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Abstract

Stein Variational Gradient Descent (SVGD), a popular sampling algorithm, is often
described as the kernelized gradient flow for the Kullback-Leibler divergence in
the geometry of optimal transport. We introduce a new perspective on SVGD that
instead views SVGD as the (kernelized) gradient flow of the chi-squared diver-
gence which, we show, exhibits a strong form of uniform exponential ergodicity
under conditions as weak as a Poincaré inequality. This perspective leads us to
propose an alternative to SVGD, called Laplacian Adjusted Wasserstein Gradient
Descent (LAWGD), that can be implemented from the spectral decomposition of
the Laplacian operator associated with the target density. We show that LAWGD
exhibits strong convergence guarantees and good practical performance.

1 Introduction

The seminal paper of Jordan, Kinderlehrer, and Otto [JKO98] has profoundly reshaped our under-
standing of sampling algorithms. What is now commonly known as the JKO scheme interprets the
evolution of marginal distributions of a Langevin diffusion as a gradient flow of a Kullback-Leibler
(KL) divergence over the Wasserstein space of probability measures. This optimization perspective on
Markov Chain Monte Carlo (MCMC) has not only renewed our understanding of algorithms based on
Langevin diffusions [Dal17a; Ber18; CB18; Wib18; DMM19; VW19], but has also fueled the discov-
ery of new MCMC algorithms inspired by the diverse and powerful optimization toolbox [Mar+12;
Sim+16; Che+18; Ber18; Hsi+18; Wib18; Ma+19; Wib19; Che+20; DR20; Zha+20b].

In order to arrive at a practical sampling algorithm, one must discretize the Wasserstein gradient flow.
The most common discretization is to discretize the Langevin diffusion, resulting in the Unadjusted
Langevin Algorithm (ULA) [Dal17b; DM17]. However, it is unclear whether this diffusion based
discretization is the most effective one. In fact, ULA is asymptotically biased, which results in slow
convergence and often requires ad-hoc adjustments [Dwi+19]. To overcome this limitation, various
methods that track the Wasserstein gradient flow more closely have been recently developed [Ber18;
Wib18; SKL20].

An alternative sampling approach that avoids diffusions is to construct a sequence of deterministic
mappings that approximately pushes forward an initial distribution to the target distribution. Let F
denote a functional over the Wasserstein space of distributions. The Wasserstein gradient flow of F
may be described as the deterministic and time-inhomogeneous Markov process (Xt)t≥0 started at a
random variable X0 ∼ µ0 and evolving according to Ẋt = −[∇W2F (µt)](Xt), where µt denotes
the distribution of Xt. Here [∇W2

F (µ)](·) : Rd → Rd is the Wasserstein gradient of F at µ. If
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F (µ) = DKL(µ ‖ π), where π ∝ e−V is a given target distribution on Rd, it is known [AGS08;
Vil09; San17] that ∇W2

F (µ) = ∇ ln(dµ/dπ). Therefore, a natural discretization of the Wasserstein
gradient flow with step size h > 0, albeit one that cannot be implemented since it depends on the
distribution µt of Xt, is:

Xt+1 = Xt − h∇ ln
(dµt

dπ
(Xt)

)
, t = 0, 1, 2, . . . .

While µt can, in principle, be estimated by evolving a large number of particles X [1]
t , . . . , X

[N ]
t ,

estimation of µt is hindered by the curse of dimensionality and this approach still faces significant
computational challenges despite attempts to improve the original JKO scheme [SKL20; WL20].

A major advance in this direction was achieved by allowing for approximate Wasserstein gradients,
which makes the push forward maps tractable. More specifically, Stein Variational Gradient De-
scent (SVGD), recently proposed by [LW16] (see Section 2 for more details), consists in replacing
∇W2F (µ) by its image Kµ∇W2F (µ) under the integral operator Kµ : L2(µ)→ L2(µ) associated to
a chosen kernel K : Rd × Rd → R and defined by Kµf(x) :=

∫
K(x, y)f(y) dµ(y) for f ∈ L2(µ).

This leads to the following process:

Xt+1 = Xt − h[Kµt
∇W2

F (µt)](Xt) , t = 0, 1, 2, . . . . (SVGDp)

where we apply the integral operator Kµt
individually to each coordinate of the Wasserstein gradient.

In turn, this kernelization trick overcomes most of the above computational bottleneck. Building on
this perspective, [DNS19] introduced a new geometry, different from the Wasserstein geometry and
which they call the Stein geometry, in which the continuous limit of (SVGDp) becomes the gradient
flow of the KL divergence.

However, despite this recent advance, the theoretical properties of SVGD are still largely unexplored,
resulting in little understanding of SVGD’s known problems, such as mode collapse or a lack of
guidance on how to choose an appropriate kernelK. Consequently diffusion-based algorithms remain
the dominant choice for applications. In this work, we we provide a new and stronger theoretical
footing for the development of such deterministic mappings.
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Figure 1: Sampling from a mix-
ture of two 2D Gaussians with
LAWGD. See Appendix C.

Our contributions. We introduce, in Section 2.3, a new perspec-
tive on SVGD by viewing it as kernelized gradient flow of the
chi-squared divergence rather than the KL divergence. This per-
spective is fruitful in two ways. First, it uses a single integral
operator Kπ—as opposed to (SVGDp), which requires a family
of integral operators Kµ, µ� π—providing a conceptually clear
guideline for choosing K, namely: K should be chosen to make
Kπ approximately equal to the identity operator. Second, under
the idealized choice Kπ = id, we show that this gradient flow
converges exponentially fast in KL divergence as soon as the target
distribution π satisfies a Poincaré inequality. In fact, our results are
stronger than exponential convergence and they highlight strong
uniform ergodicity: the gradient flow forgets the initial distribution
after a finite time that is at most half of the Poincaré constant. To
establish this exponential convergence under a relatively weak con-
dition (Poincaré inequality), we employ the following technique. While the gradient flow aims at
minimizing the chi-squared divergence by following the curve in Wasserstein space with steepest
descent, we do not track its progress with the objective function itself, the chi-squared divergence,
but instead we track it with the KL divergence. This is in a sense dual to argument employed
in [Che+20], where the chi-squared divergence is used to track the progress of a gradient flow on
the KL divergence. A more standard analysis relying on Łojasiewicz inequalities also yields rates
of convergence on the chi-squared divergence under stronger assumptions such as a log-Sobolev
inequality, and log-concavity. These results establish the first finite-time theoretical guarantees for
SVGD in an idealized setting.

Beyond providing a better understanding of SVGD, our novel perspective is instrumental in the
development of a new sampling algorithm, which we call Laplacian Adjusted Wasserstein Gradient
Descent (LAWGD) and present in Section 4. We show that it possesses a striking theoretical property:
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assuming that the target distribution π satisfies a Poincaré inequality, LAWGD converges exponen-
tially fast, with no dependence on the Poincaré constant. This scale invariance has been recently
demonstrated for the Newton-Langevin diffusion [Che+20], but under the additional assumption that
π is log-concave. A successful implementation of LAWGD hinges on the spectral decomposition of
a certain differential operator which is within reach of modern PDE solvers. As a proof of concept,
we show that LAWGD, implemented using a naı̈ve finite differences method, performs well on
mixtures of Gaussians in one or two dimensions, whereas SVGD fails. This is an indication that our
novel perspective could be the correct one to further advance the state-of-the-art for sampling via
deterministic mappings. Implementing LAWGD in high dimensions is challenging, and we are not
advocating for it as the definitive solution of the sampling problem. Instead, LAWGD serves as the
start of a family of interacting particle systems with an interacting potential that depends strongly and
non-trivially on the target distribution and furthermore comes with strong theoretical guarantees. We
hope this work can encourage further research in the application of numerical PDEs for sampling.

Related work. Since its introduction in [LW16], a number of variants of SVGD have been considered.
They include a stochastic version [Li+20], a version that approximates the Newton direction in Wasser-
stein space [Det+18], a version that uses matrix kernels [Wan+19], an accelerated version [Liu+19],
and a hybrid with Langevin [Zha+20a]. Several works have studied theoretical properties of SVGD,
including its interpretation as a gradient flow under a modified geometry [Liu17; DNS19], and its
asymptotic convergence [LLN19].

Notation. In this paper, all probability measures are assumed to have densities w.r.t. Lebesgue
measure; therefore, we frequently abuse notation by identifying a probability measure with its
Lebesgue density. For a differentiable kernelK : Rd×Rd → R, we denote by∇1K : Rd×Rd → Rd
(resp. ∇2K) the gradient of the kernel w.r.t. the first (resp. second) argument. When describing
particle algorithms, we use a subscript to denote the time index and brackets to denote the particle
index, i.e., X [i]

t refers to the ith particle at time (or iteration number) t.

2 SVGD as a kernelized Wasserstein gradient flow

2.1 Wasserstein gradient flows

In this section, we review the theory of gradient flows on the space P2,ac(Rd) of probability measures
absolutely continuous w.r.t. Lebesgue measure and possessing a finite second moment, equipped with
the 2-Wasserstein metric W2. We refer readers to [Vil03; San15; San17] for introductory treatments
of optimal transport, and to [AGS08; Vil09] for detailed treatments of Wasserstein gradient flows.

Let F : P2,ac(Rd)→ R ∪ {∞} be a functional defined on Wasserstein space. We say that a curve
(µt)t≥0 of probability measures is a Wasserstein gradient flow for the functional F if it satisfies

∂tµt = div
(
µt∇W2

F (µt)
)

(1)

in a weak sense. Here,∇W2F (µ) := ∇δF (µ) is the Wasserstein gradient of the functional F at µ,
where δF (µ) : Rd → R is the first variation of F at µ, defined by

lim
ε→0

F (µ+ εξ)− F (µ)

ε
=

∫
δF (µ) dξ, for all ξ with

∫
dξ = 0,

and∇ denotes the usual (Euclidean) gradient. Hence, the Wasserstein gradient, at each µ ∈ P2,ac(Rd),
is a map from Rd to Rd.

Using the continuity equation, we can give an Eulerian interpretation to the evolution equation (1)
(see [San15, §4] and [AGS08, §8]). Given a family of vector fields (vt)t≥0, let (Xt)t≥0 be a curve in
Rd with random initial point X0 ∼ µ0, and such that (Xt)t≥0 is an integral curve of the vector fields
(vt)t≥0, that is, Ẋt = vt(Xt). If we let µt denote the law of Xt, then (µt)t≥0 evolves according to
the continuity equation

∂tµt = −div(µtvt). (2)

Comparing (1) and (2), we see that (1) describes the evolution of the marginal law (µt)t≥0 of the
curve (Xt)t≥0 with X0 ∼ µ0 and Ẋt = −[∇W2

F (µt)](Xt).
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Wasserstein calculus provides the following (formal) calculation rule: the Wasserstein gradient
flow (µt)t≥0 for the functional F dissipates F at the rate ∂tF (µt) = −Eµt

[‖∇W2
F (µt)‖2]. More

generally, for a curve (µt)t≥0 evolving according to the continuity equation (2), the time-derivative
of F is given by ∂tF (µt) = Eµt

〈∇W2
F (µt), vt〉.

In this paper, we are primarily concerned with two functionals: the Kullback-Leibler (KL) diver-
gence DKL(· ‖ π), and the chi-squared divergence χ2(· ‖ π) (see, e.g., [Tsy09]). It is a standard
exercise [AGS08; San15] to check that Wasserstein gradients of these functionals are, respectively,(

∇W2DKL(· ‖ π)
)
(µ) = ∇ ln

dµ

dπ
,

(
∇W2χ

2(· ‖ π)
)
(µ) = 2∇dµ

dπ
. (3)

2.2 SVGD as a kernelized gradient flow of the KL divergence

SVGD1 is achieved by replacing the Wasserstein gradient∇ ln(dµt/dπ) of the KL divergence with
Kµt∇ ln(dµt/dπ), leading to the particle evolution equation (SVGDp).

Recalling that π ∝ e−V , we get

Kµt∇ ln
dµt
dπ

(x) :=

∫
K(x, ·)∇ ln

dµt
dπ

dµt =

∫
K(x, ·)∇V dµt −

∫
∇2K(x, ·) dµt , (4)

where, in the second identity, we used integration by parts. This expression shows that rather than
having to estimate the distribution µt, it is sufficient to estimate the expectation

∫
∇2K(x, ·) dµt.

This is the key to the computational tractability of SVGD. Indeed, the kernelized gradient flow can
implemented by drawing N particles X [1]

0 , . . . , X
[N ]
0

i.i.d.∼ µ0 and following the coupled dynamics

Ẋ
[i]
t = −Kµt

∇ ln
dµt
dπ

(X
[i]
t ) = −

∫
K(X

[i]
t , ·)∇V dµt +

∫
∇2K(X

[i]
t , ·) dµt, i ∈ [N ].

With this, we can simply estimate the expectation with respect to µt with an average over all particles,
which yeilds the SVGD algorithm:

X
[i]
t+1 = X

[i]
t −

h

N

N∑
j=1

K(X
[i]
t , X

[j]
t )∇V (X

[j]
t ) +

h

N

N∑
j=1

∇2K(X
[i]
t , X

[j]
t ), i ∈ [N ]. (5)

2.3 SVGD as a kernelized gradient flow of the chi-squared divergence

Recall from Section 2.1 that by the continuity equation, the continuous limit of the particle evolution
equation (SVGDp) translates into the following PDE that describes the evolution of the distribution
µt of Xt:

∂tµt = div
(
µtKµt

∇ ln
dµt
dπ

)
. (SVGDd)

We make the simple observation that

Kµt∇ ln
dµt
dπ

(x) =

∫
K(x, y)∇ ln

dµt
dπ

(y) dµt(y) =

∫
K(x, y)∇dµt

dπ
(y) dπ(y) = Kπ∇

dµt
dπ

(x).

Thus, the continuous-dynamics of SVGD, as given in (SVGDd), can equivalently be expressed as

∂tµt = div
(
µtKπ∇

dµt
dπ

)
. (SVGD)

To interpret this equation, we recall that the Wasserstein gradient of the chi-squared divergence
χ2(· ‖ π) at µ is 2∇(dµ/dπ) (by (3)), so the gradient flow for the chi-squared divergence is

∂tµt = 2 div
(
µt∇

dµt
dπ

)
. (CSF)

Comparing (SVGD) and (CSF), we see that (up to a factor of 2), SVGD can be understood as the flow
obtained by replacing the gradient of the chi-squared divergence,∇(dµ/dπ), by Kπ∇(dµ/dπ).

Although (SVGDd) and (SVGD) are equivalent ways of expressing the same dynamics, the formula-
tion of (SVGD) presents a significant advantage: it involves a kernel integral operator Kπ that does
not change with time and depends only on the target distribution π.

1Throughout this paper, we call SVGD the generalization of the original method of [LW16; Liu17] that was
introduced in [Wan+19].
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3 Chi-squared gradient flow

In this section, study the idealized case where Kπ taken to be the identity operator. In this case,
(SVGD) reduces to the gradient flow CSF. The existence, uniqueness, and regularity of this flow are
studied in [OT11; OT13] and [AGS08, Theorem 11.2.1].

The rate of convergence of the gradient flow of the KL divergence is closely related to two functional
inequalities: the Poincaré inequality controls the rate of exponential convergence in chi-squared
divergence ([Pav14, Theorem 4.4], [Che+20]) while a log-Sobolev inequality characterizes the rate
of exponential convergence of the KL divergence [BGL14, Theorem 5.2.1]. In this section, we show
that these inequalities also guarantee exponential rates of convergence of CSF.

Recall that π satisfies a Poincaré inequality with constant CP if

varπ f ≤ CP Eπ[‖∇f‖2], for all locally Lipschitz f ∈ L2(π), (P)

while π satisfies a log-Sobolev inequality with constant CLSI

entπ(f2) := Eπ[f2 ln(f2)]− Eπ[f2] lnEπ[f2] ≤ 2CLSI Eπ[‖∇f‖2] (LSI)

for all locally Lipschitz f for which entπ(f2) <∞.

We briefly review some facts regarding the strength of these assumptions. It is standard that the
log-Sobolev inequality is stronger than the Poincaré inequality: (LSI) implies (P) with constant
CP ≤ CLSI. In turn, if π is α-strongly log-concave, i.e. ∇2V � αId, then it implies the validity
of (LSI) with CLSI ≤ 1/α, and thus a Poincaré inequality holds too. However, a Poincaré inequality is
in general much weaker than strong log-concavity. For instance, if λ2π denotes the largest eigenvalue
of the covariance matrix of π, then it is currently known that π satisfies a Poincaré inequality as
soon as it is log-concave, with CP ≤ C(d)λ2π , where C(d) is a dimensional constant [Bob99; AB15;
LV17], and the well-known Kannan-Lovász-Simonovitz (KLS) conjecture [KLS95] asserts that C(d)
does not actually depend on the dimension.

Our first result shows that a Poincaré inequality suffices to establish exponential decay of the KL
divergence along CSF. In fact, we establish a remarkable property, which we call strong uniform
ergodicity: under a Poincaré inequality, CSF forgets its initial distribution after a time of no more
than CP/2. Uniform ergodicity is central in the theory of Markov processes [MT09, Ch. 16] but is
often limited to compact state spaces. Moreover, this theory largely focuses on total variation, so the
distance from the initial distribution to the target distribution is trivially bounded by 1.
Theorem 1. Assume that π satisfies a Poincaré inequality (P) with constant CP > 0 and let (µt)t≥0
denote the law of CSF. Assume that χ2(µ0 ‖ π) <∞. Then,

DKL(µt ‖ π) ≤ DKL(µ0 ‖ π) e
− 2t

CP , ∀ t ≥ 0. (6)

In fact, a stronger convergence result holds:

DKL(µt ‖ π) ≤
(
DKL(µ0 ‖ π) ∧ 2

)
e
− 2t

CP , ∀ t ≥ CP

2
. (7)

Proof. Given the Wasserstein gradients (3) in Section 2.1, we get that (µt)t≥0 satisfies

∂tDKL(µt ‖ π) = −2Eµt

〈
∇ ln

dµt
dπ

,∇dµt
dπ

〉
= −2Eπ

[∥∥∇dµt
dπ

∥∥2].
Applying the Poincaré inequality (P) with f = dµt/dπ − 1, we get

∂tDKL(µt ‖ π) ≤ − 2

CP
χ2(µt ‖ π) ≤ − 2

CP
DKL(µt ‖ π) ,

where, in the last inequality, we use the fact that DKL(· ‖ π) ≤ χ2(· ‖ π) (see [Tsy09, §2.4]). The
bound (6) follows by applying Grönwall’s inequality.

To prove (7), we use the stronger inequality DKL(· ‖ π) ≤ ln[1 + χ2(· ‖ π)] (see [Tsy09, §2.4]). Our
differential inequality now reads:

∂tDKL(µt ‖ π) ≤ − 2

CP

(
eDKL(µt‖π) − 1

)
⇐⇒ ∂tψ

(
DKL(µt ‖ π)

)
≤ − 2

CP
ψ
(
DKL(µt ‖ π)

)
,

5



where ψ(x) = 1− e−x ≤ 1. Grönwall’s inequality now yields

ψ
(
DKL(µt ‖ π)

)
≤ e−

2t
CP ψ

(
DKL(µ0 ‖ π)

)
≤ e−

2t
CP .

Note that x ≤ 2ψ(x) whenever ψ(x) ≤ 1/e. Thus, if t ≥ CP/2, we get ψ
(
DKL(µt ‖ π)

)
≤ e−1 so

DKL(µt ‖ π) ≤ 2ψ
(
DKL(µt ‖ π)

)
≤ e−

2t
CP ,

which, together with (6), completes the proof of (7).

Remark 1. In [Che+20], it was observed that the chi-squared divergence decays exponentially fast
along the gradient flow (µt)t≥0 for the KL divergence, provided that π satisfies a Poincaré inequality.
This observation is made precise and more general in [MMS09] where it is noted that the gradient
flow of a functional U dissipates a different functional V at the same rate that the gradient flow of
V dissipates the functional U. A similar method is used to study the thin film equation in [CT02]
and [Car11, §5].

Since we are studying the gradient flow of the chi-squared divergence, it is natural to ask whether
CSF converges to π in chi-squared divergence as well. In the next results, we show quantitative decay
of the chi-squared divergence along the gradient flow under a Poincaré inequality (P), but we obtain
only a polynomial rate of decay. However, if we additionally assume either that π is log-concave or
that it satisfies a log-Sobolev inequality (LSI), then we obtain exponential decay of the chi-squared
divergence along CSF.
Theorem 2. Suppose that π satisfies a Poincaré inequality (P). Then, provided χ2(µ0 ‖ π) < ∞,
the law (µt)t≥0 of CSF satisfies

χ2(µt ‖ π) ≤ χ2(µ0 ‖ π) ∧
(9CP

8t

)2
.

If we further assume that π is log-concave, then

χ2(µt ‖ π) ≤ χ2(µ0 ‖ π) e
− t

2CP .

Proof. The proof is deferred to Appendix B.

Under the stronger assumption (LSI), we can show strong uniform ergodicity as in Theorem 1.
Theorem 3. Assume that π satisfies a log-Sobolev inequality (LSI). Let (µt)t≥0 denote the law of
CSF, and assume that χ2(µ0 ‖ π) <∞. Then, for all t ≥ 7CLSI,

χ2(µt ‖ π) ≤
(
χ2(µ0 ‖ π) ∧ 2

)
e
− t

9CLSI .

Proof. The proof is deferred to Appendix B.

Convergence in chi-squared divergence was studied in recent works such as [CLL19; VW19; Che+20].
From standard comparisons between information divergences (see [Tsy09, §2.4]), it implies conver-
gence in total variation distance, Hellinger distance, and KL divergence. Moreover, recent works
have shown that the Poincaré inequality (P) yields transportation-cost inequalities which bound the
2-Wasserstein distance by powers of the chi-squared divergence [Din15; Led18; Che+20; Liu20], so
we obtain convergence in the 2-Wasserstein distance as well. In particular, we mention that [Che+20]
uses the chi-squared gradient flow (CSF) to prove a transportation-cost inequality.

4 Laplacian Adjusted Wasserstein Gradient Descent (LAWGD)

While the previous section leads to a better understanding of the convergence properties of SVGD in
the case that Kπ is the identity operator, it is still unclear how to choose the kernel K to approach
this idealized setup. For SVGD with a general kernel K, the calculation rules of Section 2.1 together
with the method of the previous section yield the formula

∂tDKL(µt ‖ π) = −Eπ
〈
∇dµt

dπ
,Kπ∇

dµt
dπ

〉
,
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for the dissipation of the KL divergence along SVGD. From this, a natural way to proceed is to seek
an inequality of the form

Eπ〈f,Kπf〉 & Eπ[f2], for all locally Lipschitz f ∈ L2(π). (8)

Applying this inequality to each coordinate of∇(dµt/dπ) separately and using a Poincaré inequality
would then allow us to conclude as in the proof of Theorem 1. The inequality (8) can be interpreted
as a positive lower bound on the smallest eigenvalue of the operator Kπ. However, this approach is
doomed to fail; under mild conditions on the kernel K, it is a standard fact that the eigenvalues of Kπ
form a sequence converging to 0, so no such spectral gap can hold.2

This suggests that any approach which seeks to prove finite-time convergence results for SVGD in the
spirit of Theorem 1 must exploit finer properties of the eigenspaces of the operator Kπ. Motivated
by this observation, we develop a new algorithm called Laplacian Adjusted Wasserstein Gradient
Descent (LAWGD) in which the kernel K is chosen carefully so that Kπ = L −1 is the inverse of the
generator of the Langevin diffusion that has π as invariant measure.

More precisely, the starting point for our approach is the following integration-by-parts formula,
which is a crucial component of the theory of Markov semigroups [BGL14]:

Eπ〈∇f,∇g〉 = Eπ[fL g], for all locally Lipschitz f, g ∈ L2(π), (9)

where L := −∆ + 〈∇V,∇·〉. The operator L is the (negative) generator of the standard Langevin
diffusion with stationary distribution π [Pav14, §4.5]. We refer readers to Appendix A for background
on the spectral theory of L .

In order to use (9), we replace the vector field −Kπ∇(dµt/dπ) by the vector field −∇Kπ(dµt/dπ).
The new dynamics follow the evolution equation

∂tµt = div
(
µt∇Kπ

dµt
dπ

)
. (LAWGD)

The vector field in the above continuity equation may also be written

−∇Kπ
dµt
dπ

(x) = −
∫
∇1K(x, ·) dµt

dπ
dπ = −

∫
∇1K(x, ·) dµt.

Replacing µt by an empirical average over particles and discretizing the process in time, we again
obtain an implementable algorithm, which we give as Algorithm 1.

Algorithm 1 LAWGD
1: procedure LAWGD(KL , µ0)
2: draw N particles X [1]

0 , . . . , X
[N ]
0

i.i.d.∼ µ0

3: for t = 1, . . . , T − 1 do
4: for i = 1, . . . , N do
5: X

[i]
t+1 ← X

[i]
t − h

N

∑N
j=1∇1KL (X

[i]
t , X

[j]
t )

6: end for
7: end for
8: return X

[1]
T , . . . , X

[N ]
T

9: end procedure

A careful inspection of Algorithm 1 reveals that the update equation for the particles in Algorithm 1
does not involve the potential V directly, unlike the SVGD algorithm (5); thus, the kernel for LAWGD
must contain all the information about V .

Our choice for the kernel K is guided by the following observation (based on (9)):

∂tDKL(µt ‖ π) = −Eπ
〈
∇dµt

dπ
,∇Kπ

dµt
dπ

〉
= −Eπ

[dµt
dπ

LKπ
dµt
dπ

]
.

2It is enough that K is a symmetric kernel with K ∈ L2(π ⊗ π), and that π is not discrete (so that L2(π) is
infinite-dimensional); see [BGL14, Appendix A.6].
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As a result, we choose K to ensure that Kπ = L −1. This choice yields

∂tDKL(µt ‖ π) = −Eπ
[(dµt

dπ
− 1
)2]

= −χ2(µt ‖ π). (10)

It remains to see which kernel K implements Kπ = L −1. To that end, assume that L has a discrete
spectrum and let (λi, φi), i = 0, 1, 2, . . . be its eigenvalue-eigenfunction pairs where λjs are arranged
in nondecreasing order. Assume further that λ1 > 0 (which amounts to a Poincaré inequality; see
Appendix A) and define the following spectral kernel:

KL (x, y) =

∞∑
i=1

φi(x)φi(y)

λi
(11)

We now show that this choice of kernel endows LAWGD with a remarkable property: it converges
to the target distribution exponentially fast, with a rate which has no dependence on the Poincaré
constant. Moreover, akin to CSF—see (7)—it also also exhibit strong uniform ergodicity.
Theorem 4. Assume that L has a discrete spectrum and that π satisfies a Poincaré inequality (P)
with some finite constant. Let (µt)t≥0 be the law of LAWGD with the kernel described above. Then,

DKL(µt ‖ π) ≤
(
DKL(µ0 ‖ π) ∧ 2

)
e−t, ∀ t ≥ 1.

Proof. In light of (10), the proof is identical to that of Theorem 1.

The convergence rate in Theorem 4 has no dependence on the target measure. This scale-invariant
convergence also appears in [Che+20], where it is shown for the Newton-Langevin diffusion with a
strictly log-concave target measure π. In Theorem 4, we obtain similar guarantees under the much
weaker assumption of a Poincaré inequality; indeed, there are many examples of non-log-concave
distributions which satisfy a Poincaré inequality [VW19].

5 Experiments

5.0 2.5 0.0 2.5 5.0
0.0

0.1

0.2

0.3

0.4 LAWGD
Init.
True density

Figure 2: Samples from the
standard Gaussian distribution
generated by LAWGD, with
kernel approximated by Her-
mite polynomials. For details,
see Appendix C.

To implement Algorithm 1, we numerically approximate the ker-
nel K = KL given in (11). When π is the standard Gaus-
sian distribution on R, the eigendecomposition of the operator
L in (9) is known explicitly in terms of the Hermite polynomi-
als [BGL14, §2.7.1], and we approximate the kernel via a truncated
sum: K̂(x, y) =

∑k
i=1 λ

−1
i φi(x)φi(y) (Figure 2) involving the

smallest eigenvalues of L .

In the general case, we implement a basic finite difference (FD)
method to approximate the eigenvalues and eigenfunctions of L .
We obtain better numerical results by first transforming the oper-
ator L into the Schrödinger operator LS := −∆ + VS, where
VS := 1

4‖∇V ‖
2 − 1

2∆V . If φS is an eigenfunction of LS with
eigenvalue λ (normalized such that

∫
φ2S = 1), then φ := eV/2φS is

an eigenfunction of L also with eigenvalue λ (and normalized such
that

∫
φ2 dπ = 1); see [BGL14, §1.15.7].

On a grid of points (with spacing ε), if we replace the Laplacian with the FD operator ∆εf(x) :=
{f(x− ε) + f(x+ ε)− 2f(x)}/ε2 (in 1D), then the FD Schrödinger operator LS,ε := −∆ε + VS
can be represented as a sparse matrix, and its eigenvalues and (unit) eigenvectors are found with
standard linear algebra solvers.

When the potential V is known only up to an additive constant, then the approximate eigenfunctions
produced by this method are not normalized correctly; instead, they satisfy ‖φ‖L2(π) = C for some
constant C (which is the same for each eigenfunction). In turn, this causes the kernelK in LAWGD to
be off by a multiplicative constant. For implementation purposes, however, this constant is absorbed
in the step size of Algorithm 1. We also note that the eigenfunctions are differentiated using a FD
approximation.
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Figure 3: LAWGD and SVGD
run with constant step size for
a mixture of three Gaussians.
Both kernel density estimators
use the same bandwidth.

To demonstrate, we sample from a mixture of three Gaussians:
2
5N (−3, 1) + 1

5N (0, 1) + 2
5N (4, 2). We compare LAWGD with

SVGD using the RBF kernel and median-based bandwidth as
in [LW16]. We approximate the eigenfunctions and eigenvalues
using a finite difference scheme, on 256 grid points evenly spaced
between −14 and 14. Constant step sizes for LAWGD and SVGD
are tuned and the algorithms are run for 5000 iterations, and the
samples are initialized to be uniform on [1, 4]. The results are dis-
played in Figure 3. All 256 discrete eigenfunctions and eigenvalues
are used.

6 Open questions

We conclude this paper with some interesting open questions. The
introduction of the chi-squared divergence as an objective function
allows us to obtain both theoretical insights about SVGD and a new algorithm, LAWGD. This perspec-
tive opens the possibility of identifying other functionals defined over Wasserstein space and that yield
gradient flows which are amenable to mathematical analysis and efficient computation. Towards this
goal, an intriguing direction is to develop alternative methods, besides kernelization, which provide
effective implementations of Wasserstein gradient flows. Finally, we note that LAWGD provides a
hitherto unexplored connection between sampling and computing the spectral decomposition of the
Schrödinger operator, the latter of which has been intensively studied in numerical PDEs. We hope
our work further stimulates research at the intersection of these communities.

Broader impact

The sampling algorithms designed in this paper have the potential to improve a wide variety of
Bayesian methods and therefore have an indirect impact on various domains such as health and
medicine where such methods are pervasive. Sampling algorithms are also used for the generation of
automated spam messages, which have potentially negative effects on society. Since this paper is
primarily focused on theory, these questions are not addressed here.
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