
Thank you all for your time, feedback, and acknowledging the novelty and potential of our work. The comments1

significantly enhanced the manuscript and led us to stronger results. We address our major weaknesses below:2

Clarity (R1-R4): We agree that a pseudo-code would have better clarified our method and its key points. The follow-3

ing pseudo-code for Node Koopman training has replaced our verbose explanation in Sec. 3. Pseudo-codes describing4

other implementations have also been added (Single Weight, Layer, etc. all follow from slight changes to Alg. 1).5

Algorithm 1 Node Koopman training
Let wl

j(t) ≡ [wl
j1(t) wl

j2(t) ... wl
jN (t) blj(t)]

† be weights/bias going into node j of layer l after t iterations of
training. For each node (l, j), we wish to find an operator Ũ that satisfies wl

j(t+ 1) = Ũwl
j(t). Choose t1 < t2, and

T > 0. Train the NN of choice for t2 training iterations and record all wl
j(t) from t1 to t2. For each node (l, j):

1. Define matrices: F =
[
wl

j(t1) wl
j(t1 + 1) · · · wl

j(t2 − 1)
]

& F ′ = [wl
j(t1 + 1) wl

j(t1 + 2) · · · wl
j(t2)].

2. Compute Ũ = F+F ′, where F+ = (F †F )−1F †.

3. Use Ũ iteratively to predict the evolution of wl
j from training iteration t2 to training iteration t2 + T .

(R2, R4) Sec. 2 is broken into subsections for ease of reading and the Koopman mode decomposition is now discussed6

in the Conclusion. (R4) We correct a typo in Supplement Table S2 - tstart, tstop should be t1, t2. We agree that Fig.7

2b and 2c overly complicate the discussion. They have been replaced by clearer text explanations, while Fig. 2e8

has been better labeled. T eq is the number of training iterations needed by the standard optimizer to achieve the loss9

performance obtained by T iterations of Koopman training (both are with respect to t2). A Koopman training attempt10

is considered successful if T eq/T > 0, with values near 1 implying Koopman training accurately approximated the11

optimizer in terms of loss performance. Fig. 2e was meant to highlight that our original result of T eq/T = 0.99 was12

due to our method’s accuracy in predicting the evolution of individual weights/biases in training iteration time. The13

x-axis of Fig. 2e shows the true movement of individual weights/biases from t2 to t2 + T , while the y-axis represents14

the error in the predictions made via Node Koopman training (Alg. 1). (R4) Koopman training exploits existing15

weight/bias evolution information to predict their future states (or direction, in the case of the perceptron).16

Generalization (R1-R4): We agree that our original examples are limited, although Alg. 1 shows that Koopman17

training is inherently data-driven and generally applicable to other choices of NN optimizer, size, and problem of18

interest. Given the novelty of Koopman training and claims of generalizability, we appreciate the need for more19

experiments. (R3) We do note that the Hamiltonian NN (HNN) is solving regression problems - their novelty is in the20

loss function choice. Further, a major issue for physics inspired NNs (indeed many NNs) is the performance in the21

latter half of training: our simple methods are already providing useful cost reductions in this regime.22

(R1-R4) We replicated experiments with different choices of widths/depths, optimizers, and problems of interest -23

including a deeper feedforward NN trained on the full MNIST dataset (adapted from the official Pytorch MNIST24

example). We leveraged the platform agnostic nature of Koopman training by using MATLAB for implementation,25

which results in even larger speed ups, presumably due to faster/more robust matrix operations (as noted in our original26

manuscript, line 272). (R2-R4) Koopman training generalized well (Table 1). We re-emphasize that our current27

approach does not make use of parallelization (even though it is better suited, since only matrix calculations are28

involved). No fundamental/technical changes in our methods were made for the new experiments in comparison to the29

originals, other than those mentioned in Table 1. Complete details have been provided in the Supplement.

Table 1: Generalization results

Experiment Optimizer Architecture KOT success T eq/T Speed up

HNN Adam 1:4:4:2 93% 0.99 103x
HNN Adam 1:10:10:2 84% 0.85 58x
HNN Adagrad 1:10:10:2 92% 1.00 62x
HNN Adadelta 1:10:10:2 100% 0.98 64x
HNN Adadelta 1:50:50:2 92% 1.00 17x

MNIST Adadelta 784:10:10:10:10 100% 1.00 27x
MNIST Adadelta 784:20:20:20:10 100% 2.00 37x

30

We hope that these additional comments and experiments enhance the clarity and perspective of our work. We apol-31

ogize for any concerns we were not able to address in this response due to limitations of space and have ensured that32

every raised point has been addressed in the revised manuscript.33


