
We thank all reviewers for their valuable feedback. We would like to first reiterate our main contribution of this paper,1

and then respond to the individual reviews.2

Main Contribution: The main focus of this paper is to gain fundamental understanding of reinforcement learning3

in the setting of two-player zero-sum games, and especially to investigate the fundamental question “what is the4

minimum amount of samples required for provable learning?”. Our results for the first time close this important open5

problem—i.e. the optimal sample complexity of learning Markov games—in all parameters except episode length. The6

sample complexities of our newly proposed algorithms also dramatically improve upon the existing ones (see Table 1).7

We believe our results make a significant contribution to the field of theoretical reinforcement learning.8

Reviewer #1. We thank reviewer 1 for the overall positive feedback. Due to the space limit of NeurIPS, we have to cut9

some explanations/intuitions and defer some to appendix. We will try to provide better explanations and rearrange the10

materials in the final version.11

Reviewer #2. 1. Memory complexity. The main focus of this paper is the sample efficiency to learning a Markov game12

(see the second paragraph of rebuttal). As a tradeoff for obtaining the near-optimal sample complexity, we agree our13

memory complexity is not completely intractable but still undesirable at the current stage. There are several possible14

algorithmic ideas that we believe may help improve this memory complexity (for instance, the low-switching idea in15

"Provably Efficient Q-Learning with Low Switching Cost" paper). Given the amount of results already contained in this16

paper, we leave memory efficiency for future work.17

2. Why there is no ’natural’ way to obtain a policy beside of performing this procedure. The most standard way we18

are aware of in the literature of MDP is to directly use the policies the algorithm used in the last episode (or a random19

episode) during the training process. In online algorithms such as our Nash Q-learning, those policies are guaranteed to20

perform well only against the Nash equilibrium, and not the best response (which is what we desire). Certified policy is21

one way we design to fix this problem, but may not be the only way or “necessary”. Whether there exists any alternative22

way remains open, and we believe it is an interesting direction to explore in the future.23

3. Why include algorithm 1. We include algorithm 1—Optimistic Nash Q-learning—because (1) Nash Q-learning24

(without optimism) itself is a well-known classical algorithm whose non-asymptotic theoretical guarantee remains25

absent. Therefore, analyzing a variant of Nash Q-learning may be of independent interest. (2) Algorithm 3 is built upon26

several algorithmic ideas behind Algorithm 1. They share many common traits, like incremental (model-free) update of27

value functions, and certified policy. Therefore, algorithm 1 serves as a warmup version to hopefully help the reader28

understand Algorithm 3, which is more sample efficient but also more involved.29

4. Why optimization problem of equation 9 is always feasible. Equation 9 is not an optimization problem, and we30

assume the reviewer actually means equation 8. As mentioned in line 397-399, Nash equilibrium (NE) is a special case31

of CCE. Since NE always exists, CCE always exists, i.e., the set of linear constraints are always feasible.32

5. Why best response of fixed µ can be non-Markovian? Only when µ is fixed and Markovian, minimizing over ν means33

solving an MDP. However, when µ is non-Markovian, the best response ν can be non-Markovian and dependent on34

the history. For example, if the max-player follow the strategy that chooses a random action in the first step, and then35

always pick the same action (same as the first one) in all later steps, the best response would not only depends on the36

current state, but also depends on the action of the max-player in the first step, thus non-Markovian.37

6. Definition of µ̂ and ν̂. This is defined in Algorithm 2 for Nash Q-learning and in Algorithm 4 for Nash V-learning.38

The "hat" version is the actual certified policy (which can be executed as in Algorithm 2 and 4).39

Reviewer #3. 1. A major drawback is that not a single empirical experiment is done. The main focus of this paper is40

theoretical, and we believe our theoretical contribution is significant (see the second paragraph of rebuttal). On one41

hand, we agree experiment/practical performance is important, and it is definitely worth further investigation. On the42

other hand, given the large amount of pure theoretical ML work without experiments published every year at ICML and43

NeurIPS, we hope our paper can be evaluated based on its theoretical significance.44

2. Intuitions behind the improvement. The short answer for the reason behind the improvement is that: Nash Q-learning45

is an online/incremental update algorithm, which avoids the complicated statistical dependency among the data as in46

previous algorithm [2], thus shaving off an S factor. This is also briefly explained in line 219-223. Nash V-learning47

deploys the idea of follow-the-regularized-leader per step, which provides regret guarantee regardless of the number of48

actions of the opponent, thus reducing the sample complexity from AB to A+B. This is also briefly explained in line49

239-243. We will add more explanations in the future version.50


