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Abstract

Embodied agents operating in human spaces must be able to master how their
environment works: what objects can the agent use, and how can it use them?
We introduce a reinforcement learning approach for exploration for interaction,
whereby an embodied agent autonomously discovers the affordance landscape
of a new unmapped 3D environment (such as an unfamiliar kitchen). Given an
egocentric RGB-D camera and a high-level action space, the agent is rewarded for
maximizing successful interactions while simultaneously training an image-based
affordance segmentation model. The former yields a policy for acting efficiently
in new environments to prepare for downstream interaction tasks, while the latter
yields a convolutional neural network that maps image regions to the likelihood they
permit each action, densifying the rewards for exploration. We demonstrate our idea
with AI2-iTHOR. The results show agents can learn how to use new home environ-
ments intelligently and that it prepares them to rapidly address various downstream
tasks like “find a knife and put it in the drawer.” Project page: http://vision.
cs.utexas.edu/projects/interaction-exploration/

1 Introduction

The ability to interact with the environment is an essential skill for embodied agents operating in
human spaces. Interaction gives agents the capacity to modify their environment, allowing them to
move from semantic navigation tasks (e.g., “go to the kitchen; find the coffee cup”) towards complex
tasks involving interactions with their surroundings (e.g., “heat some coffee and bring it to me”).

Today’s embodied agents are typically trained to perform specific interactions in a supervised manner.
For example, an agent learns to navigate to specified objects [18], a dexterous hand learns to solve
a Rubik’s cube [4], a robot learns to manipulate a rope [40]. In these cases and many others, it is
known a priori what objects are relevant for the interactions and what the goal of the interaction is,
whether expressed through expert demonstrations or a reward crafted to elicit the desired behavior.
Despite exciting results, the resulting agents remain specialized to the target interactions and objects
for which they were taught.

In contrast, we envision embodied agents that can enter a novel 3D environment, move around to
encounter new objects, and autonomously discern the affordance landscape—what are the interactable
objects, what actions are relevant to use them, and under what conditions will these interactions
succeed? Such an agent could then enter a new kitchen (say), and be primed to address tasks like
“wash my coffee cup in the sink.” These capabilities would mimic humans’ ability to efficiently
discover the functionality of even unfamiliar objects though a mixture of learned visual priors and
exploratory manipulation.

To this end, we introduce the exploration for interaction problem: a mobile agent in a 3D environment
must autonomously discover the objects with which it can physically interact, and what actions are
valid as interactions with them.
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Figure 1: Main idea. We train interaction exploration agents to quickly discover what objects can be used and
how to use them. Given a new, unseen environment, our agent can infer its visual affordance landscape, and
efficiently interact with all the objects present. The resulting exploration policy and affordance model prepare
the agent for downstream tasks that involve multiple object interactions.

Exploring for interaction presents a challenging search problem over the product of all objects,
actions, agent positions, and action histories. Furthermore, many objects are hidden (e.g., in drawers)
and need to be discovered, and their interaction dynamics are not straightforward (e.g., cannot open
an already opened door, can only slice an apple if a knife is picked up). In contrast, exploration for
navigating a static environment involves relatively small action spaces and dynamics governed solely
by the presence/absence of obstacles [12, 50, 51, 18, 11, 47].

Towards addressing these challenges, we propose a deep reinforcement learning (RL) approach in
which the agent discovers the affordance landscape of a new, unmapped 3D environment. The result
is a strong prior for where to explore and what interactions to try. Specifically, we consider an
agent equipped with an egocentric RGB-D camera and an action space comprised of navigation and
manipulation actions (turn left, open, toggle, etc.), whose effects are initially unknown to the agent.
We reward the agent for quickly interacting with all objects in an environment. In parallel, we train
an affordance model online to segment images according to the likelihoods for each of the agent’s
actions succeeding there, using the partially observed interaction data generated by the exploration
policy. The two models work in concert to functionally explore the environment. See Figure 1.

Our experiments with AI2-iTHOR [29] demonstrate the advantages of interaction exploration. Our
agents can quickly seek out new objects to interact with in new environments, matching the perfor-
mance of the best exploration method in 42% fewer timesteps and surpassing them to discover 1.33×
more interactions when fully trained. Further, we show our agent and affordance model help train
multi-step interaction policies (e.g., washing objects at a sink), improving success rates by up to 16%
on various tasks, with fewer training samples, despite sparse rewards and no human demonstrations.

2 Related Work
Visual affordances An affordance is the potential for action [22]. In computer vision, visual
affordances are explored in various forms: predicting where to grasp an object from images and
video [31, 32, 64, 38, 19, 62, 15, 5], inferring how people might use a space [48, 39] or tool [65], and
priors for human body poses [26, 52, 58, 17]. Our work offers a new perspective on learning visual
affordances. Rather than learn them passively from a static dataset, the proposed agent actively seeks
new affordances via exploratory interactions with a dynamic environment. Furthermore, unlike prior
work, our approach yields not just an image model, but also a policy for exploring interactions, which
we show accelerates learning new downstream tasks for an embodied agent.

Exploration for navigation in 3D environments Recent embodied AI work in 3D simulators [36,
56, 60, 10] tackles navigation: the agent moves intelligently in an unmapped but static environment
to reach a goal (e.g., [12, 11, 36, 6]). Exploration policies for visual navigation efficiently map the
environment in an unsupervised “preview” stage [12, 50, 18, 11, 47, 46]. The agent is rewarded for
maximizing the area covered in its inferred occupancy map [12, 11, 18], the novelty of the states
visited [51], pushing the frontier of explored areas [46], and related metrics [47]. For a game setting
in VizDoom, classic frontier-based exploration is improved by learning the visual appearance of
hazardous regions (e.g., enemies, lava) where the agent’s health score has previously declined [46].

In contrast to all the above, we study the problem of exploration for interaction in dynamic environ-
ments where the agent can modify the environment state (open/close doors, pick up objects etc.). Our
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end goal is not to build a top-down occupancy map, but rather to quickly interact with as many objects
as possible in a new environment. In other words, whereas exploration for navigation promotes
rapidly completing a static environment map, exploration for interaction promotes rapidly completing
the agent’s understanding of its interactions in a dynamic environment.

Interaction in 3D environments Beyond navigation, recent work leverages simulated interaction-
based environments [21, 29, 55, 45] to develop agents that can also perform actions (e.g., moving
objects, opening doors) with the goal of eventually translating policies to real robots [2, 1]. These
tasks include answering questions (“how many apples are in the fridge?”) that may require naviga-
tion [16] as well as interaction [25]. Towards service robotics, goal driven planning [63], instruction
following [55], and cooking [21] agents are trained using imitation learning on expert trajectories.

Our idea to efficiently explore interactions is complementary. Rather than learn a task-specific policy
from demonstrations, our approach learns task-agnostic exploration behavior from experience to
quickly discover the affordance landscape. Our model can be coupled with a downstream task like
those tackled above to accelerate their training, as we demonstrate in the experiments.

Self-supervised interaction learning Prior work studies actively learning manipulation policies
through self-supervised training for grasping [44, 42, 33, 35, 61], pushing/poking [3, 41] and drone
control [20]. Unstructured play data has also been used to learn subgoal policies [34], which are
then sampled to solve complex tasks. Object affordance models are learned for simple objects in
table-top environments [23, 24] and for block pushing tasks in gridworlds [28]. We share the general
idea of learning through interaction; however, we focus on high-level interaction policies requiring
both navigation and manipulation (e.g., moving to the counter and picking up knife) rather than
fine-grained manipulation policies (e.g., altering joint angles).

Intrinsic motivation In the absence of external rewards from the environment, reinforcement
learning agents can nonetheless focus their behavior to satisfy intrinsic drives [53]. Recent work
formulates intrinsic motivation based on curiosity [43, 9, 27], novelty [51, 7], and empowerment [37]
to improve video game playing agents (e.g., VizDoom, Super Mario) or increase object attention [27].
Our idea can be seen as a distinct form of intrinsic motivation, where the agent is driven to experience
more interactions in the environment. Also, we focus on realistic human-centered 3D environments,
rather than video games, and with high-level interactions that can change object state, rather than
low-level physical manipulations.

3 Approach

Our goal is to train an interaction exploration agent to enter a new, unseen environment and suc-
cessfully interact with all objects present. This involves identifying the objects that are interactable,
learning to navigate to them, and discovering all valid interactions with them (e.g., discovering that
the agent can toggle a light switch, but not a knife).

To address the challenges of a large search space and complex interaction dynamics, our agent learns
visual affordances to help it intelligently select regions of the environment to explore and interactions
to try. Critically, our agent builds this affordance model through its own experience interacting
with the environment during exploration. For example, by successfully opening a cupboard, the
agent learns that objects with handles are likely to be “openable". Our method yields an interaction
exploration policy that can quickly perform object interactions in new environments, as well as a
visual affordance model that captures where each action is likely to succeed in the egocentric view.

In the following, we first define the interaction exploration task (Sec. 3.1). Then, we show how an
agent can train an affordance model via interaction experience (Sec. 3.2). Finally, we present our
policy learning architecture that integrates interaction exploration and affordance learning, and allows
transfer to goal-driven policy learning (Sec. 3.3).

3.1 Learning exploration policies for interaction

We want to train an agent to interact with as many objects as possible in a new environment. Agents
can perform actions from a set A = AN

⋃
AI , consisting of navigation actions AN (e.g., move

forward, turn left/right) and object interactions AI (e.g., take/put, open/close).

The interaction exploration task is set up as a partially observable Markov decision process. The
agent is spawned at an initial state s0. At each time step t, the agent in state st receives an observation
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(xt, θt) consisting of the RGB image xt and the agent’s odometry1 θt, executes an action at ∼ A and
receives a reward rt ∼ R(st, at, st+1). A recurrent network encodes the agent’s observation history
over time to arrive at the state representation. The agent is rewarded for each successful interaction
with a new object ot:

R(st, at, st+1) =

{
1 if at ∈ AI and c(at, ot) = 0

0 otherwise,
(1)

where c(a, o) counts how many times interaction (a, o) has successfully occurred in the past. The
goal is to learn an exploration policy πE that maximizes this reward over an episode of length T . See
Sec. 3.3 for the policy architecture. The hard, count-based reward formulation only rewards the agent
once per interaction, incentivizing broad coverage of interactions, rather than mastery of a few, which
is useful for downstream tasks involving arbitrary interactions.

3.2 Affordance learning via interaction exploration

As the agent explores, it attempts interactions at various locations, only some of which succeed.
These attempts partially reveal the affordances of objects — what interactions are possible with them
— which we capture in a visual affordance model. An explicit model of affordances helps the agent
decide what regions to visit (e.g., most interactions fail at walls, so avoid them) and helps extrapolate
possible interactions with unvisited objects (e.g., opening one cupboard suggests that other handles
are “openable”), leading to more efficient exploration policies.

At a high level, we train an affordance segmentation model FA to transform an input RGB-D image
into a |AI |-channel segmentation map, where each channel is aH×W map over the image indicating
regions where a particular interaction is likely to succeed. Training samples for this model comes
from the agent’s interaction with the environment. For example, if it successfully picks up a kettle,
pixels around that kettle are labeled “pickup-able”, and these labels are propagated to all frames
where the kettle is visible (both before and after the interaction took place), such that affordances will
be recognizable even from far away. See Fig. 2 (right panel).

Specifically, for a trajectory τ = {(st, at)}t=1..T ∼ πE sampled from our exploration policy, we
identify time steps t1...tN where interactions occur (at ∈ AI ). For each interaction, the world
location pt at the center of the agent’s field of view is calculated by inverse perspective projection
and stored along with the interaction type at and success of the interaction zt in memory asM =
{(pt, at, zt)}t=t1..tN . This corresponds to “marking” the target of the interaction.

At the end of the episode, for each frame x in the trajectory, we generate a corresponding segmentation
mask y that highlights the position of all markers from any action that are visible in x. For each
interaction ak, the label for each pixel in the k-th segmentation mask slice yk is calculated as:

ykij =


0 ifmin(p,a,z)∈Mk

d(pij , p) < δ and z = 0

1 ifmin(p,a,z)∈Mk
d(pij , p) < δ and z = 1

−1 otherwise
(2)

whereMk ⊆M is the subset of markers corresponding to interaction ak, pij is the world location
at that pixel, d is euclidean distance, and δ is a fixed distance threshold (20cm). In other words,
each pixel is labeled 0 or 1 for affordance k depending on whether any marker has been placed
nearby (within distance δ) at any time along the trajectory, and is visible in the current frame. If no
markers are placed, the pixel is labeled −1 for unknown. See Fig. 2 (right panel). This results in a
|AI | ×H ×W dimension segmentation label mask per frame, which we use to train FA.

These labels are sparse and noisy, as an interaction may fail with an object despite being valid in other
conditions (e.g., opening an already opened cupboard). To account for this, we train two distinct
segmentation heads using these labels to minimize a combination of cross entropy losses:

L(ŷA, ŷI , y) = Lce(ŷA, y,∀yij 6= −1) + Lce(ŷI ,1[y = −1],∀yij) (3)

where 1[.] is the indicator function over labels. Lce is standard cross entropy loss, but is evaluated over
a subset of pixels specified by the third argument. Classifier output ŷA scores whether each interaction
is successful at a location, while ŷI scores general interactibility (y = −1 vs. y 6= −1). The latter
acts as a measure of uncertainty to ignore regions where markers are rarely placed, regardless of
success (e.g., the ceiling, windows). The final score output by FA is the product ŷ = ŷA × (1− ŷI).

1We assume reliable odometry estimates. See Supp for experiments with noisy odometry.
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Figure 2: Interaction exploration framework. Left panel: Our policy network takes the current frame xt and
predicted affordance maps FA(xt) as input to train a policy πE to maximize the interaction exploration reward
in Equation 1 (Sec. 3.1). Right panel: As the policy network trains, trajectories sampled from πE are used to
create affordance training samples to improve FA, by “marking” target locations of interactions and propagating
these regions to other frames along the trajectory where the target is visible (green regions) (Sec. 3.2).

In our experiments, we consider two variants: one that marks interactions with a single point, and
one that marks all points on the target object of the interaction. The former translates to fixed scale
labels at the exact interaction location, supposing no prior knowledge about object segmentation. The
latter is more general and considers the whole object as “interactable”, leading to denser labels. In
both cases, the object class and valid interactions are unknown to the agent.

3.3 Policy learning architecture and transfer

Next we put together both pieces—the interaction exploration objective and the affordance
segmentations—in our policy learning framework. We adopt an actor-critic policy model and a
U-Net [49] architecture for affordances. At each time step, we receive the current egocentric frame
x and generate its affordance maps ŷ = FA(x). The visual observations and affordance maps
are encoded using a 3-layer convolutional neural network (CNN) each, and then concatenated and
merged using a fully connected layer. This is then fed to a gated recurrent unit (GRU) recurrent neural
network to aggregate observations over time, and finally to an actor-critic network (fully connected
layers) to generate the next action distribution and value. We train this network using PPO [54] for
1M frames, with rollouts of T = 256 time steps. See Fig. 2 (left) and Supp for architecture details.

We train the policy network and the segmentation model iteratively. As the agent explores, we store
episodes drawn from the exploration policy, and create an affordance segmentation dataset as per
Sec. 3.2. We train the affordance model using this dataset, and use the updated model to generate ŷ
to further train the policy network described above. See Supp for training schedule.

The result of this process is an interaction exploration policy πE that can quickly master object
interactions in new environments, as well as a visual affordance model FA, which captures where
interactions will likely succeed in the current view. In addition, we show the policy transfers to
better learn downstream tasks. Specifically, we freeze the weights of the policy network and FA, and
fine-tune only the actor-critic linear layers using the downstream task’s reward (cf. Sec. 4.2).

4 Experiments

We evaluate agents’ ability to interact with as many objects as possible (Sec. 4.1) and enhance policy
learning on downstream tasks (Sec. 4.2).

Simulation environment We experiment with AI2-iTHOR [30] (see Fig. 1), since it supports
context-specific interactions that can change object states, vs. simple physics-based interactions in
other 3D indoor environments [59, 8]. We use all kitchen scenes; kitchens are a valuable domain since
many diverse interactions with objects are possible, as also emphasized in prior work [14, 38, 21].
The scenes contain objects from 69 classes, each of which supports 1-5 interactions. We split the 30
scenes into training (20), validation (5), and testing (5) sets. We randomize objects’ positions and
states (isOpen, isToggled etc), agent start location, and camera viewpoint when sampling episodes.
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Take Put Open Close Turn-on Turn-off Slice Average
Prec Cov Prec Cov Prec Cov Prec Cov Prec Cov Prec Cov Prec Cov Prec Cov

RANDOM 2.61 9.46 2.30 19.25 5.51 14.80 3.89 9.20 1.46 9.48 0.92 5.74 0.02 0.44 2.39 9.81
RANDOM+ 3.17 10.87 3.01 19.28 7.66 16.67 7.05 14.60 1.81 10.35 2.00 11.33 0.01 0.10 3.53 11.89
CURIOSITY [43] 2.41 9.33 2.12 19.75 5.25 14.26 3.62 8.94 1.53 10.47 0.88 6.01 0.00 0.10 2.26 9.84
NOVELTY [51] 3.09 11.95 3.11 24.62 8.47 22.82 6.09 20.53 1.52 10.60 1.47 10.97 0.00 0.00 3.39 14.50
OBJCOVERAGE [47] 5.60 15.54 5.36 30.29 6.34 21.16 5.66 18.88 3.04 15.56 3.07 15.93 0.00 0.00 4.15 16.77
INTEXP 8.53 19.23 6.35 39.62 10.18 30.05 9.82 24.43 12.42 23.19 11.91 18.45 0.04 0.06 8.46 22.15

Table 1: Exploration performance per interaction. Our policy is both more precise (prec) and discovers
more interactions (cov) than all other methods. Methods that cycle through actions eventually succeed, but at the
cost of interaction failures along the way.

Agents can both navigate: AN = {move forward, turn left/right 30◦, look up/down 15◦}, and perform
interactions with objects in the center of the agent’s view: AI = {take, put, open, close, toggle-on,
toggle-off, slice}. While the simulator knows what actions are valid given where the agent is, what it
is holding, and what objects are nearby, all this knowledge is hidden from the agent, who only knows
if an action succeeds or fails.

Baselines We compare several methods:

• RANDOM selects actions uniformly at random. RANDOM+ selects random navigation actions
from AN to reach unvisited locations, then cycles through all possible object interactions in AI .

• CURIOSITY [9, 43] rewards actions that lead to states the agent cannot predict well.
• NOVELTY [57, 51, 7] rewards visits to new, unexplored physical locations. We augment this

baseline to cycle through all interactions upon reaching a novel location.
• OBJCOVERAGE [18, 47] rewards an agent for visiting new objects (moving close to it, and

centering it in view), but not for interacting with them. We similarly augment this to cycle over all
interactions.
The above three are standard paradigms for exploration. See Supp for details.

Ablations We examine several variants of the proposed interaction exploration agent. All variants
are rewarded for interactions with novel objects (Equation 1) and use the same architecture (Sec. 3.3).

• INTEXP(RGB) uses only the egocentric RGB frames to learn the policy, no affordance map.
• INTEXP(SAL) uses RGB plus heatmaps from a pretrained saliency model [13] as input, which

highlight salient objects but are devoid of affordance cues.
• INTEXP(GT) uses ground truth affordances from the simulator.
• INTEXP(PT) and INTEXP(OBJ) use affordances learned on-the-fly from interaction with the en-

vironment by marking fixed sized points or whole objects, respectively (see Sec. 3.2). INTEXP(PT)
is our default model for experiments unless specified.

In short, RANDOM and RANDOM+ test if a learned policy is required at all, given small and easy
to navigate environments. NOVELTY, CURIOSITY, and OBJCOVERAGE test whether intelligent
interaction policies fall out naturally from traditional exploration methods. Finally, the interac-
tion exploration ablations test how influential learned visual affordances are in driving interaction
discovery.

4.1 Affordance driven interaction exploration

First we evaluate how well an agent can locate and interact with all objects in a new environment.

Metrics. For each test environment, we generate 80 randomized episodes of 1024 time steps each.
We create an “oracle” agent that takes the shortest path to the next closest object and performs all
valid interactions with it, to gauge the maximum number of possible interactions. We report (1)
Coverage: the fraction of the maximum number of interactions possible that the agent successfully
performs and (2) Precision: the fraction of interactions that the agent attempted that were successful.

Interaction exploration. Fig. 3 (left) shows interaction coverage on new, unseen environments
over time, averaged over all episodes and environments. See Supp for environment-specific results.
Even though CURIOSITY is trained to seek hard-to-predict states, like the non-trained baselines
it risks performing actions that block further interaction (e.g., opening cupboards blocks paths).
RANDOM+, NOVELTY, and OBJCOVERAGE seek out new locations/objects but can only cycle
through all interactions, leading to slow discovery of new interactions.
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Figure 3: Interactions discovered vs. time on unseen environments. Left: Our agents discover the most
object interactions, and do so faster than all other methods, especially early on (T<256). Right: In the ablation,
models that learn an affordance model to guide exploration outperform those with weaker priors (like saliency),
and come closest to the model with access to ground truth (GT) affordances. Results are from three training runs.
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Figure 4: Interaction policy examples on test environments. Green dots are successfully discovered interac-
tions, yellow are all interaction attempts. NOVELTY visits many parts of the space, but fails to intelligently select
which actions to attempt. Our policy learns to visit only relevant locations to interact with objects.

Our full model with learned affordance maps leads to the best interaction exploration policies, and
discovers 1.33× more unique object interactions than the strongest baseline. Moreover, it performs
these interactions quickly — it discovers the same number of interactions as RANDOM+ in 63%
fewer time-steps. Our method discovers 2.5× more interactions than NOVELTY at T=256.

Fig. 3 (right) shows variants of our method that use different visual priors. INT-EXP(RGB) has
no explicit RoI model and performs worst. In INT-EXP(SAL), saliency helps distinguish between
objects and walls/ceiling, but does not reveal what interactions are possible with salient objects as our
affordance model does. INTEXP(OBJ) performs well during training — 0.236 vs. 0.252 coverage
compared to INTEXP(PT) — but suffers more from noisy marker labels as it trains using whole object
masks. INTEXP(PT) marks exact target locations and generalizes better to unseen environments, but
yields more conservative affordance predictions (see Fig. 5).

Table 1 shows an action-wise breakdown of coverage and precision. In general, many objects can be
opened/closed (drawers, fridges, kettles etc.) resulting in more instances covered for those actions.
All methods rarely slice objects successfully as it requires first locating and picking up a knife (all
have cov <1%). This requires multiple steps that are unlikely to occur randomly, and so is overlooked
by trained agents in favor of more accessible objects/interactions. Importantly, methods that cycle
through actions eventually interact with objects, leading to moderate coverage, but very low precision
since they do not know how to prioritize interactions. This is further exemplified in Fig. 4. NOVELTY
tends to seek out new locations, regardless of their potential for interaction, resulting in few successes
(green dots) and several failed attempts (yellow dots). Our agent selectively navigates to regions with
objects that have potential for interaction. See Supp for more examples.

Affordance prediction. In addition to exploration policies, our method learns an affordance model.
Fig. 5 evaluates the INTEXP agents for reconstructing the ground truth affordance landscape of 23,637
uniformly sampled views from unseen test environments. We report mean average precision over
all interaction classes. The ALL-ONES baseline assigns equal scores to all pixels. INTEXP(SAL)
simply repeats its saliency map |AI | times as the affordance map. Other agents from Fig. 3 do not
train affordance models, thus cannot be compared. Our affordance models learn maps tied to the
individual actions of the exploring agent and result in the best performance.
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Figure 5: Affordance prediction results ( take put open toggle ). Our models are trained with
masks automatically inferred via exploration — it does not have access to ground truth affordances. Last column
shows failure cases (curtain, pan) due to noisy/incomplete interaction data.
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RANDOM 2.00 2.75 0.50 1.50
RANDOM+ 0.25 0.00 0.25 0.00
SCRATCH 8.75 6.25 1.25 1.75
CURIOSITY [43] 2.75 3.25 1.50 2.25
NOVELTY [51] 8.00 6.50 0.25 1.25
OBJCOVERAGE [47] 18.50 10.75 0.75 0.50
INTEXP 27.25 27.00 3.75 19.00
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Figure 6: Success rates (%) and rewards on downstream tasks. Knowing how to move (NOVELTY), or
favoring objects (OBJCOVERAGE) is not sufficient to overcome sparse rewards in multi-step interaction tasks.
Our INTEXP agent actively seeks out interactions to learn better policies in fewer training episodes.

4.2 Interaction exploration for downstream tasks

Next we fine-tune our interaction exploration agents for several downstream tasks. The tasks are
(1) RETRIEVE: The agent must take any object out of a drawer/cabinet, and set it down in a
visible location outside, (2) STORE: The agent must take any object from outside, put it away in a
drawer/cabinet and close the door, (3) WASH: The agent must put any object inside the sink, and turn
on the tap. (4) HEAT: The agent must put a pan/vessel on the stove-top, and turn on the burner.

These tasks have very sparse rewards, and require agents to successfully perform multiple interactions
in sequence involving different objects. Similar tasks are studied in recent work [63, 55], which train
imitation learning based agents on expert demonstrations, and report poor performance with pure RL
based training [63]. Our idea is to leverage the agent’s policy for intelligent exploration to jumpstart
policy learning for the new task without human demonstrations.

We reward the agent (+10) for every subgoal it achieves towards the final task (e.g., for HEAT, these
are “put object on stove”, and “turn-on burner”). We fine-tune for 500k frames using PPO, and
measure success rate over 400 randomized episodes from the same environments. The results in
Fig. 6 (left) show the benefit of the proposed pretraining. Agents trained to be curious or cover more
area (CURIOSITY and NOVELTY) are not equipped to seek out useful environment interactions, and
suffer due to sparse rewards. OBJCOVERAGE benefits from being trained to visit objects, but falls
short of our method, which strives for novel interactions. Our method outperforms others by large
margins across all tasks, and it learns much faster than the best baseline (Fig. 6, right).

5 Conclusion
We proposed the task of “interaction exploration” and developed agents that can learn to efficiently act
in new environments to prepare for downstream interaction tasks, while simultaneously building an
internal model of object affordances. Future work could model more environment state in affordance
prediction (e.g., what the agent is holding, or past interactions), and incorporate more complex policy
architectures with spatial memory. This line of work is valuable for increasingly autonomous robots
that can master new human-centric environments and provide assistance.

Acknowledgments: Thanks to Amy Bush, Kay Nettle, and the UT Systems Administration team for their help
setting up experiments on the cluster. Thanks to Santhosh Ramakrishnan for helpful discussions. UT Austin is
supported in part by ONR PECASE and DARPA L2M.
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6 Broader Impact

Embodied agents that can explore environments in the absence of humans have broader applications
in service robotics and assistive technology. Such robots could survey, and then give a quick rundown
of a space for new users to, for example, alert them of appliances in a workspace, which of them are
functional, and how these can be activated. It could also potentially warn users to avoid interaction
with some objects if they are sharp, hot, or otherwise dangerous based on the robot’s own interactions
with them.

Deploying embodied agents in human spaces comes with challenges in safety — exploration agents
than can “interact with everything” to discover functionality may inadvertently damage their environ-
ment or themselves, and privacy — navigating human-centric spaces requires agents to be sensitive
of people and personal belongings. Careful consideration of these issues while designing embodied
agent policies is essential for deploying these agents in the real world to collaborate with people.
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