
Thank you for the reviews of our paper. We appreciate that you like the simplicity of our approach and see its potential1

impact on the bandit community. We will revise the paper accordingly. Our rebuttal is below.2

Reviewer 13

The goal of our work was easy reproducibility and clearly showing the benefits of learning to explore over the state4

of the art. Therefore, we focus on non-contextual bandits, where the optimal policy (Gittins index) can be sometimes5

computed and Thompson sampling (TS) is the state of the art. We discuss a contextual extension in Section 8.6

Your main concern seems to be how the performance of GradBand depends on horizons n and batch sizes m. We7

observe empirically that doubling of n requires doubling of m, to get policies of a similar quality. The run time of8

GradBand is linear in n and m, and this currently limits what we can do. To show the robustness of our reported results,9

we decrease batch sizes up to m = 100 and increase horizons up to 5 fold.10

New horizon n n n n 2n 5n
Batch size m 100 200 500 1000 1000 1000
2 Bernoulli arms, n = 200 (Figure 2b) 4.85 ± 0.23 4.86 ± 0.23 4.75 ± 0.08 4.75 ± 0.05 5.93 ± 0.14 6.68 ± 0.18
10 Bernoulli arms, n = 1000 (Figure 2c) 27.36 ± 1.35 23.65 ± 0.96 23.29 ± 0.61 24.88 ± 0.76 30.97 ± 1.66 39.22 ± 2.75
10 beta arms, n = 1000 (Figure 2c) 15.75 ± 2.86 14.38 ± 1.99 10.68 ± 0.35 10.64 ± 0.25 14.05 ± 0.59 18.36 ± 1.02

The above results are for SoftElim and all problems in Figure 2. We observe that the regret increases as m decreases,11

since the gradients are more noisy. But even at m = 100, our policies outperform TS (Figure 2) and are computed 1012

times faster than in the paper. The policies for longer horizons also perform well and outperform TS.13

Feedback 1: See above.14

Feedback 2: Theorem 4 is an instance-dependent upper bound on the n-round regret of SoftElim. It is proved for15

θ = 8, which was obtained by tuning constants. An analogous bound, with worse constants, holds for any θ ∈ (1, 8].16

This can be seen in the proof in Appendix C, which only requires that γ = 1/θ ∈ [1/8, 1).17

Feedback 3: Existing variance minimizing techniques are hard to apply to our problem because 1) our state space, the18

space of all histories, is at least exponential in n; and 2) the shape of the value function, the future regret as a function19

of history, is unknown and likely hard to approximate. The baseline bSELF is an independent run of bandit policy θ on20

the same rewards. When the policy is conservative and over-explores, two of its independent runs are likely to have21

similar cumulative rewards, and thus bSELF is a good baseline. This is how we choose the initial θ in GradBand.22

Feedback 4: Conditioned on history Ht−1, Si,t is a constant independent of θ. Thus the proof is correct.23

Reviewer 224

The average case is not always limiting. For instance, a standard objective in recommender systems is to personalize25

well on average over users. When each user is viewed as a bandit and P is a distribution over them, we get our setting.26

Reviewer 327

We believe that the reviewer misunderstood our approach. We have two learning algorithms: the bandit policy (agent)28

in (1), which adapts to an unknown problem instance P ∼ P over n rounds; and a meta-learner GradBand, which29

optimizes the agent by gradient ascent in L iterations. The agent in (1) is a standard bandit policy, which a function of30

its history Ht−1 and parameters θ, and does not use rewards of non-pulled arms. In each iteration, GradBand runs the31

agent m times. In each run j ∈ [m], the agent is executed on rewards Y j ∈ [0, 1]K×n sampled by GradBand, for all K32

arms in n rounds in bandit instance P j ∼ P . The ability to sample Y j is a weaker assumption than knowing the prior33

P , as in Thompson sampling. In that case, the meta-learner could sample bandit instance P j ∼ P and then generate all34

its rewards over n rounds. The priors are common in practice and can be learned from historic data.35

Weaknesses 1 and 5: We optimize θ in a class of bandit policies parameterized by θ. In Sections 6.1 and 6.2, P is a36

distribution over two symmetric bandit instances. A single instance would be trivial, since then the optimal solution37

would be pulling a single arm, irrespective of the history. In Section 6.3, P is a distribution over bandit instances whose38

means are drawn independently from a beta prior. That is, there are uncountably many instances.39

Weakness 2: We assume independence of rewards over round t ∈ [n], as in stochastic bandits.40

Weakness 3: See the first paragraph.41

Weakness 4: GradBand is an offline algorithm that optimizes the Bayes reward, which a function of θ. It does not have42

regret. Does it have any guarantee on optimizing θ? In simple policy classes (Theorem 1), where the Bayes reward is43

concave in θ, GradBand has the same guarantees as gradient ascent and converges to θ∗. In general, the Bayes reward44

is non-concave in θ and only good empirical performance can be established. The regret in experiments is measured on45

m sampled bandit instances that are independent of those used in optimization by GradBand. So no cheating.46


