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Abstract

A convolutional neural network strongly robust to adversarial perturbations at
reasonable computational and performance cost has not yet been demonstrated.
The primate visual ventral stream seems to be robust to small perturbations in
visual stimuli but the underlying mechanisms that give rise to this robust perception
are not understood. In this work, we investigate the role of two biologically
plausible mechanisms in adversarial robustness. We demonstrate that the non-
uniform sampling performed by the primate retina and the presence of multiple
receptive fields with a range of receptive field sizes at each eccentricity improve
the robustness of neural networks to small adversarial perturbations. We verify
that these two mechanisms do not suffer from gradient obfuscation and study their
contribution to adversarial robustness through ablation studies.

1 Introduction

While modern convolutional neural networks (CNNs) have demonstrated remarkable performance
in visual recognition, they still lag severely behind human vision on several tasks. Notably, despite
intense effort in recent years, these models remain vulnerable to adversarial perturbations [1], even
on standard datasets (e.g. ImageNet). In contrast, human vision appears to be particularly robust to
small perturbations in visual stimuli.

Simultaneously, an increasing body of computational and experimental work demonstrates the
suitability of these artificial neural networks (ANNs) as models of the primate brain’s ventral visual
stream [2, 3, 4, 5]. This suggests an opportunity to investigate if aspects of biological vision, that
are not yet incorporated into current computer vision models, improve adversarial robustness. If
the approach is successful, it will improve the robustness of engineered models and provide strong
support for ANNs being good models of primate vision. If the proposed approach does not find any
way to modify the existing models to reach human-level robustness, it could demonstrate that the
broad family of feedforward deep networks should be rejected as models of primate vision.

Engineering Significance Robust real-world adversarial examples that fool models across a wide
range of views, angles and lighting have been demonstrated [6]. CNNs are increasingly being
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considered for use in safety critical applications (e.g. autonomous vehicles), thus the dramatic
sensitivity of state-of-the-art models to tiny perturbations in otherwise benign inputs has clear security
implications. Proposed methods for improving adversarial robustness have generally approached the
problem from either a prevention or detection perspective. Some of the proposed mechanisms include
defensive distillation [7], feature squeezing [8], defensive randomization [9], adversarial training [10],
and several have drawn inspiration from biological vision [11, 12]. Faithfully evaluating adversarial
robustness has proven to be non-trivial [13, 14, 15], with many proposed methods eventually being
shown to be ineffective at making models robust [16, 13, 17, 18]. Adversarial training remains the
most promising at increasing the robustness of models. However adversarial training comes with
several downsides, ranging from significantly increased computational cost, to preferential robustness
against adversarial attacks that the model was trained on [17], to decreased standard accuracy [19]
and ineffectiveness at improving robustness on examples in the low density regions of the training
data distribution [20]. Mechanisms that help bring the models closer to human-level robustness
and alleviate this tension between performance and security would have broad implications for the
application of these networks.

The learning of feature representations that are particularly well suited to visual recognition tasks
is a key characteristic of CNNs that has led to their widespread use. However, the features learned
by current models that perform well in standard datasets can vary significantly from features that
are meaningful to humans [21]. Recent studies have demonstrated that the quality of these learnt
representations are improved in adversarially robust models. In particular, many aspects of feature
visualization and manipulation were better aligned with our notion of visual perception in robust
models [22, 23]. This suggests that adversarial robustness holds intrinsic value, beyond security
implications and potentially even at the cost of standard accuracy, as a prior for helping models learn
representations that are more human meaningful and interpretable.

Biological Significance Recent studies have argued that ANNs are suitable models of biological
vision due to the similarity between internal representations in CNNs and in the primate brain [2, 4, 3].
In this paper, we explore two biological mechanisms that are not captured in current deep learning
models of vision.

The uneven distribution of cones in the primate retina results in non-uniform spatial sampling of visual
stimuli. The density of sampling is highest at a fixation point on an image and decreases with distance
from the fixation point. In contrast, standard CNNs accept images sampled in a uniform square grid.
Previous studies have demonstrated that incorporating the non-uniform sampling performed by the
primate retina into standard networks improves predictivity of neural sites in the primate V4 cortical
area, allows for better neural population control via controller images [3] and helps in generating
adversarial examples that impact the accuracy of time-limited humans [24]. The first mechanism that
we investigate incorporates information across multiple retinal fixation points.

The receptive field size along the primate visual stream increases with eccentricity [25, 26, 27]. From
a sampling perspective, this translates to several scale-space image fragments centered on a fixation
point in an image. Previous studies have argued for and demonstrated the computational role of
pooling over the scale-space fragments in invariant visual recognition [28]. This second “multiple
scales” mechanism allows for translation, scale and clutter invariance to be incorporated into neural
networks [29, 30, 31], with much lower sample complexity than standard data augmentation methods.
We investigate incorporating information across multiple "cortical fixations".

Contributions We demonstrate that two mechanisms inherent to primate vision (the “proposed
mechanisms”) consistently improve the adversarial robustness of neural networks to small adversarial
perturbations across a range of PGD variants, hyperparameters and adversarial criteria (by about 0%
to 30% for ε ≤ 0.02). One of the mechanisms (retinal fixations) improves robustness at almost no
cost to standard performance (+1.62% on ImageNet). Through ablation studies, we also identified the
key features of each mechanism that contribute to robustness. Our results suggest that biologically
inspired mechanisms are promising candidates for improving robustness of standard neural networks.
It also probes more broadly and provides support for the hypothesis that ANNs are good models of
biological vision.
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Figure 1: Left Top: Distributions of sampling points for 5 different retinal fixations. Red dots
represent pixels that would be sampled from the original standard image to form the retina sampled
image. Left Bottom: Effect of retinal sampling on an image of a flat checkerboard. Images presented
were re-sampled at 5 different fixation points. Right Top: Shown in red, the centering of scale-space
fragments on 5 different cortical fixations on the image. Right Bottom: The resulting 4 scale-space
fragments from 1 fixation point. For a single fixation point, the 4 scale-space fragments result from
crops of varying sizes but are all Gaussian downsampled to the size of the smallest.
2 Methods

Datasets The experiments were spread across 4 datasets. CIFAR10 is a small, standard dataset
[32] and was used to benchmark results against other published results on adversarial robustness.
The proposed mechanisms excel with images of much higher resolution. The majority of the
experiments in this work were thus carried out on ImageNet10 and some experiments were repeated
on ImageNet100 and ImageNet to study the scalability of the proposed mechanisms.

The ImageNet dataset [33] offers high resolution images split into 1000 classes that span a range
of breadth (e.g. airliner, strawberry, etc.) and depth (e.g. mud turtle, leatherback turtle, etc.). 10
classes were hand picked to construct the ImageNet10 dataset. The classes were chosen to be visually
distinct and of natural objects (e.g. pandas, snakes, etc.). To construct the ImageNet100 dataset,
100 classes were randomly chosen. Images in the ImageNet dataset are of varying dimensions. To
standardize, all images in the ImageNet10, ImageNet100 and ImageNet datasets were formed only
from the central 320x320 regions of the original images. For the full ImageNet dataset, in the interest
of keeping the compute time for experiments reasonable, models were trained on the full training set
but robustness evaluations were carried out on a test set downsampled to 5 images per class (totalling
5000 images for the 1000 classes). See Section 1 in the supplementary material for the preprocessing
steps and the list of ImageNet classes comprising the ImageNet10 and ImageNet100 datasets.

Biologically Inspired Mechanisms The first mechanism is the non-uniform spatial sampling of
visual stimuli by the photoreceptors. In the primate retina, the density of cones is maximum at
the center of the fovea and decreases with eccentricity. The maximum density corresponds to a
sampling distance of about 27 seconds of arc between adjacent cones, which corresponds almost
exactly to the Shannon sampling limit imposed by the diffraction limited optics with a cutoff around
60 cycles/degree. The implementation for retinal sampling was adapted from [3] where it was tuned
to mimic the exponentially decreasing density of cones with eccentricity. In [3], g is defined as
a function that maps points from the re-sampled image (r′) to the original image (r). As part of
the transformation, the pixel coordinates in the image grid (x, y) were mapped to polar (r, θ). To
work with arbitrary fixation points, we re-centered this transform at a fixation point instead of at the
Cartesian origin. We present here a visualization of the distribution of the sampling points (Figure 1:
Top Left) and example retinal sampled images at 5 different fixation points (Figure 1: Bottom Left).
See Section 2.1 in the supplementary material for additional details.

The size of receptive fields also varies with eccentricity, presumably to avoid aliasing [25, 26, 27].
The second mechanism is that V1 neurons show a range of scales at each eccentricity [28]. The main
computational reason for this non-uniform sampling and the existence of a set of spatial scales is to
enable processing of images with translation invariance – small but growing with larger receptive
fields – and a large range of scale invariance. We assume here the estimate by [34] with 5 “frequency
channels” having in the fovea receptive field with a diameter of 2s = 1’20”, 3.1’, 6.2’, 11.7’, 21’,
covering a range of roughly 1 to 20. Following from previous studies [28, 29, 30], we implemented
the estimates for the set of scale-space fragments in V1 (i.e. the frequency channels estimated by
[34]) by taking multiple crops that are progressively larger and Gaussian downsampling them to the
dimensions of the smallest crop. We employed 4 scales of dimensions 40x40, 80x80, 160x160 and
240x240 that were all downsampled to 40x40 for ImageNet. For CIFAR10, we only employed 2
scales (15x15 and 30x30 that were both downsampled to 15x15) because of the significantly lower
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Figure 2: Model A (baseline): standard CNN. Model B (baseline): “coarse fixations”. Model C
(effect): “retinal fixations”. Model D (effect): “cortical fixations”. Red marks on images in second
row indicate approximate action of mechanisms centered on a fixation point. 2 fixation points
visualized for Models B and C, 1 fixation point visualized for model D.

resolution of images in the dataset (32x32 in CIFAR10 vs 320x320 for ImageNet). We present here
a visualization of the centering of the scale-space fragments at various fixation points in an image
(Figure 1: Top Right) and the resulting scales from one of the fixation points (Figure 1: Bottom
Right). See Section 2.2 in the supplementary material for additional details.

When making a prediction for a given fixation point, models incorporating cortical sampling have
to incorporate information across the different scales. Each scale is fed to a separate CNN which
does not end with a dense layer. We concatenate the final latent vector from each branch, and this
concatenated representation is then passed through a single dense layer for classification. During
training time, we used an auxiliary loss to ensure that each branch was also predictive of the label on
its own. See Sections 5.11 - 5.13 in the supplementary material for results from some preliminary
experiments with alternate concatenation mechanisms (e.g. max, average pooling across scales, etc.).

Models Models for the CIFAR10 and ImageNet datasets were based off the standard CIFAR ResNet-
20 and ImageNet ResNet-18 architectures [35].

We used a standard model and a “coarse fixations” model as baselines (Model A and Model B in
Figure 2). The coarse fixations model approximates crudely the effect of fixations by applying a
standard network to different image regions. This is effectively the same as standard 10-crop testing
in [35] without image flipping.

The “retinal fixations” model applies a standard network to an image that is non-uniformly sampled
as previously described (Model C in Figure 2). In the “cortical fixations” model, the standard ResNet
architecture is split over multiple branches that process the scales at each eccentricity independently.
The number of filters for each branch were chosen such that the total compute cost of a forward pass
of all the branches costs about the same as a standard ResNet. The striding in early layers of the
ResNet architecture was adjusted to account for the small dimensions of each scale-space fragment.
We used an auxiliary loss during training to encourage information across all the scales to contribute
to the model prediction (Model D in Figure 2).

During evaluation time, information was incorporated across fixations by averaging the model logits
from 5 fixation points for each mechanism (top left, top right, bottom left, bottom right, middle).

Training The models for coarse, retinal and cortical fixations depend on a fixation point on the image
to center the mechanism on. During training, a fixation point is randomly sampled from the valid set
of fixations for the mechanism. This is in contrast to behavior at evaluation time, when information
across fixations is incorporated by averaging model logits over 5 pre-determined fixation points for
each mechanism. See Section 3 in the supplementary material for the valid and chosen fixations
for each mechanism. Image augmentation was standardized across all models and datasets (random
crops and random left/right flips). No color augmentation was used.
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Models for CIFAR10 and ImageNet10 were both trained with an ADAM optimizer with β1 = 0.9,
β2 = 0.999 and an initial learning rate of 0.001. CIFAR10 Models were trained for 200 epochs with
a batch size of 180 and a fixed learning schedule (decay from initial by 0.1, 0.01, 0.001, 0.0005 at
epoch 80, 120, 160, 180). Models for ImageNet10 were trained for 400 epochs with a batch size of
64 and a fixed learning schedule (decay from initial by 0.1, 0.01, 0.001, 0.0005 at epoch 160, 240,
320, 360). Models for ImageNet100 and Imagenet used an SGD optimizer with weight decay of
0.0001, momentum 0.9, initial learning rate of 0.1, and a batch size 256. Models for ImageNet100
were trained for 130 epochs with a fixed learning schedule (decay from initial by 0.1, 0.01, 0.001,
0.0005 at epoch 30, 70, 90, 120). Models for ImageNet were trained for 90 epochs with a fixed
learning schedule (decay from initial by 0.1, 0.01, 0.001 at epoch 30, 60, 80).

Adversarial Robustness We followed previously proposed guidelines [13, 14, 15] when evaluating
robustness. The adversarial attacks used were as implemented in the Python package Foolbox [36].

Projected Gradient Descent (PGD) [37] was motivated by previous works as a universal first order
adversary that provides a suitable security guarantee against first-order attacks [10, 38]. In this work,
the adversarial robustness of the proposed mechanisms was investigated primarily with PGD. PGD
(L∞ variant) prescribes the generation of adversarial examples with the following iterative scheme:

xadv,i = CLIPx,ε(xi−1 + λSIGN(∇xL(...))), xadv,0 = xoriginal

where i is the count of iterations, CLIP is an operation that clips x back to the permissible set, λ is
the step size and ∇xL(...) is the gradient of the relevant loss function for the attack. The gradient
was always fully propagated through the proposed mechanisms.

When setting a maximum perturbation size ε with PGD, we need to choose a distance metric. Various
Lp norms of the distance from the adversarial image to the original image are usually employed,
|xadv − xoriginal|p, where typically p = 2 or p = ∞ [16]. The usual distance metrics are not
necessarily well aligned with human perceived similarity. There is ongoing work in that area that
would be interesting to consider in the future [39]. We mostly used L∞ PGD and L2 PGD in our
experiments, but also checked robustness to L1 PGD and the fast gradient sign method (FGSM) [36].

We evaluated the robustness of the models by studying how the accuracy varied as ε, the maximum
perturbation size, was increased. We calculate the accuracy as 1 - ((num. naturally misclassified +
num. adversarial examples) / num. images in test set). Whether an image is naturally misclassified
was always determined by whether the true class was the most likely class predicted by the model,
regardless of the adversarial criteria. Adversarial attacks were then only run against images that
were not naturally misclassified. In most of the experiments, we set the step size λ to ε/3 and ran 5
iterations. This allows PGD to reach the edge of the permissible set and explore the boundary while
keeping compute time for the experiments reasonable. We also conducted some experiments with 20
to 1000 iterations, step sizes λ of ε/20 to ε/3, tried setting λ dynamically with an ADAM optimizer,
etc. See Section 4 and 5.1 in the supplementary material for additional details.

3 Results

We compared the test classification error to study standard performance. We refer to the performance
of the models on the unperturbed natural test sets as the standard performance. The coarse fixations
model generally outperformed the standard ResNet models, which is in line with previous studies [35].
The coarse fixations model underperformed on CIFAR10 likely due to the small size of images. The

Table 1: Standard TOP-1 performance of baselines and proposed models on various datasets.

MODEL CIFAR10 IMAGENET10 IMAGENET100 IMAGENET

STANDARD RESNET 88.13% 89.4% 76.80% 59.46%
COARSE FIXATIONS 87.70% 91.2% 78.42% 61.28%
RETINAL FIXATIONS 88.88% 90.2% 78.22% 62.90%
CORTICAL FIXATIONS 85.16% 88.6% 73.62% 56.32%

retinal fixations model performed about as well as the best baseline model (worse by only 0.2% on
ImageNet100 and better by 1.62% on ImageNet) but the cortical fixations model decreased standard
performance (underperforms by 4.96% on ImageNet). The relative performance of the models was
fairly consistent across datasets. The performance penalties for the cortical fixations model were
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Figure 3: Robustness of the models on various datasets with increasing PGD perturbation budget.
Top Row: robustness to 5-step L∞ PGD standard adversarial examples. Bottom Left: robustness
to strongly misclassified adversarial examples, Bottom Middle: robustness to 20-step PGD, Bottom
Right: robustness to L2 PGD.

likely still less than for adversarial training. For example, L∞ PGD adversarial training on CIFAR10
decreases standard performance by about 7.9% [10].

3.1 Adversarial Robustness

The adversarial robustness of the proposed mechanisms was evaluated by studying the change in
accuracy of the models with increasing perturbation budget. The experiments span a range of PGD
variants, hyperparameters and adversarial criteria (Figures 3, 4).

The biologically inspired mechanisms consistently improved adversarial robustness to small perturba-
tions across almost all experiments on all datasets (see Figure 4). The extent of improvement varied
depending on the attack variants, hyperparameters and the dataset used. The retinal fixations and
cortical fixations models improved robustness to about the same extent, with the best model varying
across experiments. At larger perturbations, the mechanisms did not significantly impact robustness.
See Section 5.9, 5.10 in the supplementary material for a preliminary inspection of the quality and
visibility of the adversarial perturbations.

For small perturbations on ImageNet10, we observed a greater improvement in accuracy for the
proposed models from the best baseline when using PGD as opposed to FGSM. This suggests that
the mechanisms are effective at improving robustness, with the retinal and cortical fixations models
performing proportionately better against stronger attacks that more thoroughly probe the robustness.
The improvement in accuracy was relatively unchanged when increasing the number of iterations
of PGD from 5 to 20 with step size λ of 0.1 or 0.025. In general, the proposed models showed
greater improvement in accuracy under L∞ PGD versus L2 PGD, with the least improvement with
L1 PGD. Further studies could be conducted on variations in improvement with attack variants and
hyperparameters to better understand the contribution of the mechanisms to adversarial robustness.
See sections 5.2 - 5.8, 5.11 - 5.14 in the supplementary material for additional details.
Confident Misclassifications On ImageNet10, the robustness to standard misclassifications (true
class not the most likely predicted class) was compared to the robustness to confident misclassifica-
tions (true class not in top 3 for untargeted attacks and adversarial class predicted with probability
>80% for targeted attacks). Generally, the proposed mechanisms were more robust to confident
mistakes than standard mistakes for untargeted attacks. The robustness to confident and standard
mistakes for targeted attacks was about the same.

In a targeted setting, the loss used for PGD pushes towards a confident misclassification (objective
is to increase probability of adversarial class) whereas in an untargeted setting, the loss does not
explicitly push towards confident misclassifications (objective is to minimize true class, this can be
accomplished either by increase probability of only 1 or any number of other classes). This suggests
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Figure 4: Improvement in accuracy of proposed models from the best baseline at small ε. Each dot
represents a different attack configuration. Top row: ImageNet10. Bottom row: ImageNet100.

that the proposed models improve robustness to confident misclassifications as confident mistakes
were less likely to occur unless they were explicitly optimized for.

Adversarial Training On CIFAR10, the robustness of the models was benchmarked against an
adversarially trained model available online from a previous study [10]. The model uses a variant of
the standard ResNet architecture, w32-10 ResNet. We benchmarked the robustness of the models
with L∞ PGD, which is also the attack that was used for adversarial training (Figure 3).

The robustness of the retinal fixations and cortical fixations models was consistently better than the
baselines but worse than adversarial training. The accuracy of the models that were not adversarially
trained dips to approximately 0% for perturbations of size ε = 0.05 and higher. The proposed models
made far fewer confident misclassifications than the baselines, with the robustness of the proposed
models to confident misclassification at ε = 0.005 approaching adversarial training.

3.2 Ablation Experiments

We performed experiments with a series of ablated models to study the contribution of various aspects
of the proposed mechanisms to robustness. The experiments were conducted on ImageNet10 and
span a range of PGD variants, hyperparameters and adversarial criteria (Figure 5). All ablated models
employed a mechanism centered on fixations. As before, we incorporated information across fixations
at evaluation time by averaging the model logits from 5 pre-determined fixation points in the image.

Figure 5: Improvement in accuracy of ablated models over the best baseline model under L∞ PGD
with ε = 0.01. Each dot represents a different attack configuration/criteria.
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Retinal Ablation Non-uniform retinal sampling effectively sub-samples and up-samples the image.
The pixels that get sub-sampled and up-sampled are chosen based on their distance to a point of
fixation on the image. There are several factors that could potentially account for the improved
robustness of the retinal fixations model, such as the sub-sampling or the sub-sampling combined
with up-sampling or the non-uniformity of the sampling.

The retinal fixations model consistently outperformed the coarse fixations model in robustness tests.
This indicates that simply sub-sampling, or applying a network on different image regions, does not
improve robustness. We studied an ablated model that performs uniform sub-sampling (exactly as
the coarse fixations model) followed by up-sampling. This ablated model (“uniform resampling”
in Figure 5) consistently underperformed compared to the best baseline model. This indicates that
uniformly sub-sampling and up-sampling an image does not improve (actually worsens) robustness.

This leaves the non-uniformity of the sampling as the main contributing factor to improving robustness.
We speculate that the non-uniform sampling appropriately conditions the model to learn larger scale
features during the training process and that these features are more robust to adversarial perturbations.
This could be investigated further by studying the extent of robust versus non-robust features learnt
by the model as in [21].

Cortical Ablation The cortical fixations model breaks an image into multiple scale-space fragments
centered on a given fixation point. These fragments are constructed with a uniform square crop of
increasing size followed by a Gaussian downsample of all fragments to the dimensions of the smallest
fragment. The fragments are then fed through separate branches of a network and the linear classifier
at the end of the network uses information from all branches. Potential factors contributing to the
improved robustness include Gaussian blurs on sub-samples of the image, Gaussian downsampling
on sub-samples of the image, classifying with a fixed computational budget distributed over separate
branches of a network that combine their output, or a combination of the factors.

Classifying with a branched network (“ensembling” ablated model in Figure 5) worsened or at best
did not change the robustness of the models. The “Gaussian blur” ablated model performs the
sub-sampling exactly as the coarse fixations model, but applies a Gaussian blur on the images. This
ablated model was more robust than the baselines but only to a small extent. It has been noticed
previously that denoising operations (e.g. Gaussian blur) contribute to adversarial robustness [40, 41].

The “Gaussian downsample” ablated model is effectively the branch of the cortical fixations model
that corresponds to the largest receptive field size. It performs sub-sampling similar to the coarse
fixations model and applies a Gaussian downsample. This ablated model was more robust than the
baselines but less robust than the cortical fixations model. This suggests that increasing reliance on
large scale features in an image for classification partially contributed to the improved robustness of
the cortical fixations models.

This leaves the ensembling across different scale-space fragments as the remaining contributing factor
to the robustness of the cortical fixations model. It is possible that the fragments are sufficiently
de-correlated to make ensembling effective, unlike in the case of the “ensembling” ablated model.
We tried several versions of the cortical fixations model that incorporated information across the
different scale-space fragments in various ways (see Section 5.12 in supplementary material). Some
methods (e.g. pooling across branches) outperformed the current cortical fixations model in several
experiments. This suggests that issues remain with properly incorporating features across the scale-
space fragments in the cortical fixations model.

3.3 Gradient Obfuscation And Other Control Experiments

A common pitfall when evaluating adversarial robustness is gradient obfuscation [13]. By masking
the gradient, models can appear to be robust under white-box attacks (e.g. PGD) which use the
gradient to construct an adversarial example. We verified that the proposed mechanisms did not suffer
from gradient obfuscation through previously suggested experiments [14]. Additionally, the measured
robustness of models to adversarial attacks can be sensitive to the choice of attack hyperparameters
such as the attack distance metric [17]. We compared the robustness of the models using a broad
set of attack hyperparameters and also verified that our attacks had sufficiently converged [14]. See
Sections 5.2 - 5.8, 5.14 and 6 in the supplementary material for additional details.

0% Accuracy On Unbounded Attacks With an unbounded adversarial attack, the accuracy of
all models should always drop to 0. This is for the simple reason that an unbounded adversarial
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perturbation can transform any image to any other image. Therefore, if the gradient information used
in PGD is useful in constructing an adversarial example, the accuracy of any model should always be
brought to 0. We observed this repeatedly when studying the accuracy of the models with increasing
PGD perturbation budget. For example, the accuracy of all models drops to 0% for ε = 0.5 under
5-step L∞ PGD on ImageNet10 (Figure 3).

Iterative Attacks Outperform Single-Step Attacks For models that do not suffer from obfuscated
gradients, taking multiple steps repeatedly in the direction of gradient ascent should be more useful
or at least as useful as taking a single step when generating adversarial examples [14]. We compared
the robustness of the models against FGSM, which is exactly equivalent to a 1-step L∞ PGD, and
against 5-step L∞ PGD for a range of ε from 0.001 to 0.5. The accuracy of the retinal fixations and
cortical fixations models under PGD was always strictly lower or the same as under FGSM. This
suggests that the models do not suffer from gradient obfuscation since PGD was more successful at
finding adversarial examples. See Section 6.2 in the supplementary material for additional details.

White-Box Attacks Outperform Black-Box Attacks The gradient propagated through the models
should be more useful for constructing adversarial examples than a crude approximation of the
gradient. We compared PGD, which uses the exact gradient to construct adversarial examples
(white-box attack), to three other attack algorithms that instead use a crude approximation of the
gradient (black-box attacks). We constructed adversarial examples using a standard ResNet model as
a substitute for the retinal fixations model and cortical fixations model (transfer attack). The examples
generated with transfer attack heavily underperformed compared to PGD. In further experiments,
PGD also outperformed boundary-attack [42] and backward pass differentiable approximation [13].
See Sections 6.3 in the supplementary material for additional details.

Attack Hyperparameters The measured robustness of models can be sensitive to the attack con-
figuration used for evaluation [14]. For example, see [17]’s critique of [10] under L0 or L2 PGD.
We studied the improvement in robustness with the proposed mechanisms using a broad set of
hyperparameters. This set included various attack distance metrics (L1, L2, L∞), starting attacks
with a random offset from the natural images, dynamic attack step sizes (ADAM), etc. Models were
evaluated against each attack configuration using a range of ε from 0.001 to 0.5. Across almost all
experiments, the proposed mechanisms were more robust to small perturbations than the best baseline
model. See Sections 5.2 - 5.8 in the supplementary material for additional details.

Attack Convergence To keep the compute time reasonable, we used attacks with 5 or 20 steps in
most of our experiments with step sizes of ε/3 or ε/12. To show that the trends in robustness seen in
our experiments were representative of the general trend, we ran L∞ PGD for up to 1000 iterations
using a step size of ε/20 for a range of ε from 0.001 to 0.02. We demonstrated that despite greatly
increasing the number of steps and decreasing the step size, the drop in accuracy for all models was
minimal. This suggests that the attacks in our experiments with a smaller number of iterations and
larger step sizes were already sufficiently converged and strongly representative of the general trend.
See Section 5.6 in the supplementary material for additional details.

4 Conclusion

In this work, we showed that two key features of primate vision – foveation due to non-uniform
distribution of cones in the retina and multiscale filtering because of receptive fields of different
sizes in V1 at each eccentricity – consistently improve the robustness of neural networks to small
adversarial perturbations. These mechanisms have negligible computational effect and one of them
(non-uniform sampling) improves robustness at almost no cost in recognition performance. However,
these mechanisms do not improve robustness to large perturbations. Preliminary inspection of the
adversarial examples leads us to speculate that the inability of human perception to notice that the
adversarial images are different from the normal ones breaks roughly around or above the transition
in our experiments from “small” to “large” perturbation. In that case, our results suggest that the
two mechanisms we identified may partially explain the robustness of primate vision to “small”
perturbations, while an additional, separate mechanism – akin to an anomaly detector – may detect
the presence of “large” perturbations.

In short, our results support the hypothesis that ANNs are suitable as core models of object recognition
in primates. They also imply that implementing more biologically inspired mechanisms is promising
for increasing adversarial robustness without forgoing standard performance.
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