
8 Lemma 1 - Ergodic Markov Communication Graph

Lemma 1. Let γ0 be an initial state where all players only know their current reward. Define S as
the set of all states that are reachable from γ0 with positive probability after at least M transitions.
The memory process Γ (t) is an ergodic Markov Chain on S. For a sufficiently largeM and a proper
communication protocol (Definition 4) there exists an ε0 > 0 such that Pπ

(
m ∈ UMn (t)

)
≥ ε0 for

each n,m, where π is the unique stationary distribution of Γ (t).

Proof. We emphasize that S is simply the set of “feasible states”, where the values in Un (t) do not
contradict the graph process G (t). The initial state γ0 is the natural starting point for our algorithm,
when players still have not learned anything about their peers and have received their own reward
once in the past (so t = 1). Note that γ0 is a transient state that is not in S. Any state that the
algorithm can encounter from t = M + 1 on, starting from γ0, is in S by definition. Since the path
starting from γ0 is at least of length M , all the entries of Un (t) are affected and the initial state γ0
is remembered only through the sequence G (t).

Γ (t) on S is a Markov chain since G (t) is a Markov chain, and given G (t), the communication
protocol is independent of G (t− i) for i ≥ 1 and is always independent of {Un (t− i)}Nn=1 for
i ≥ 1. Old entries from more than M turns ago in {Un (t)}Nn=1 are deterministically deleted.

We next show that Γ (t) on S is an ergodic chain. We argue that from every γ1 ∈ S there exists a
positive probability path to any γ2 ∈ S. This path consists of:

• A path from γ1 to a state γG0
for which G (t) = G0, where G0 is the graph in γ0, and

{Un (t)}Nn=1 is arbitrary. This path must exist since G (t) is an ergodic Markov chain that
given G (t− 1), does not depend on {Un (t)}Nn=1.

• A path from γG0
to γ2. This path must exist since by definition of S , there exists a path

from γ0 to γ2. This path induces a sequence of graphs from G0 to G2 and broadcasting
sets for each transition, that are constrained by G (t). By repeating the same transitions,
that are also available from γG0

since G (t) = G0, this path leads to γ2. This follows since
Un (t) has memory M , so all the remains of γ1 are erased and replaced by these of γ2. In
fact, the exact same transitions lead to γ2 from any state with G (t) = G0.

This path can be made longer by just adding arbitrary transitions before step 1 above. Hence, there
exists an L̃ such that for all l ≥ L̃, a path of length l exists between γ1 and γ2, so Γ (t) is aperiodic.
We conclude that Γ (t) on S is an ergodic Markov chain by definition.

Now we use the assumption that the graph union
⋃
G∈G G is a connected graph, and that the com-

munication protocol is proper. Since
⋃
G∈G G is connected, there exists a path from any player m to

player n such that each edge l on this path is in some G̃l ∈
⋃
G∈G G. Therefore, using the proper-

ness of the communication protocol, there is a positive probability that for any n,m, a message from
playerm can reach player n, containing the reward of playerm (that is always known to it). In other
words, for every m,n there exists a state γnm∈ S where m ∈ UMn (t) (so (m,M) ∈ Un (t)). This
follows since this state is reachable from γ0, by sequentially (but not successively) visiting all the
graphs G̃1, G̃2, ... , propagating the message from m to n one step at a time. In all other times,
where a non-relevant graph is visited, the time tag of the message τ just increases while the message
“stays” at the same place. Such a path of graphs exists since G (t) is an ergodic Markov chain. If
M is large enough, this message will reach player n in τ ≤ M steps, meaning that m ∈ Uτn (t),
which deterministically implies that m ∈ UMn (t), M − τ turns later. Hence,

{
γ ∈ S |m ∈ UMn (t)

}
is non-empty and its stationary probability is positive for each n,m:

πnm , Pπ
(
m ∈ UMn (t)

)
=

∑
γ∈{γ∈S |m∈UMn (t)}

πγ > 0. (10)
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Figure 3: Communication graph process G (t) for which M = N = 4 is not large enough

8.1 The Memory M

For a constant graph G, M only needs to be greater than the diameter of G. It is not possible to
optimize the sum of rewards if the samples of one of the reward functions in the sum are always
missing. Hence, an M larger than the diameter is also necessary for any algorithm to converge to an
optimal action profile.

Even for a “well-behaved” Markov chainG (t), requiring thatM is larger than the average stationary
diameter is enough. For instance, a well-behavedG (t) changes only a limited number of edges each
step, or changes all of them symmetrically (e.g., an i.i.d. G (t) sequence). However, one can think
of pathological chains where G (t) changes very fast in an “adversarial way” to try to block certain
messages from n to m from quickly reaching their destination. A simple example is given in Fig. 3,
where Player 1 has to wait for at least 6 turns before a message from Player 4 can arrive. To keep
our results general and simple, we choose to provide the weakest conditions possible on G (t) and
M . The fact that with less connected or less reliable communication graph the convergence time of
Algorithm 1, or any other algorithm, is longer, is of course inevitable.

If the distribution of G (t) is known to the designer that tunes the algorithm, then the required value
for M can be computed. If the distribution of G (t) is unknown, then an adaptive scheme is possible
if the number of players N is known. In this adaptive scheme, each player holds a local version of
M , denoted Mn (t). Once in T0 turns, player n increases Mn (t) by one, until it observes that some
reward value of player m was received sometime in the past, for all m. Simultaneously, the players
can run a consensus algorithm on the maximum Mn (t) to converge to a single value of M for all
(which is in fact not necessary). This is summarized in the update rule:

Mn (t+ 1) = max

{
Mn (t) + 1{tmodT0=0}1{∃m,m/∈

⋃t
τ=1 Un(τ)}, max

m∈Nn
Mm (t)

}
. (11)

This update rule must converge since a large enoughM exists such that with probability 1, eventually
at some random t0,

⋃t0
τ=1 Un (τ) = N for all n. Then, Theorem 1 can be applied with the initial

conditions as given by the state of the system at time t = t0.

In the special case of a constantG, the diameter ofG is bounded byN so we can always useM = N .
If N is unknown, it can be stochastically estimated using consensus algorithms, or alternatively the
diameter of G can be directly estimated [55].

In terms of storage, it is important to note that the M ×N memory table each player keeps is sparse,
since each player receives only O

(
d̄
)

reward values each turn, where d̄ is the average degree of

G (t). For example, the diameter of a random Erdős–Rényi graph G (N, p) is O
(

logN
log(Np)

)
[56],

resulting in space complexity ofO
(
d̄M

)
= O

(
pN logN

log(Np)

)
. For p = c logN

N with c > 1, for which

G (N, p) is connected with high probability, the space complexity is O
(
log2N

)
. As a numerical

example, in a large network G of N = 10000 players, average degree d̄ = 100 and diameter 100,
even the most naive implementation that stores floating point numbers requires only 40KB.
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9 Lemma 2 - Gradient Bias and Noise

Lemma 2 (Gradient Bias and Noise). Let δ (t) = δ0
tq and η (t) = η0

tp for some δ0, η0 > 0, such that
0 < p, q ≤ 1 and p − q > 1

2 and define τ (t) ,
∑t−1
i=1 η (i). For any real τ , let κ (τ) denote the

unique value of t such that τ (t) ≤ τ ≤ τ (t+ 1). Define the filtration2

Fn (t) = σ
({
Zn (τ −M) ,X (τ + 1−M) , anm (τ + 1)1{m∈UMn (τ+1)}

}t
τ=−1

)
. (12)

Define the gradient bias of player n as

βg,n (t) =

N∑
m=1

anm (t) 1{m∈UMn (t)}E
{
dnZn (t−M)

δ (t−M)
um (t−M) | Fn (t− 1)

}
−

N∑
m=1

anm (t) 1{m∈UMn (t)}∇xnum (X (t−M)) (13)

and the gradient noise of player n as

ξg,n (t) =

N∑
m=1

anm (t)1{m∈UMn (t)}
dnZn (t−M)

δ (t−M)
um (t−M)

−
N∑
m=1

anm (t)1{m∈UMn (t)}E
{
dnZn (t−M)

δ (t−M)
um (t−M) | Fn (t− 1)

}
. (14)

Then

1. ‖βg,n (t)‖ ≤ O (δ (t)), with probability 1.

2. There exists a T > 0 such that for all µ > 0:

lim
j0→∞

P

sup
j≥j0

max
0≤τ≤T

∣∣∣∣∣∣
κ(jT+τ)−1∑
t=κ(jT )

η (t) ξg,n (t)

∣∣∣∣∣∣ ≥ µ
 = 0. (15)

Proof. DefineXδ
n (t) ,

(
1− δ(t)

r

)
Xn (t) + δ(t)θ

r , so X̃n (t) = Xδ
n (t) + δ (t)Zn (t). First note

that, for each m, due to the Lipschitz continuity of∇xnum (x) with constant L we have∥∥∥∇xnum (X (t))−∇xnum

(
Xδ (t)

)∥∥∥ ≤ L∥∥∥X (t)−Xδ (t)
∥∥∥ =

L

∥∥∥∥δ (t)

r
(X (t)− θ)

∥∥∥∥ = Lδ (t)

∥∥∥∥X (t)− θ
r

∥∥∥∥ = O (δ (t)) . (16)

Now recall the definition of Fn (t) in (12). Then

‖βg,n (t)‖ =

∥∥∥∥∥
N∑
m=1

anm (t) 1{m∈UMn (t)}

(
E
{
dnZn (t−M)

δ (t−M)
um

(
X̃ (t−M)

)
| Fn (t− 1)

}

−∇xnum (X (t−M))

)∥∥∥∥∥ ≤(a)
1

ε0

N∑
m=1

∥∥∥∥∥E
{
dnZn (t−M)

δ (t−M)
um

(
X̃ (t−M)

)
| Fn (t− 1)

}
−∇xnum (X (t−M))

∥∥∥∥∥ =
(b)

N

ε0

∥∥∥∥∥∇xnum

(
Xδ (t−M)

)
−∇xnum (X (t−M))

∥∥∥∥∥ =
(c)
O (δ (t)) (17)

2with the understanding that Zn (t) = X (t) = 0 for t ≤ 0.
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where (a) follows since
∣∣anm (t)1{m∈UMn (t)}

∣∣ ≤ 1
ε0

and (b) follows Lemma C.1 in [31], noting that
Zn (t−M) is independent of Fn (t− 1) so the conditional expectation on Fn (t− 1) averages
over Zn (t−M) (which also appears in X̃n (t−M)). Equality (c) follows from (16). Now note
that ξg,n (t) in (14) is bounded with probability 1, so both E {|ξg,n (t)|} <∞ and E

{
|ξg,n (t)|2

}
<

∞ for all t. Furthermore, ξg,n (t) is a martingale difference sequence, since ξg,n (t) is Fn (t)-
measurable and E {ξg,n (t) | Fn (t− 1)} = 0. Therefore

Z (t) ,
t∑

τ=1

η (τ) ξg,n (τ) (18)

is a martingale adapted to Fn (t). Hence, for every fixed a, Za (t) , Z (t) − Z (a) is a martingale
for t ≥ a and Z2

a (t) is a submartingale. Using Doob’s inequality (see [57]) on the submartingale
Z2
a (t), we obtain for any µ > 0, for some constant K > 0 and any a, b > 0

P
(

max
a≤t≤b

|Za (t)| ≥ µ
)

= P
(

max
a≤t≤b

|Z (t)− Z (a)|2 ≥ µ2

)
≤

E
{∣∣∣∑b

i=a+1 η (i) ξg,n (i)
∣∣∣2}

µ2
≤
(a)

KE
{∑b

i=a+1
η2(i)
δ2(i)

}
µ2

(19)

where (a) follows since E
{
|ξg,n (t)|2

}
= O

(
1

δ2(t)

)
and for all t1 < t2

E {ξg,n (t1) ξg,n (t2)} = E {E {ξg,n (t1) ξg,n (t2) | Fn (t1)}} =

E {ξg,n (t1)E {ξg,n (t2) | Fn (t1)}} = 0. (20)

Let T > 0. Now we add together terms in (19) where in the j-th term we choose a = κ (jT )−1, b =
κ (jT + T )− 1. Double counting to bound the possible overlaps, we obtain for any µ > 0

∞∑
j=0

P

 max
0≤τ≤T

∣∣∣∣∣∣
κ(jT+τ)−1∑
t=κ(jT )

η (t) ξg,n (t)

∣∣∣∣∣∣ ≥ µ
 ≤ 2KE

{∑∞
t=1

η2(t)
δ2(t)

}
µ2

<
(a)
∞ (21)

where (a) follows since p − q > 1
2 so

∑∞
t=1

η2(t)
δ2(t) < ∞. We conclude from the Borel-Cantelli

Lemma [57] that for every µ > 0

lim
j0→∞

P

sup
j≥j0

max
0≤τ≤T

∣∣∣∣∣∣
κ(jT+τ)−1∑
t=κ(jT )

η (t) ξg,n (t)

∣∣∣∣∣∣ ≥ µ
 = 0. (22)

10 Lemma 3 - Communication Bias and Noise

Lemma 3 (Communication Bias and Noise). Let δ (t) = δ0
tq and η (t) = η0

tp for some δ0, η0 > 0,
such that 0 < p, q ≤ 1 and p > 3+q

4 . Define τ (t) ,
∑t−1
i=1 η (i). For any real τ , let κ (τ) denote

the unique value of t such that τ (t) ≤ τ ≤ τ (t+ 1). Let π be the stationary distribution of Γ (t)
(Definition 5) for a large enough M , and define, for each n and m,

πnm ,
∑

γ∈{γ∈S |m∈UMn (t)}

πγ (23)

which is the stationary probability that m ∈ UMn (t). Define the communication bias of player n by

βc,n (t) =

N∑
m=1

1{m∈UMn (τ)}a
n
m (t)∇xnum (X (t−M))−

N∑
m=1

1{m∈UMn (t)}

πnm
∇xnum (X (t−M))

(24)
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and the communication noise of player n by

ξc,n (t) =

N∑
m=1

(
1{m∈UMn (t)}

πnm
− 1

)
∇xnum (X (t−M)) . (25)

Then

1. βc,n (t) is bounded and converges to zero with probability 1.

2. There exists T > 0 such that for all µ > 0:

lim
j0→∞

P

sup
j≥j0

max
0≤τ≤T

∣∣∣∣∣∣
κ(jT+τ)−1∑
t=κ(jT )

η (t) ξc,n (t)

∣∣∣∣∣∣ ≥ µ
 = 0. (26)

Proof. Let ε > 0. We start from the communication bias, which satisfies

‖βc,n (t)‖ =

∥∥∥∥∥
N∑
m=1

(
anm (t)1{m∈UMn (t)} −

1{m∈UMn (t)}

πnm

)
∇xnum (X (t−M))

∥∥∥∥∥ ≤(a)
L

N∑
m=1

∣∣1{m∈UMn (t)}
∣∣ ∣∣∣∣anm (t)− 1

πnm

∣∣∣∣ ≤
(b)
L

N∑
m=1

∣∣∣∣anm (t)− 1

πnm

∣∣∣∣ =

L

N∑
m=1

∣∣∣∣πnm −max {pnm (t) , ε0}
max {pnm (t) , ε0}πnm

∣∣∣∣ ≤
(c)
L

N∑
m=1

1

δ0ε0
|πnm − pnm (t)| ≤ LN

δ0ε0
(27)

where (a) uses the Lipschitz continuity of um (x) with constant L, so ‖∇xnum (X (t−M))‖ ≤ L.
In (b) we used

∣∣1{m∈UMn (t)}
∣∣ ≤ 1. Inequality (c) follows from pnm (τ) ≥ ε0 and the assumption that

G (t) is an ergodic Markov chain for which the union of the support is a connected graph. Therefore,
we know from Lemma 1 that for a large enough M , there must exist an δ0 > 0 such that πnm ≥ δ0
for each n,m. Since πnm ≥ δ0 ≥ ε0, then replacing pnm (t) by ε0 as the estimator in case that
pnm (t) < ε0 can only improve the estimation, i.e.,

|πnm −max {pnm (t) , ε0}| ≤ |πnm − pnm (t)| . (28)

Inequality (27) shows that βc,n (t) is bounded with probability 1. We now proceed to show that
βc,n (t) converges to zero with probability 1. Let 0 < ε ≤ δ0. By applying the tail bound for
Markov chains from [54] with ∆ = ε

πnm
≤ 1 and the function f (γ (t)) = 1{m∈UMn (t)}, we obtain

for some constants C0, C > 0

P (|pnm (t)− πnm| ≥ ε) = P

(∣∣∣∣∣
t∑

τ=1

(
1{m∈UMn (τ)} − πnmt

)∣∣∣∣∣ ≥ ∆πnmt

)
≤ C0√

πγ0
e
− ε2

72πnmTm
t ≤
(a)

C

t2

(29)
where Tm is the mixing time of Γ (t) with accuracy 1

8 and γ0 is the initial state of Γ (t). Inequality
(a) follows for a sufficiently large t. Hence

∞∑
t=1

P (|pnm (t)− πnm| ≥ ε) ≤
∞∑
t=1

C

t2
<∞. (30)

Using (30), we conclude from the Borel Cantelli Lemma (see [57]) that, for every ε > 0, the
probability that |pnm (t)− πnm| ≥ ε infinitely often is zero, which shows that |pnm (t)− πnm| → 0 with
probability 1 as t → ∞. From (27) this also shows that βc,n (t) converges to zero with probability
1.
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Next we analyze the noise ξc,n (t). Define S (t) =
∑t
τ=1 ξc,n (τ). Let bn,m (τ) =

1{m∈UMn (τ)}
πnm

− 1.
We want to show that η (t)S (t)→ 0 with probability 1 as t→∞. For that purpose we write

‖η (t)S (t)‖ = η (t)

∥∥∥∥∥
t∑

τ=1

N∑
m=1

bn,m (τ)∇xnum (X (τ −M))

∥∥∥∥∥ ≤
η (t)

t
dtre∑
i=1

∥∥∥∥∥∥
idtre∑

τ=1+(i−1)dtre

N∑
m=1

bn,m (τ)∇xnum (X (τ −M))

∥∥∥∥∥∥ ≤
η (t)

t
dtre∑
i=1

∥∥∥∥∥∥
idtre∑

τ=1+(i−1)dtre

N∑
m=1

bn,m (τ)∇xnum (X (i dtre −M))

∥∥∥∥∥∥︸ ︷︷ ︸
A

+η (t)

t
dtre∑
i=1

∥∥∥∥∥∥
idtre∑

τ=1+(i−1)dtre

N∑
m=1

bn,m (τ) (∇xnum (X (τ −M))−∇xnum (X (i dtre −M)))

∥∥∥∥∥∥︸ ︷︷ ︸
B

.

(31)

We start by showing that the A term in (31) converges to zero with probability 1. We have for each i

η (t)

t
dtre∑
i=1

∥∥∥∥∥∥
idtre∑

τ=1+(i−1)dtre

N∑
m=1

(
1{m∈UMn (τ)}

πnm
− 1

)
∇xnum (X (i dtre −M))

∥∥∥∥∥∥ =

η (t)

t
dtre∑
i=1

∥∥∥∥∥∥
N∑
m=1

∇xnum (X (i dtre −M))

idtre∑
τ=1+(i−1)dtre

(
1{m∈UMn (τ)}

πnm
− 1

)∥∥∥∥∥∥ ≤
η (t)

t
dtre∑
i=1

N∑
m=1

‖∇xnum (X (i dtre −M))‖

∣∣∣∣∣∣
idtre∑

τ=1+(i−1)dtre

(
1{m∈UMn (τ)}

πnm
− 1

)∣∣∣∣∣∣ ≤
L

N∑
m=1

η (t)

t
dtre∑
i=1

∣∣∣∣∣∣
idtre∑

τ=1+(i−1)dtre

(
1{m∈UMn (τ)}

πnm
− 1

)∣∣∣∣∣∣ . (32)

Let ε > 0. For each n,m, we apply again the tail bound for Markov chains from [54], this time with
∆ = ε

tη(t) and the function f (γ (t)) = 1{m∈UMn (t)} to obtain, for some constants C0, C > 0

P

η (t)

∣∣∣∣∣∣
idtre∑

τ=1+(i−1)dtre

(
1{m∈UMn (τ)}

πnm
− 1

)∣∣∣∣∣∣ ≥ ε
t
dtre

 =

P

∣∣∣∣∣∣
idtre∑

τ=1+(i−1)dtre

(
1{m∈UMn (τ)} − πnm

)∣∣∣∣∣∣ ≥ ε

tη (t)
πnm dtre

 ≤ C0√
πγ0

e
− ε

2πnm
72Tm

tr

t2η2(t) ≤
(a)

C

t3
(33)

where (a) follows for a sufficiently large t, assuming 2p > 2− r, since 1
t2−rη2(t) = 1

η20
t2p+r−2. We

conclude from the union bound that

∞∑
t=1

P

η (t)

t
dtre∑
i=1

∣∣∣∣∣∣
idtre∑

τ=1+(i−1)dtre

(
1{m∈UMn (τ)}

πnm
− 1

)∣∣∣∣∣∣ ≥ ε
 ≤

∞∑
t=1

 t
dtre∑
i=1

P

η (t)

∣∣∣∣∣∣
idtre∑

τ=1+(i−1)dtre

(
1{m∈UMn (τ)}

πnm
− 1

)∣∣∣∣∣∣ ≥ ε
t
dtre

 ≤ ∞∑
t=1

C

t2+r
<∞ (34)
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so from the Borel Cantelli Lemma (see [57]) we conclude that the probability that

η (t)
∑ t
dtre
i=1

∣∣∣∑idtre
τ=1+(i−1)dtre

(
1{m∈UMn (τ)}

πnm
− 1
)∣∣∣ ≥ ε infinitely often is zero. This shows that if

2p > 2− r then with probability 1, as t→∞:

η (t)

t
dtre∑
i=1

∣∣∣∣∣∣
idtre∑

τ=1+(i−1)dtre

(
1{m∈UMn (t)}

πnm
− 1

)∣∣∣∣∣∣→ 0. (35)

Then, from (32) we see that the A term in (31) converges to zero in probability 1.

Next we show that the B term in (31) converges to zero with probability 1 as well. We have

η (t)

t
dtre∑
i=1

∥∥∥∥∥∥
idtre∑

τ=1+(i−1)dtre

N∑
m=1

bn,m (τ) (∇xnum (X (τ −M))−∇xnum (X (i dtre −M)))

∥∥∥∥∥∥ ≤(a)
η (t)

ε0

N∑
m=1

t
dtre∑
i=1

idtre∑
τ=1+(i−1)dtre

‖∇xnum (X (τ −M))−∇xnum (X (i dtre −M))‖ ≤
(b)

η (t)
NL

ε0

t
dtre∑
i=1

idtre∑
τ=1+(i−1)dtre

‖X (τ −M)−X (i dtre −M)‖ ≤
(c)

4
(
N2max

n
dn

)
Umax

ε0
η (t)

t
dtre∑
i=1

dtre
idtre∑

τ=1+(i−1)dtre

η (τ)

δ (τ)
(36)

where in (a) we used bn,m (τ) =
∣∣∣1{m∈UMn (τ)}

πnm
− 1
∣∣∣ ≤ 1

ε0
and in (b) we used the Lipschitz continuity

of∇xnum (x). In (c) we used that for all 1 + (i− 1) dtre ≤ τ ≤ i dtre

‖X (τ −M)−X (i dtre −M)‖ ≤
idtre−1∑
l=τ

‖X (l −M)−X (l + 1−M)‖ ≤
(a)

4

(
N2max

n
dn

)
Umax

ε0

idtre−1∑
l=τ

η (l)

δ (l)
≤ 4

(
N2max

n
dn

)
Umax

ε0
dtre η (τ)

δ (τ)
(37)

where in (a), we used the continuity of um (x) on the compact set Am and the triangle inequality,
and defined Umax , max

m
max
x∈Am

|um (x)|. We note that (a) holds only for t > M , so t+M
t ≤ 2

and η(l)
δ(l−M) ≤ 2η(l)δ(l) since q ≤ 1. Inequality (a) also uses that by definition of

∏
A we have

‖z −
∏
A (z)‖ ≤ ‖z − x‖ for every x ∈ A and every z, so:

‖X (t+ 1)−X (t)‖ ≤∥∥∥∥∥X (t) + η (t)Y (t)−
∏

A1×...×AN

(X (t) + η (t)Y (t))

∥∥∥∥∥+ ‖η (t)Y (t)‖ ≤ 2 ‖η (t)Y (t)‖ .

(38)

Finally,

η (t)

t
dtre∑
i=1

dtre
idtre∑

τ=1+(i−1)dtre

η (τ)

δ (τ)
≤ (tr + 1) η (t)

t∑
τ=1

η (τ)

δ (τ)
=
(a)

O
(
t−2p+q+1+r

)
(39)

where (a) uses, that since 0 < p, q ≤ 1 then
t∑

τ=1

η (τ)

δ (τ)
≤ η0
δ0

+
η0
δ0

∫ t

1

τ−(p−q)dτ =
η0
δ0

+
η0
δ0

(
t−(p−q)+1

1− p+ q
− 1

1− p+ q

)
= O

(
t−p+q+1

)
.

(40)
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We conclude that if 2p > q + 1 + r, then the B term in (31) converges to zero in probability 1.

Hence, if both 2p > 2− r (for (33)) and 2p > q + 1 + r (for (39)) then by (31), η (t)S (t)→ 0 as
t → ∞ with probability 1. Optimizing over the requirements, we choose r = 1−q

2 which leads to
the condition p > q+3

4 .

For the last step we use that η (t)S (t) → 0 with probability 1 as t → ∞ to show (26). The key is
the following telescoping identity for any integers a, b:

b∑
τ=a

η (τ) ξc,n (τ) = η (b) (S (b)− S (a− 1))+

b−1∑
τ=a

(S (τ)− S (a− 1)) (η (τ)− η (τ + 1)) (41)

where for a = 1 and b = κ (t)− 1 we obtain

κ(t)−1∑
τ=1

η (τ) ξc,n (τ) = η (κ (t)− 1)S (κ (t)− 1) +

κ(t)−2∑
τ=1

S (τ) η (τ)
η (τ)− η (τ + 1)

η (τ)
. (42)

Let T > 0 and let 0 ≤ τ ≤ T . By definition of κ (τ),
∑κ(jT+τ)−2
t=κ(jT )−1 η (t)→ τ as j →∞. Recall that

since
∑∞
t=1 η (t) = ∞ then κ (jT ) → ∞ as j → ∞. Let µ > 0. Hence, for almost every ω ∈ Ω,

there exists a J (ω) (that depends only on µ, η0, T and not on τ ) such that for all j > J (ω) we have
|S (t) η (t)| ≤ µ

4 min
{

1, η0T
}

for all t ≥ κ (jT )− 1 and that
∑κ(jT+τ)−2
t=κ(jT )−1 η (t) < 2T . Then for all

j > J (ω) we also have∣∣∣∣∣∣
κ(jT+τ)−1∑
t=κ(jT )

η (t) ξc,n (t)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
κ(jT+τ)−1∑

t=1

η (t) ξc,n (t)−
κ(jT )−1∑
t=1

η (t) ξc,n (t)

∣∣∣∣∣∣ ≤(a)
|η (κ (jT + τ)− 1)S (κ (jT + τ)− 1)|+ |η (κ (jT )− 1)S (κ (jT )− 1)|

+

κ(jT+τ)−2∑
t=κ(jT )−1

|S (t) η (t)|
∣∣∣∣η (t)− η (t+ 1)

η (t)

∣∣∣∣ ≤
(b)

µ

2
+

µ

4T

κ(jT+τ)−2∑
t=κ(jT )−1

η (t) < µ (43)

where (a) uses (42) with the triangle inequality, and (b) follows since for all j > J (ω) we have∑κ(jT+τ)−1
t=κ(jT ) η (t) < 2T and that for all t ≥ κ (jT )

∣∣∣∣η (t)− η (t+ 1)

η (t)

∣∣∣∣ =

∣∣∣ 1tp − 1
(t+1)p

∣∣∣
1
tp

=

∣∣∣∣1− ( t

1 + t

)p∣∣∣∣ ≤ 1

1 + t
≤ η (t)

η0
. (44)

We conclude that for every µ > 0

lim
j0→∞

P

sup
j≥j0

max
0≤τ≤T

∣∣∣∣∣∣
κ(jT+τ)−1∑
t=κ(jT )

η (t) ξc,n (t)

∣∣∣∣∣∣ ≥ µ
 = 0. (45)

11 Proof of Theorem 1

Using Lemma 2 and Lemma 3 to control the noises and biases, we can now prove Theorem 1.

Proof. First note that for every n

N∑
m=1

anm (t)1{m∈UMn (t)}

(
dnZn (t−M)

δ (t−M)
um (t−M)−∇xnum (X (t−M))

)
=

ξg,n (t) + βg,n (t) (46)
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and
N∑
m=1

(
anm (t)1{m∈UMn (t)} − 1

)
∇xnum (X (t−M)) = βc,n (t) + ξc,n (t) . (47)

So we can write

Y n (t) =
dnZn (t−M)

δ (t−M)

N∑
m=1

anm (t)1{m∈UMn (t)}um (t−M) =

N∑
m=1

anm (t)1{m∈UMn (t)}

(
dnZn (t−M)

δ (t−M)
um (t−M)−∇xnum (X (t−M))

)
+

N∑
m=1

anm (t)1{m∈UMn (t)}∇xnum (X (t−M)) =

ξg,n (t) + βg,n (t) +

N∑
m=1

(
anm (t)1{m∈UMn (t)} − 1

)
∇xnum (X (t−M)) + gn (X (t−M)) =

ξc,n (t) + βc,n (t) + ξg,n (t) + βg,n (t) + (gn (X (t−M))− gn (X (t))) + gn (X (t)) ,

ξc,n (t) + βc,n (t) + ξg,n (t) + βg,n (t) + βd,n (t) + gn (X (t)) (48)
where, similarly to how we bounded (37)

‖βd,n (t)‖ =

∥∥∥∥∥
N∑
m=1

∇xnum (X (t−M))−
N∑
m=1

∇xnum (X (t))

∥∥∥∥∥ ≤
NL

M−1∑
i=0

‖X (t− i)−X (t− i− 1)‖ ≤

2NL

2M∑
i=M+1

η (t− i)
δ (t− i)

N∑
n=1

∥∥∥∥∥∥Zn (t− i)
∑

m∈UMn (t−i+M)

anm (t)um (t− i)

∥∥∥∥∥∥ ≤
2
N2L

(
max
n
dn

)
ε0

Umax

2M∑
i=M+1

η (t− i)
δ (t− i)

≤ 2
N2L

(
max
n
dn

)
ε0

UmaxM
η (t− 2M)

δ (t− 2M)
(49)

so βd,n (t) is bounded and βd,n (t) → 0 with probability 1, for all n, since p − q > 0. Combining
Lemma 2, Lemma 3 and (49), we conclude that βn (t) , βc,n (t) +βg,n (t) +βd (t) is bounded and
converges to zero with probability 1. Lemma 2 and Lemma 3 also show that there exists T > 0 such
that ξn (t) , ξc,n (t) + ξg,n (t) satisfies, for every n and every µ > 0

lim
j0→∞

P

sup
j≥j0

max
0≤τ≤T

∣∣∣∣∣∣
κ(jT+τ)−1∑
t=κ(jT )

η (t) ξn (t)

∣∣∣∣∣∣ ≥ µ
 = 0. (50)

Since η (t) = η0
tp for p < 1 then

∑∞
t=1 η (t) = ∞ and η (t) → 0 as t → ∞. The function

g (x) = (g1 (x) , ..., gN (x)) consists of the elements gn (x) =
∑N
m=1∇xnum (x) where um (x)

is continuously differentiable for each m. Hence, by Theorem 2, x (t) converges to the set of KKT
stationary points of

∑N
m=1∇um (x) with probability 1.

Then if
∑N
m=1 um (x) is concave and for all n there exists an xn such that qni (xn) < 0 for all i

(Slater’s condition), then the duality gap is zero and the set of KKT stationary points coincides with
arg max

x∈A

∑N
n=1 un (x) [58, Proposition 5.3.1, Page 512].

12 Stochastic Approximation - Kushner-Clark Theorem

For convenience, we summarize here the part of [52, Theorem 5.3.1, Page 191] that we use. The
Theorem in [52, Theorem 5.3.1, Page 191] is more general, and is applicable for any continuous
g (x), not necessarily of the form g (x) = −∇f (x) for some continuously differentiable f .
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Theorem 2 (Kushner and Clark [52, Theorem 5.3.1, Page 191]). Consider the algorithm

X (t+ 1) =
∏
C

(X (t) + η (t)Y (t)) (51)

whereX (t) ∈ Rd,
∏
C is the projection onto C ⊂ Rd and

Y (t) = g (X (t)) + ξ (t) + β (t) (52)

such that the following assumptions hold:

1. C is closed and bounded and of the form

C =
{
x ∈ Rd | qi (x) ≤ 0, i = 1, . . . , s

}
(53)

for some positive integer s, where for each i, qi (x) is continuously differentiable and for
each x, the gradients∇qi (x) for all i such that qi (x) = 0 (active constraints) are linearly
independent.

2.
∑
t η (t) =∞ and η (t)→ 0 as t→∞ and η (t) > 0 for all t.

3. g (x) = −∇f (x) for a continuously differentiable function f : Rd → R.

4. β (t) is bounded and converges to zero with probability 1.

5. Define τ (t) ,
∑t−1
i=1 η (i). For any real τ , let κ (τ) denote the unique value of t such that

τ (t) ≤ τ ≤ τ (t+ 1). There exists T > 0 such that for all µ > 0:

lim
j0→∞

P

sup
j≥j0

max
0≤τ≤T

∣∣∣∣∣∣
κ(jT+τ)−1∑
t=κ(jT )

η (t) ξ (t)

∣∣∣∣∣∣ ≥ µ
 = 0. (54)

ThenX (t) converges with probability 1 to the set of KKT points:

KKT =

x | ∃λ ∈ Rs s.t. ∀i, λi ≥ 0 and∇f (x) +
∑

i:qi(x)=0

λi∇qi (x) = 0

 . (55)
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