
We thank the reviewers for their thoughtful feedback. It seems we have not sufficiently clarified the context and scope1

of our contributions, so we begin with general comments in this direction. We will update the introduction of our2

paper accordingly. We thank the reviewers for bringing this to our attention.3

Clarifying the context and scope of our contributions. SVGD is markedly different from sampling methods based4

on diffusions, such as Langevin or HMC, in that it constructs a sequence of deterministic mappings whose composition5

approximately pushes forward an initial distribution to the target distribution. The discovery of its interpretation as6

a gradient flow of the KL divergence in the Wasserstein space of probability measures, as well as a connection to7

the rich mathematical theory of interacting particle systems, has led to great interest among researchers. (As noted8

by R2, a gradient flow interpretation lends itself easily to convergence analysis.) However, despite fervent activity,9

the prevailing perspective has not provided sufficient theoretical understanding for SVGD to overcome its known10

problems, such as mode collapse (R3) or lack of guidance on how to choose an appropriate kernel, and consequently11

diffusion-based algorithms remain the dominant choice for applications.12

In this work, we provide a new and stronger theoretical footing for the development of such deterministic mappings.13

In particular, it allows us to derive improved convergence guarantees for SVGD (including strong uniform ergodicity,14

a property which is not standard in the literature; R2). Additionally, by introducing a simpler conceptual framework15

in which the properties of a single integral operator, Kπ , governs the performance of SVGD, our work is the first to16

demonstrate that the interplay of the kernel and the target distribution is crucial for designing SVGD-like algorithms.17

As a proof of concept, our proposed algorithm uses a kernel which is carefully designed based on the target distribu-18

tion. We believe our study will stimulate further work on the design of sampling algorithms, based on deterministic19

pushforward mappings, which may eventually see the same widespread application as diffusion-based algorithms.20

In fact, we do not advocate for LAWGD as the definitive solution of the sampling problem, but rather as the start of a21

family of interacting particle systems with an interacting potential that depends strongly and non-trivially on the target22

distribution and furthermore comes with strong theoretical guarantees.23

On the role of numerical PDEs. LAWGD establishes a firm bridge between the fields of sampling and numerical24

PDEs, whereby the main computational bottleneck of our algorithm is the inversion of a differential operator. Although25

our naïve implementation of LAWGD is not scalable to high dimension (as rightly pointed out by R2 and R4), the26

problem of efficiently solving high-dimensional PDEs is precisely the target of intensive research in modern numerical27

PDEs, culminating in a wide variety of methods ranging from ad-hoc but effective neural network approaches to more28

principled solvers. We view this bridge as one of our core contributions and we hope that attracting the attention of29

numerical PDE researchers will yield fruitful collaborations for both fields.30

Addressing specific comments.31

• R1 and R4 write that our experiments are not extensive enough. This is an excellent point and we fully agree32

that more in-depth experiments are required to evaluate the practicality of LAWGD. As mentioned above,33

however, our goal is not to establish the supremacy of LAWGD by testing it on a battery of challenging high-34

dimensional instances, but rather to demonstrate that, unlike SVGD, LAWGD has both strong theoretical35

guarantees and good numerical performance (recall that for non-trivial kernels there is currently no quantita-36

tive convergence analysis of SVGD under verifiable assumptions and that even our simple experiments on the37

mixture of two Gaussians demonstrate a failure of SVGD). This is an indication that our novel perspective38

could be the correct one to further advance the state-of-the-art for sampling via deterministic mappings.39

• R2 and R4 note that we do not provide analysis in discrete time. Although discrete time analysis is common40

for the more established class of diffusion-based sampling algorithms, the understanding of SVGD-like algo-41

rithms is still nascent. Following the trend of recent work such as Duncan et al., we work in continuous time42

in order to develop conceptual understanding regarding the impact of the choice of kernel.43

• R3 raises a number of interesting questions, and we address some here. Just as we have established SVGD as44

a kernelized gradient flow of the chi-squared divergence, it would indeed be interesting to consider gradient45

flows of other functionals, such as f-divergences, and to use kernels or develop other approaches to implement46

them; we mention these directions in our open questions.47

For LAWGD, the choice of kernel is fully determined by the target distribution, and in principle there is no48

risk of the kernel being mismatched to the target distribution (as in the case of the observed failure of SVGD49

with RBF kernels). In practice, however, more numerical experiments are necessary to determine if LAWGD50

suffers from similar problems as SVGD in high dimension.51

We also note your thought-provoking question about a more direct connection between LAWGD and the52

Schrödinger operator. While we cannot see an obvious connection in the context of sampling (for which L53

is more natural), it is possible that it becomes a more central object in particle methods for PDEs without a54

limiting distribution.55


