
w

(qk0 − qT0 )

= O(‖F k‖2T + ‖F k‖).

As Equation (20), JMPCT −minu J = O(1). Thus,

RegA(MPCk) = max
w

(JMPCk −min
u
J) ≤ max

w
(JMPCk − JMPCT ) + max

w
(JMPCT −min

u
J)

= O(‖F k‖2T + ‖F k‖+ 1) = O(‖F k‖2T + 1).
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C.5 Proof of Theorem 5.6

RegAk
∗

= O(‖F k‖2T + 1) = O(λ2kT + 1). Moreover, there exist A, B, Q, R, Qf , x0, and Ω such
that RegAk

∗
= Ω(‖F k‖2(T − k)).

Proof. The first part of the theorem follows from Theorem 5.5 and the fact that RegAk
∗ ≤

RegA(MPCk).

We reduce the second part of this theorem to the second part of Theorem 4.7. Since the proof of
Theorem 4.7 works for any fixed distribution of wt (with finite second moment), we can restrict that
distribution to have bounded support. Denote this bounded support by Ω. Then, we have

RegAk
∗

= sup
w0,··· ,wk−1

min
u0

sup
wk

· · · min
uT−k−1

sup
wT−1

min
uT−k,··· ,uT−1

(
J(u,w)− min

u′0,...,u
′
T−1

J(u′, w)
)

≥ E
w0,··· ,wk−1

min
u0

E
wk

· · · min
uT−k−1

E
wT−1

min
uT−k,··· ,uT−1

(
J(u,w)− min

u′0,...,u
′
T−1

J(u′, w)
)

= RegSk
∗

= Θ(‖F k‖2(T − k)).
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