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Abstract

Consider a team of cooperative players that take actions in a networked-
environment. At each turn, each player chooses an action and receives a reward
that is an unknown function of all the players’ actions. The goal of the team of
players is to learn to play together the action profile that maximizes the sum of
their rewards. However, players cannot observe the actions or rewards of other
players, and can only get this information by communicating with their neigh-
bors. We design a distributed learning algorithm that overcomes the informational
bias players have towards maximizing the rewards of nearby players they got more
information about. We assume twice continuously differentiable reward functions
and constrained convex and compact action sets. Our communication graph is a
random time-varying graph that follows an ergodic Markov chain. We prove that
even if at every turn players take actions based only on the small random subset
of the players’ rewards that they know, our algorithm converges with probability 1
to the set of stationary points of (projected) gradient ascent on the sum of rewards
function. Hence, if the sum of rewards is concave, then the algorithm converges
with probability 1 to an optimal action profile.

1 Introduction

Bandit optimization is concerned with a single player that at each turn takes an action and receives a
reward ( [1,2]). Based on the past rewards, the player gradually learns to play better actions that yield
higher rewards. In a networked environment, many players take simultaneous actions. Examples are
smart cities, robotic networks, autonomous vehicles, the smart grid and communication networks.
In wireless communication networks, one player’s transmission creates interference for all others.
With autonomous vehicles, every vehicle creates congestion for all the others. Therefore, the actions
of one player affect the rewards of all others, and by that their future actions. This coupled learning
gives rise to a game-theoretic formulation, with conflicting individual reward functions.

Conflicting interests between players are often unavoidable due to limited resources. However,
conflicts do not have to result in a competition. In many applications, the players are willing or
simply programmed to cooperate. By cooperating, the outcome can turn out to be better for everyone
than with competition. Cooperation is naturally the case when players are deployed by the same
operator or that their protocol is standardized. These players operate as a team to solve their conflicts
in order to maximize the social welfare, as was done in [3–11]. In wireless networks, each user
typically wants to maximize its throughput, which reduces the throughput of other devices. However,
all devices must run a protocol that is programmed in their chip (e.g., LTE or WiFi), to the benefit
of all. With autonomous vehicles, each user wants to minimize its trip duration. However, the
vehicles are programmed to comply with the traffic rules, and are likely to follow a standardized
communication protocol to increase efficiency and safety [12].

If a player knew all the rewards of all other players at all times, the distributed learning problem boils
down to a single-player optimization problem with bandit feedback [1, 13]. The common approach
is then to estimate the gradient-based on samples of the unknown reward function.
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In large networks, players do not know the rewards of all of their peers. Collecting all the rewards is
not realistic, since it incurs huge delays if it is even feasible given the communication infrastructure.
Cooperating players that try each to estimate the gradient of the sum of their rewards based on
bandit feedback will find that at every turn, most feedback (rewards in the sum) is missing. While the
players are willing to maximize the greater good, they just do not how, and naturally they know more
about their local objective and environment. Therefore, with cooperative players, the optimization
of the global objective is limited by the information players have rather than by their selfishness.

In this paper, we show that convergence to an optimal action profile (or to the set of stationary points
for the non-concave case) is possible even when each player takes stochastic gradient steps based
only on few reward values of its peers. The idea is that if each player has some probability to receive
any term in the sum of rewards, then even if the sum is far from being fully known at any given turn,
the resulting noise is averaged over time and an optimal action profile can still be reached. However,
the estimation of the sum of rewards is biased since players have different probabilities of getting
the reward value of different players, and different accuracies for estimating the gradients of their
rewards. Our algorithm learns to correct this bias and our analysis shows how to tune the step size
and the gradient estimation to allow this correction. This is the first multi-player bandit algorithm
for continuous optimization that converges to an optimal action profile (in the concave case).

1.1 Previous Work

Multi-player bandits, where multiple players learn and interact with each other, have received a
surge of interest recently [14–25]. The current literature focuses on the discrete multi-armed bandit
problem under a collision model where if two or more players pick the same arm they all receive zero
reward. We consider here the continuous optimization case, under a more general game structure
that allows modeling richer interactions between the players than the collision model.

At first glance, our scenario resembles distributed optimization with bandit feedback, studied in
[13, 26–30]. However, it is the interaction, or the game structure between the players, that makes
these two scenarios essentially different. First of all, [13,26–30] all query the sum of rewards at least
twice. When a game is considered, a player cannot perturb the same point (action profile) twice to
estimate the gradient, since the action profile changes every query (i.e., turn). To overcome that, we
must estimate the gradient from a single sample as was done in [1,31,32]. Yet a larger obstacle is that
in consensus-based algorithms like [13,26–30], each player holds a local version of the optimization
variable, which is the action profile in our case. Hence, to implement [13, 26–30], each player has
to know the effect of other players on its reward in order to query the objective at its local variable.
Under this assumption of a known game structure, [5] employed distributed optimization to learn an
optimal action profile. This is simply infeasible in our multi-player bandit scenario where players do
not even know their local reward function. Furthermore, this approach requires each player in each
turn to send entire action profiles, which is at least N -dimensional, and much bigger than that for
large action spaces such as the set of weights of a neural network, as in multi-agent reinforcement
learning [4]. Our approach does not assume that players can query the sum of rewards function.
Instead, the bandit feedback available to each player is the reward they receive as a function of the
actual action profile, and rewards communicated to them by other players. Hence, our approach also
bypasses the need to transmit any vectors, as only scalars are communicated between the players.

The literature on learning in games [3, 6, 7, 33–37] studies the outcome of an interaction between
conflicting players that each runs a learning algorithm designed to maximize its own accumulated
reward. This outcome is often the Nash equilibrium (NE) of the game [31, 38, 39]. From an engi-
neering point of view, one can design the game such that the NE has good global performance [8],
or design the algorithm to learn an efficient NE among the existing ones [6, 7]. In the NE-based
works, typically no communication between players is required, but the performance is suboptimal
while our goal is to reach an optimal action profile. Finally, [11, 40] solves what can be considered
the discrete optimization equivalent of our problem for the class of interdependent games.

Multiagent Bandit Feedback Known Objective
No

Interaction
0th-order Distributed Optimization [26–30] Distributed Optimization [41,42]

Interaction Cooperative Multi-player Bandits [5, 10, 43]
Table 1: Multiagent continuous optimization - high level taxonomy

2



2 Problem Formulation

We consider the following general multi-player bandit scenario, which is repeated over discrete turns
indexed by t. We use capital letters to denote random variables, lowercase letters to denote their
realizations, and bold letters to denote vectors. We also use the standard game-theoretic notation
where x−n is the vector of actions of all players except player n.
Definition 1. LetN = {1, ..., N} be a set of players. Each player n ∈ N picks an action xn ∈ An
and receives a reward as a function of the actions of all players un : A1 × ...×AN → R, such that:

• An is closed and bounded and of the following form, for some positive integers sn and dn:

An =
{
x ∈ Rdn | qni (x) ≤ 0, i = 1, . . . , sn

}
(1)

where for each i and n, qni (x) is continuously differentiable and convex and for each n
and x, the gradients ∇qni (x) for all i such that qni (x) = 0 (active constraints) are linearly
independent. This is a standard general constraint set in functional form. For example, An
can be a dn-dimensional ball or any hyper-rectangle.

• un (xm,x−m) is twice continuously differentiable in xm, for every m,n = 1, ..., N .
Then, since An is compact and convex, it follows from the mean value theorem
and the extreme value theorem [44, Page 89, Page 127] that both un (xm,x−m) and
∇un (xm,x−m) are Lipschitz continuous.We refer to L as the maximal Lipschitz constant
of un (xm,x−m) ,∇un (xm,x−m) over all m and n.

We emphasize that the function un (x1, ...,xN ) is unknown even to player n, who only receives its
reward value at each turn. Mathematically, the structure described above is a non-cooperative game.
However, in our scenario the players are cooperative and their goal is to learn the action profile that
maximizes

∑N
n=1 un (x1, ...,xN ).

Players only know the action they played and the received reward (i.e., the bandit feedback). In
particular, players cannot observe the actions of other players. For example, this is the case in
wireless networks where the action might be the transmission power of each device, but only the
total interference can be measured by (and affects) other players. This is also the case in distributed
learning (in the spirit of Example 1 below) where the action is the parameters of the machine learning
model of each player, that dictate the decision each player makes in real-time (e.g., autonomous
vehicles).

As a result, information about the reward values of other players can only be obtained via commu-
nication. In practice, every player can only communicate with physically nearby players or with
players that the available infrastructure allows it to. The number of available links and their sta-
bility may be time-varying based on the physical conditions of the environment or the mobility of
the players. Therefore, we model the available communication links between the players using the
following discrete-time graph process:
Definition 2. Let G (t) = (V, E (t)) be the (undirected) communication graph process, such that
t ∈ N, V = {1, ..., N} and player n and player m can communicate at turn t if and only if (n,m) ∈
E (t). LetNn (t) be the set of neighbors of player n inG (t) (including itself). We assume thatG (t)
is an ergodic Markov chain on a state space G such that the graph union

⋃
G∈G G is connected.

The assumption that
⋃
G∈G G is connected means that for any players m,n, the stationary probabil-

ity that there is a path between them is positive. However, this does not mean that G (t) is likely to
be connected and it is possible that G (t) is never connected. A similar model was studied in [45].

Our goal is to distributedly solve the following team problem, where players only receive bandit
feedback of their rewards as a result of their interaction:

max
x1,...,xN∈A1×...×AN

N∑
n=1

un (x1, ...,xN ) . (2)

As with gradient ascent, the simplest convergence guarantee is obtained for a concave objective.
However, we do not assume a concave objective, and our algorithm converges to the set of KKT
stationary points in the non-concave case. We now give examples for cases of interest where the
sum of rewards function is concave. More examples can be found in [10, 31]
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Example 1. Multi-player Linear Regression - Each player n chooses xn ∈ An ⊂ Rd where An
is of the form in (1). Let un (x) = −‖Anx− yn‖

2 where An is m× dN and yn is m× 1. Hence

un (x) = −
∥∥∥Ãnxn + yn +Bnx−n

∥∥∥2 , −
∥∥∥Ãnxn − ỹn (x−n)

∥∥∥2
where Ãn is m × d and Bn is m × d (N − 1) such that An =

[
Ãn Bn

]
. This represents a

multi-player learning case where each player is trying to solve a linear regression to learn a linear
model with parameters xn. The player then makes decisions based on this model, so we can treat xn
as the effective action of the player. However, the measurements collected by player n, ỹn (x−n),
are a linear mixture of the other players’ actions x−n. Since un (x) is concave in x for each n, then∑N
n=1 un (x) is concave and all stationary points attain the global maximum. Using our algorithm,

the players can learn a joint-model that minimizes their total regression error.
Example 2. Congestion Game - Let the set of resources be R and the congestion function be
a convex non-decreasing f : R+ → R. The action of player n that has weight wn > 0 is an
allocation overR, so it can play all non-negative xn such that

∑
r∈R xn,r = wn. Any other convex

action space that meets Definition 1 is also possible, introducing more (or less) constraints on the
allocation. The load on resource r is lr (x) =

∑N
n=1 xn,r. The cost function of player n is its

average congestion cn (x) =
∑
r∈R xn,rf (lr (x)). Hence, our global cost is∑

n

cn (x) =

N∑
n=1

∑
r∈R

xn,rf (lr (x)) =
∑
r∈R

f (lr (x))

N∑
n=1

xn,r =
∑
r∈R

lr (x) f (lr (x))

which is a convex function of x since f (lr) is convex: d2(lrf(lr))
dl2r

= 2f ′ (lr) + lrf
′′ (lr) ≥ 0, and

lr (x) is affine. Hence, our algorithm will converge to an action profile that minimizes
∑
n cn (x),

which can be the total delay in the system since it is an increasing function of the load. This is useful
to model autonomous vehicles or any other team of players that share resources.
Example 3. Public Goods in Networks ( [46]): Each player puts an effort xn ∈ [0, xmax] for some
maximal possible effort xmax > 0. The reward of player n is its benefit from the total neighboring
produced goods, minus a linear production cost:

un (x) = v

xn +
∑
m 6=n

gm,nxm

− cxn
where v is a twice differentiable, increasing and strictly concave function and c > 0. The coefficients
gm,n ∈ {0, 1} determine which player is affected by whom. Since v is concave and fn (x) =

xn +
∑
m 6=n gm,nxm is affine, then un (x) is concave in x for each n, so

∑N
n=1 un (x) is concave

and all stationary points attain the global maximum. Using our algorithm, the players can find an
optimal effort profile that maximizes the total benefit in the network. One can also consider negative
externalizes, where gm,n = −1, since

∑N
n=1 un (x) remains concave in this case.

3 Multi-player Bandit Learning Algorithm

The distributed learning algorithm we propose to solve (2) is described in Algorithm 1. In Algorithm
1, each player takes stochastic gradient steps on

∑N
m=1 um (x), using only the information available

to them. The algorithm consists of three steps: playing perturbed actions, communicating on the
graph G (t) and learning the next actionXn (t+ 1).

3.1 Playing a Perturbed Action

To allow for gradient estimation from bandit (zero-order) feedback, players perturb the action
Xn (t) they learned to play using a random perturbation Zn (t), as specified in (4). To get intu-
ition about how the perturbation works, consider the one-dimensional case where Zn (t) = ±1 with
probability 1

2 . Then we have E
{
Zn(t)
δ(t) um (x+ δ (t)Zn (t))

}
= um(x+δ(t))−um(x−δ(t))

2δ(t) , which

converges to the gradient as the sampling radius δ (t) decreases. Hence, Zn(t)
δ(t) um (x+ δ (t)Zn (t))

is a noisy estimation of∇xnum (x), with a vanishing bias.
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Figure 1: Left: reward values known to Player 2. Right: messages received by Player 2 at turn t.

To ensure the perturbation is in An (i.e., feasible), we use instead X̃n (t) = Xn (t) + δ (t)W n (t)

forW n (t) = Zn (t)− Xn(t)−θ
r , as was suggested in [1]. The parameters r, θ are chosen (by player

n locally) such that a dn-dimensional ball centered at θ with radius r is strictly inside An. Then
θ + rZn (t) ∈ Br (θ) ⊆ An. Hence if δ(t)r < 1 then feasibility follows from the convexity of An:

X̃n (t) =

(
1− δ (t)

r

)
Xn (t) +

δ (t)

r
(θ + rZn (t)) ∈ An. (3)

3.2 Communication

With no communication, each player n can only estimate the gradient of its own reward function
un. The stable point in this case is a point x where ∇xnun (x) = 0 for all n (if x is not on the
boundary). Every (local) Nash equilibrium is such a stable point, and under certain conditions such
a stable point is a (local) Nash equilibrium [47, 48]. In any case, from an optimization perspective,
this stable point does not solve (2) and may lead to very poor performance.

On the other extreme, if players knew all the rewards of their peers, then the problem becomes a
single-player bandit optimization with

∑
un (x) as the reward function [1, 13], where each player

n updates the coordinates of xn in x. However, in a large network with many players in different
locations, this centralized architecture is infeasible. In a real-time scenario, players do not have
enough time to gather much information from all over the network before making the next decision.
Furthermore, players may be mobile and the available communication links may change with time.

Therefore, player n’s estimation of the gradient of
∑
um is based on the information available to it

at the moment. This information consists of a random and partial list of delayed rewards that player
n has collected so far by communicating with other players on the time-varying graph G (t), and its
own reward. Surprisingly, this is enough to optimize

∑
um, as we show in Theorem 1. Moreover,

the communication does not need to be synchronized or very structured, as we describe next.
Definition 3. Define the set of players that, at time t, player n knows their τ -delayed reward by
Uτn (t), for τ ≥ 0. Naturally, n ∈ Uτn (t) for all τ and t. Also define the set Un (t) such that
(m, τ) ∈ Un (t) if and only if m ∈ Uτn (t) for some τ ≤M .

In our communication protocol, at each turn t, each player n chooses to broadcast to all of its
neighbors inG (t) a random subset Bn of the recent rewards it knows, listed in Un (t) (steps 2(a) and
2(b) of Algorithm 1). As a result, each player gets to know more recent reward values, and updates
the lists Uτn (t) for τ = 0, ...,M , shifting old entries one step back and discarding UMn (t− 1).

Each message that a player sends is a triplet of scalars, (um (t− τ) ,m, τ), consisting of a reward,
its delay τ and the index m of the player that earned this reward. A player sends one message for
each element in Bn. Note that the exchanged reward values are those that were actually earned by
playing the actual perturbed actions X̃ (t) (see (4)), as opposed to X (t). We use un (t) to denote
the reward that player n receives at time t, which is un

(
X̃ (t)

)
and not un (X (t)).

For a general communication protocol, it is natural to expect that a player will be more likely to
broadcast some reward values than others. For example, players are likely to broadcast their own
rewards since they always know them. This creates a “communication bias” that steers the algo-
rithm away from maximizing

∑N
m=1 um. To correct the bias, each player n needs to estimate the

probability pnm to receive the reward value of player m, and compensate for that in its estimation of
the gradient of the sum

∑N
m=1 um (x). This is described in Step 2(e) and Step 3(a) of Algorithm 1.
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Our general communication protocol leaves the designer the freedom to choose the distribution of
the broadcast set Bn (t) (given Un (t)). We only assume that no player’s messages are being ignored.
A simple example for such a “proper communication protocol” is that in each turn, each player picks
uniformly at random one reward to broadcast from the set of all its known rewards Un (t).
Definition 4. The communication in Algorithm 1 is proper if for all n and (m, τ) ∈ Un (t), player
n broadcasts (um (t− τ) ,m, τ) with positive probability, i.e., P ((m, τ) ∈ Bn (t)) > 0 for all t.

A toy example for the communication network is depicted in Fig. 1, for N = 6 players and M =
3. The table of rewards known to Player 2 is listed on the left. In this case, U0

2 (t) = {2, 4},
U1
2 (t− 1) = {2, 4, 6}, U2

2 (t− 2) = {1, 2, 5} and U3
2 (t− 3) = {2, 3, 5}. At time t, Player 1,

Player 3 and Player 4 broadcast each a triplet (u, n, τ). Player 2 inserts these values into its table,
as can be seen in the grey entries. Note that it is possible for Player 3 to know the reward of Player
5 from two turns ago since the distance between them is 2. Fig. 1 does not depict the values
concurrently received by all other players, and the value that Player 2 broadcasts.

Algorithm 1 Cooperative Multi-player Bandit Optimization

Initialization: Let δ (t) = δ0
tq , η (t) = η0

tp , ∀t, for some δ0, η0, p, q > 0. Let the memory M be a
non-negative integer. Let θ, r > 0 be s.t. Br (θ) ⊆ An. Let ε0 > 0 be small enough (as a function of
the distribution of G (t) and the communication protocol, see Lemma 1). InitializeXn (1) ∈ An.
For each t ≥ 1, each player n runs:

1. Playing a perturbed action:
(a) Generate Zn (t) uniformly at random on the dn-dimensional unit sphere Sdn .
(b) Play the perturbed action

X̃n (t) = Xn (t) + δ (t)

(
Zn (t)− Xn (t)− θ

r

)
(4)

(c) Receive the reward un (t) = un

(
X̃1 (t) , ..., X̃N (t)

)
.

2. Communication:
(a) Generate a random subset Bn (t) ⊆ Un (t).
(b) Broadcast {ul (t− τ) , l, τ}(l,τ)∈Bn(t) for all neighbors m ∈ Nn (t).

(c) Receive {ul (t− τ) , l, τ}(l,τ)∈Bm(t) from all neighbors m ∈ Nn (t).

(d) Update Uτ+1
n (t+ 1) = Uτn (t) ∪ {l} for every (l, τ) received.

(e) Update pnm (t) = 1
t

∑t
τ=1 1{m∈UMn (τ)} for all m.

3. Learning the next action:
(a) Define anm (t) = 1

max{pnm(t),ε0} .

(b) Compute the sum of gradients estimation

Y n (t) =
dnZn (t−M)

δ (t−M)

∑
m∈UMn (t)

anm (t)um (t−M) . (5)

(c) Update the learned action and project it onto An (using
∏
An )

Xn (t+ 1) =
∏
An

(Xn (t) + η (t)Y n (t)) . (6)

End

3.3 Learning the Next Action

In the third step, players use the bandit feedback they gathered to approximate the gradient of
∑
un

with respect to their action and take this stochastic gradient step to update their action Xn (t). Our
approximation of the gradient is based on simultaneous perturbation [32], which is also known as
the FKM algorithm [1]. The perturbation is described in Step 1 of Algorithm 1.
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At turn t, each player uses the rewards from turn t − M it was able to gather (listed in UMn (t))
to estimate

∑N
m=1∇xnum (x (t−M)). Typically, the set UMn (t) is much smaller than N , so this

estimate is almost always poor. Players have M turns to collect rewards that were received M turns
ago (see Fig. 1). Rewards from different turns cannot be combined since they approximate the
gradients at different action profiles. Hence, players cannot and do not wait to gather all information
from all over the graph. Instead, each gradient step uses the last row in the table in Fig.1, and for large
N the reward table is always sparse and lacking. Nevertheless, our algorithm is still able to converge
to the set of KKT stationary point of

∑
n un (x) since UMn (t) has a positive probability to include

any of the players, and the algorithm learns over time to correct the associated communication bias.

Algorithm 1 converges to the same set of KKT stationary points that projected gradient ascent on∑
n un (x) would converge to. Being an especially noisy case of stochastic gradient descent, it is

likely that Algorithm 1 avoids the convergence to saddle points (see [49, 50]) and only converges to
local maxima even with a non-concave objective. In machine learning applications, and in particular
with neural networks, local maxima often have surprisingly good performance (e.g., [51]).

4 Convergence Analysis

We now state our main result. The proof is involved and requires a series of lemmas which we
postpone to the appendix. Here we discuss the proof idea and explain the main technical challenges.
Theorem 1 (Main Theorem). Let the N players each independently run Algorithm 1 to play the
game in Definition 1. Let η (t) = η0

tp , δ (t) = δ0
tq for some δ0, η0 > 0. Assume thatG (t) is an ergodic

Markov chain on G such that the graph union
⋃
G∈G G is connected, and that the communication

protocol is proper (Definition 4). Assume that the memory M is large enough, as a function of the
distribution of G (t) and the communication protocol 1. If 0 < p, q ≤ 1, p − q > 1

2 and p > q+3
4

(e.g., p = 0.8, q = 0.1) then, as t → ∞, the action profile (X1 (t) , ...,XN (t)) converges with
probability 1 to the set of KKT stationary points:

KKT =

x |∀n, ∃λn ≥ 0 s.t. −∇xn

N∑
m=1

um (x) +
∑

i:qni (xn)=0

λni ∇qni (xn) = 0

 . (7)

Hence, if
∑N
n=1 un (x) is concave and for all n, there exists an xn s.t. qni (xn) < 0 for all i, then

(X1 (t) , ...,XN (t)) converges to the set arg max
x∈A

∑N
n=1 un (x) with probability 1 as t→∞.

Algorithm 1 belongs to the family of stochastic approximation algorithms of the form:

X (t+ 1) =
∏

A1×...×AN

(X (t) + η (t)Y (t)) . (8)

Note that (8) occurs when each player runs (6) distributedly, since
∏
A1×...×AN =

∏
A1
×... ×∏

AN . In our case, the gradient sample is Y (t) = (Y 1 (t) , ...,Y N (t)) where Y n (t) is given by
(5). The sample Y (t) is a delayed and a noisy version of g (x) = (g1 (x) , ..., gN (x)), where

gn (x) =

N∑
m=1

∇xnum (x) . (9)

The sample in (5) is not identical to the exact sum of gradients (9) for two main reasons: the gradient
bias and noise and the communication bias and noise. The third reason is the M -samples delay in
(5), for which the bias can be bounded as we do in Theorem 1. However, the delay does not create
any actual bias but only shifts the trajectory of Y n (t) by M , without affecting the convergence.

Our proof strategy is to show that under the conditions of Theorem 1, the biases and noises that give
(5) instead of (9) are well behaved over time, therefore leading the stochastic optimization in the right
direction. Specifically, the main challenge in designing Algorithm 1 is to control the bias each player
has towards better estimating the gradients of the players it knows more about, which naturally are

1For a constant G, M = N is sufficient. See Subsection 8.1 in the appendix for details
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the nearby players. Most of our analysis deals with overcoming this issue. However, even after
we tamed the biases and noises by a smart tuning of our algorithm, standard stochastic gradient
descent results cannot be applied to prove convergence. The reason is that our noise has memory
and is state-dependent (i.e., xn (t)-dependent) through UMn (t) and anm (t) (and the projection onto
An). Instead, we have to employ the more general Kushner-Clark Theorem to complete our proof
( [52, Theorem 5.3.1, Page 191], [53, Pages 297-300] or Theorem 2 in the appendix).

We denote by (Ω,F ,P) the probability space that includes the random graph G (t), the random
communication protocol and the random perturbationsZn (t). We also define the following process:

Definition 5. Define the memory process of Algorithm 1 by Γ (t) =
(
{Un (t)}Nn=1 , G (t)

)
.

We emphasize that no player has access to Γ (t). In particular, players do not know the rewards of
other players or the structure of the graph. The importance of Γ (t) lies in it being an ergodic Markov
chain, when defined on the set of “feasible states”, which are the feasible {Un (t)}Nn=1 , G (t) pairs.

The first step in controlling the communication bias is to employ a proper communication protocol
(see Definition 4) and a large enough memory M . Then, the unique stationary distribution {πγ}
of this ergodic chain assigns a positive probability that a message from a given player arrives at a
given destination in less than M steps. We emphasize that it is impossible (for any algorithm) to
optimize a sum of functions if samples of some of the functions are never received. Given a specific
communication protocol and transition probabilities for G (t), one can easily deduce what M is
large enough. Even with a well designedM , the rewards of some players are only rarely received by
certain other players, and players must estimate their gradients based only on a very partial subset of
received rewards. This is formalized and further discussed in Lemma 1 in Section 8 of the appendix.

Next, we analyze the gradient noise and bias. We show that the gradient bias, that results from the
positive sampling radius δ (t), decreases at rate O (δ (t)). We then show that the noise, which is the
component of the error after subtracting the (conditional) expectation, is a martingale sequence that
averages out to zero over time. This is formalized in Lemma 2 in Section 9 of the appendix.

Based on Lemma 1 and Lemma 2, we can now address the main technical challenge of controlling
the communication bias and noise. In a naive implementation of our algorithm, even with large
enough M , a player is biased towards optimizing the rewards of nearby players over players that
are far away in the network G (t). This communication bias occurs since a player is more likely to
receive the rewards of nearby players. To compensate for that, players in our algorithm learn on the
fly the probabilities pnm (t) of receiving different reward values and use them to correct the bias. We
show that the communication bias vanishes as the estimations pnm (t) converge to their stationary
values despite the effect of all the wrong decisions made in the past. This holds since the mixing
of the associated Markov chain is faster than the gradient steps, governed by the step size sequence
η (t). We then use Markov chain concentration inequalities [54] to show that the communication
noise averages out over time, fluctuating around the true mean value with respect to {πγ}. However,
the noise never vanishes and is always significant, so only the average across time gets accurate.

The crux of the analysis is the interplay between the gradient bias and noise and the communication
bias and noise. Due to the decreasing δ (t), gradients estimated later on are more accurate than
earlier gradients. Hence, player n will be biased towards improving the reward functions for which
the gradients have been estimated later on. These are typically the gradients of nearby players in
the network G (t), and is still a problem even when {pnm (t)} are estimated with high accuracy. To
prevent that, we want the sampling radius δ (t) = O (t−q) to vanish slowly enough compared to the
step size η (t) = O (t−p). However, this leads to slower convergence due to smaller step sizes. Our
analysis reveals that p = q+3

4 is the threshold after which the communication bias vanishes with
time and the algorithm converges. This is formalized in Lemma 3 in Section 10 of the appendix.

Finally, equipped with Lemma 1, Lemma 2 and Lemma 3, the application of the Kushner-Clark
Theorem is made possible, which is done in Section 11 of the appendix.

5 Numerical Example

We demonstrate the numerical behavior of Algorithm 1 using a congestion game withN = 8 players
and R = 4 resources. The action xn ∈ [0, 1]

R of player n is the amount of usage of each of the
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R resources. The utility function is un (x) =
∑R
r=1 xn,r −

1
20

∑R
r=1 xn,r

(∑N
m=1 xm,r

)2
, where

the first term models the value player n has for the resources (which we did not include in Example
2). We used the step size sequence η (t) = 0.2

t0.9 and the sampling radius sequence δ (t) = 0.2
t0.1 .

The memory was M = 6. Players broadcasted one reward value per turn, uniformly at random.
The communication graph G was constant and random for each realization, with an average degree
of 4.25. It can be seen that Algorithm 1 converges to arg max

x∈A

∑N
n=1 un (x). From early on, the

performance is already much better than with no communication but with perfect local information.
We also show a typical realization to demonstrate that convergence is stochastic and not monotone.
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Figure 2: Congestion game with N = 8 players and R = 4 resources

6 Conclusions

We have developed a novel algorithm for cooperative multi-player bandit optimization where the re-
ward of each player is a function of all players’ actions. In our algorithm, each player approximates
the gradient of the sum of rewards with respect to its local action based only on bandit feedback.
However, our algorithm does not require players to collect all the rewards in the sum before ap-
proximating the gradient, which would be infeasible. Instead, players approximate the gradient of
the sum of rewards based only on a random small subset of rewards they obtained in the last M
turns (“recently”) by communicating with their neighbors on a time-varying graph. This introduces
a new type of bias and noise to our stochastic gradients that was yet to be analyzed in the literature.
Players running our algorithm learn to correct this communication bias with time by estimating the
probabilities of getting the reward values of different players, and by correctly tuning the step size
and sampling radius of the gradient approximation.

Our communication protocol is general and leaves the designer a significant degree of freedom to
optimize over. From an engineering point of view, it is desirable to design a communication protocol
that maximizes the “weakest link”, which is min

n,m
πnm. This involves equalizing the frequencies at

which messages of different players are relayed, helping more remote players to be well represented.
Note that in Algorithm 1, one can choose ε0 = min

n,m
πnm, and 1

ε0
appears in many of our bounds,

implying that maximizing ε0 will minimize the convergence time.

Our algorithm is robust to imperfections such as a time-varying communication graph and delays,
but also to asynchronous players and noisy rewards. To keep the presentation simple, we included
only some of these imperfections and left the rest for future work. Moreover, since our algorithm is
a very noisy instance of stochastic gradient ascent, it is likely that it can be shown to avoid saddle
points of the sum of rewards function even if the objective is non-concave (see [49, 50]).

Our work shows that converging to an optimal action profile (or to the set of KKT stationary points
in the non-concave case) is possible even in our general multi-player bandit optimization scenario
by only communicating few reward values each turn. This paves the road to study convergence
time or communication overhead guarantees, possibly inspiring a new line of multi-player bandit
optimization algorithms designed to optimize these measures. This can be formalized using regret
or the finite sample complexity of “best-action profile identification”.
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7 Broader Impact

This work is mainly theoretical in nature, introducing a new framework for distributed learning
algorithms where each agent affects all of its peers through its actions. Therefore there are no specific
ethical considerations relevant to this work. From a broader perspective, the work contributes to the
growing field of multi-agent learning. Multi-agent learning can be thought of as the next wave of
machine learning, where the isolated black box machines will start interacting and learning from
each other to form a large machine learning network. This shift involves automating more decision
making processes, that will interact between themselves for our benefit. This, however, does not
come without some application-specific ethical issues and concerns, as is already being discussed
today for autonomous vehicles, that is a special case of multi-agent learning.
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