
We thank the reviewers for their detailed and constructive comments, especially during these challenging times.1

Numerical Validation (R1,R3,R4): We will add the figures below, displaying the typical behavior of a realization and2

the statistical behavior over time. This also shows that the convergence time is reasonable for this challenging problem3

with limited information. For specific applications, convergence can be accelerated by replacing our generic gradient4

estimator with an estimator that exploits the structure of the specific problem (e.g., parameterized regression).5

t ×104

0 0.5 1 1.5 2 2.5 3

S
u

m
 o

f 
R

e
w

a
rd

s

0

1

2

3

4

5

6

7

8
Single Realization (30000 Iterations)

Our Algorithm

Perfect Global Information - Optimum

Perfect Local Information - Nash Equilibrium

6

Variance (R1): R1 is correct that the variance increases like 1
δ2t

, but the step size ηt multiplying the (estimated)7

gradient overcomes that. This is why p− q > 0.5, for which,
∑
t η

2
t /δ

2
t =

∑
t t
−2(p−q) <∞ is required.8

The Perturbations (R1): are indeed being independently generated across players. The reason is that the perturbation9

of player n, zn, is only meant to estimate the gradient of the sum of rewards wrt xn. The gradient approximation10

argument is used N times independently, and no two perturbations ever serve the same purpose. Hence, for player11

m 6= n, zn serves as undesired (but necessary) noise in their communicated reward value (so no expectation is 0).12

Lipschitz Factor (R1): A computation very similar to that suggested by R1 is done in (45) to bound the bias from13

the M steps delay. L appears in almost all the variance and bias terms in our proofs, affecting the convergence time.14

However, the theorem guarantees convergence for all L, and ηt (or δt) do not have to be tuned with respect to L.15

Ergodic Markov Graph (R2,R4): SG is a set of states of the process G (t), so it is a set of graphs. We now denote16

this set G to avoid confusion. The union is between graphs i.e.,
⋃
G∈SG G as opposed to

⋃
G∈SG {G} (using standard17

notation), which we now explicitly mention. R2 is correct that G (t) transitions into G (t+ 1) with no restrictions18

except that it constitutes an ergodic Markov chain. It is also correct that the algorithm does not know the graph. The19

purpose of this Markovian model is to capture a general time-varying process. This is the reality with physical agents,20

that move in space or that objects in space move around them, changing the configuration of the network. We agree21

that this is not the most important part of the paper. A useful and simple special case of this model (R4) is indeed22

when G is constant in time and connected or strongly connected (if directed). While not many algorithms can work23

under this general and challenging model, we are not the first to consider this well established model (see [34]). We24

hope that our explanation and the new notation make clear that the formulation is indeed rigorous and precise.25

M versusN (R2): We discuss the requirement onM in Section 7.1 in the appendix. For a constant graphG,M needs26

to be larger than the diameter of G, and then R2 is correct that M ≥ N is always enough (and does not hurt much).27

However, for some Markov Chain (MC) G (t), M = N might not be enough if, for example, player 1 is isolated28

most of the turns and has to wait to get connection (edges). Hence, rigorously, a large enough M exists if the MC is29

ergodic, which might be an unknown function of the stationary distribution of G (t). We now clarify this point in the30

theorem statement, and provide a simple example to illustrate this. We do not claim that M needs to be smaller than31

N . However, typically diameter(G) � N (O (logN) for a random Erdős–Rényi G), so the memory complexity is32

low. We also claimed that UMn (t) can be much smaller thanN , meaning that at turn t, player n knows much less than33

the rewards of all players. This can happen even with M = N , if players broadcast only one reward value.34

Known Actions (R4): Two practical examples where actions are never revealed: (1) Multi-agent Deep RL: like in35

GANs, the actions are the weights of a DNN that determine the “physical actions” of the agent (e.g. an autonomous36

vehicle), and the reward is a designed performance score over period of time. (2) Wireless networks: the action is37

the transmission power Pm, and device n measures the interference
∑
mgm,nPm and cannot measure an individual38

action Pm. Nevertheless, our algorithm is appealing even with observable neighbors’ actions, since it’s unclear how39

one can efficiently use this information. First, each player needs to collect the entire action profile xt from all over the40

network, for each t. A random subset will not do since
∑
n un (xt) is non-linear in xt (but it is in un (xt), which is41

why our algorithms works). xt are of higher dimensionality than the rewards so the communication overhead is larger.42

Convergence Time Analysis (R2,R3): is highly complicated and requires novel techniques and proofs. Hence, we43

believe it should be pursued in a different paper. Our numerical experiments give some indication that the convergence44

time is reasonable, and behaves like SGD (the complicated part is the effect of G and the communication protocol).45

Minor Comments (R1,R2): We resolved all minor comments (e.g., typos, using “optimal” more carefully).46


