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Abstract

This paper considers the problem of designing optimal algorithms for reinforce-
ment learning in two-player zero-sum games. We focus on self-play algorithms
which learn the optimal policy by playing against itself without any direct super-
vision. In a tabular episodic Markov game with S states, A max-player actions
and B min-player actions, the best existing algorithm for finding an approximate
Nash equilibrium requires Õ(S2AB) steps of game playing, when only highlight-
ing the dependency on (S,A,B). In contrast, the best existing lower bound scales
as Ω(S(A + B)) and has a significant gap from the upper bound. This paper
closes this gap for the first time: we propose an optimistic variant of the Nash Q-
learning algorithm with sample complexity Õ(SAB), and a new Nash V-learning
algorithm with sample complexity Õ(S(A + B)). The latter result matches the
information-theoretic lower bound in all problem-dependent parameters except
for a polynomial factor of the length of each episode. In addition, we present a
computational hardness result for learning the best responses against a fixed op-
ponent in Markov games—a learning objective different from finding the Nash
equilibrium.

1 Introduction

A wide range of modern artificial intelligence challenges can be cast as a multi-agent reinforcement
learning (multi-agent RL) problem, in which more than one agent performs sequential decision
making in an interactive environment. Multi-agent RL has achieved significant recent success on
traditionally challenging tasks, for example in the game of GO [30, 31], Poker [6], real-time strategy
games [33, 22], decentralized controls or multiagent robotics systems [5], autonomous driving [27],
as well as complex social scenarios such as hide-and-seek [3]. In many scenarios, the learning agents
even outperform the best human experts .

Despite the great empirical success, a major bottleneck for many existing RL algorithms is that they
require a tremendous number of samples. For example, the biggest AlphaGo Zero model is trained
on tens of millions of games and took more than a month to train [31]. While requiring such amount
of samples may be acceptable in simulatable environments such as GO, it is not so in other sample-
expensive real world settings such as robotics and autonomous driving. It is thus important for us
to understand the sample complexity in RL—how can we design algorithms that find a near optimal
policy with a small number of samples, and what is the fundamental limit, i.e. the minimum number
of samples required for any algorithm to find a good policy.

Theoretical understandings on the sample complexity for multi-agent RL are rather limited, espe-
cially when compared with single-agent settings. The standard model for a single-agent setting is
an episodic Markov Decision Process (MDP) with S states, and A actions, and H steps per episode.
The best known algorithm can find an ε near-optimal policy in Θ̃(poly(H)SA/ε2) episodes, which
matches the lower bound up to a single H factor [1, 8]. In contrast, in multi-agent settings, the opti-
mal sample complexity remains open even in the basic setting of two-player tabular Markov games
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[28], where the agents are required to find the solutions of the games—the Nash equilibria. The best
known algorithm, VI-ULCB, finds an ε-approximate Nash equilibrium in Õ(poly(H)S2AB/ε2)
episodes [2], where B is the number of actions for the other player. The information theoretical
lower bound is Ω(poly(H)S(A + B)/ε2). Specifically, the number of episodes required for the
algorithm scales quadratically in both S and (A,B), and exhibits a gap from the linear dependency
in the lower bound. This motivates the following question:

Can we design algorithms with near-optimal sample complexity for learning Markov games?

In this paper, we present the first line of near-optimal algorithms for two-player Markov games
that match the aforementioned lower bound up to a poly(H) factor. This closes the open problem
for achieving the optimal sample complexity in all (S,A,B) dependency. Our algorithm learns by
playing against itself without requiring any direct supervision, and is thus a self-play algorithm.

1.1 Our contributions

• We propose an optimistic variant of Nash Q-learning [11], and prove that it achieves sample
complexity Õ(H5SAB/ε2) for finding an ε-approximate Nash equilibrium in two-player Markov
games (Section 3). Our algorithm builds optimistic upper and lower estimates of Q-values, and
computes the Coarse Correlated Equilibrium (CCE) over this pair of Q estimates as its execution
policies for both players.

• We design a new algorithm—Nash V-learning—for finding approximate Nash equilibria, and
show that it achieves sample complexity Õ(H6S(A + B)/ε2) (Section 4). This improves upon
Nash Q-learning in case min {A,B} > H . It is also the first result that matches the minimax
lower bound up to only a poly(H) factor. This algorithm builds optimistic upper and lower esti-
mates of V -values, and features a novel combination of Follow-the-Regularized-Leader (FTRL)
and standard Q-learning algorithm to determine its execution policies.

• Apart from finding Nash equilibria, we prove that learning the best responses of fixed opponents
in Markov games is as hard as learning parity with noise—a notoriously difficult problem that
is believed to be computationally hard (Section 5). As a corollary, this hardness result directly
implies that achieving sublinear regret against adversarial opponents in Markov games is also
computationally hard, a result that first appeared in [25]. This in turn rules out the possibility
of designing efficient algorithms for finding Nash equilibria by running no-regret algorithms for
each player separately.

In addition to above contributions, this paper also features a novel approach of extracting certi-
fied policies—from the estimates produced by reinforcement learning algorithms such as Nash Q-
learning and Nash V-learning—that are certified to have similar performance as Nash equilibrium
policies, even when facing against their best response (see Section 3 for more details). We believe
this technique could be of broader interest to the community.

1.2 Related Work

Markov games Markov games (or stochastic games) are proposed in the early 1950s [28]. They
are widely used to model multi-agent RL. Learning the Nash equilibria of Markov games has been
studied in classical work [18, 19, 11, 10], where the transition matrix and reward are assumed to be
known, or in the asymptotic setting where the number of data goes to infinity. These results do not
directly apply to the non-asymptotic setting where the transition and reward are unknown and only
a limited amount of data are available for estimating them.

A recent line of work tackles self-play algorithms for Markov games in the non-asymptotic setting
with strong reachability assumptions. Specifically, Wei et al. [35] assumes no matter what strategy
one agent sticks to, the other agent can always reach all states by playing a certain policy, and Jia
et al. [13], Sidford et al. [29] assume access to simulators (or generative models) that enable the
agent to directly sample transition and reward information for any state-action pair. These settings
ensure that all states can be reached directly, so no sophisticated exploration is not required.

Very recently, [2, 36] study learning Markov games without these reachability assumptions, where
exploration becomes essential. However, both results suffer from highly suboptimal sample com-
plexity. We compare them with our results in Table 1. The results of [36] also applies to the linear
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Table 1: Sample complexity (the required number of episodes) for algorithms to find ε-approximate
Nash equlibrium policies in zero-sum Markov games.

Algorithm Sample Complexity Runtime

VI-ULCB [2] Õ(H4S2AB/ε2) PPAD-complete

VI-explore [2] Õ(H5S2AB/ε2)

Polynomial
OMVI-SM [36] Õ(H4S3A3B3/ε2)

Optimistic Nash Q-learning Õ(H5SAB/ε2)

Optimistic Nash V-learning Õ(H6S(A+B)/ε2)

Lower Bound [14, 2] Ω(H3S(A+B)/ε2) -

function approximation setting. We remark that the R-max algorithm [4] does provide provable
guarantees for learning Markov game, even in the setting of playing against the adversarial oppo-
nent, but using a definition of regret that is weaker than the standard regret. Their result does not
imply any sample complexity result for finding Nash equilibrium policies.

Adversarial MDP Another line of related work focuses on provably efficient algorithms for ad-
versarial MDPs. Most work in this line considers the setting with adversarial rewards [38, 26, 15],
because adversarial MDP with changing dynamics is computationally hard even under full-
information feedback [37]. These results do not direcly imply provable self-play algorithms in our
setting, because the opponent in Markov games can affect both the reward and the transition.

Single-agent RL There is a rich literature on reinforcement learning in MDPs [see e.g. 12, 24,
1, 7, 32, 14]. MDP is a special case of Markov games, where only a single agent interacts with a
stochastic environment. For the tabular episodic setting with nonstationary dynamics and no simu-
lators, the best sample complexity achieved by existing model-based and model-free algorithms are
Õ(H3SA/ε2) [1] and Õ(H4SA/ε2) [14], respectively, where S is the number of states, A is the
number of actions, H is the length of each episode. Both of them (nearly) match the lower bound
Ω(H3SA/ε2) [12, 23, 14].

2 Preliminaries

We consider zero-sum Markov Games (MG) [28, 18], which are also known as stochastic games in
the literature. Zero-sum Markov games are generalization of standard Markov Decision Processes
(MDP) into the two-player setting, in which the max-player seeks to maximize the total return and
the min-player seeks to minimize the total return.

Formally, we denote a tabular episodic Markov game as MG(H,S,A,B,P, r), where H is the
number of steps in each episode, S is the set of states with |S| ≤ S, (A,B) are the sets of actions
of the max-player and the min-player respectively, P = {Ph}h∈[H] is a collection of transition
matrices, so that Ph(·|s, a, b) gives the distribution over states if action pair (a, b) is taken for state s
at step h, and r = {rh}h∈[H] is a collection of reward functions, and rh : S ×A×B → [0, 1] is the
deterministic reward function at step h. 1

In each episode of this MG, we start with a fixed initial state s1. Then, at each step h ∈ [H], both
players observe state sh ∈ S, and the max-player picks action ah ∈ A while the min-player picks
action bh ∈ B simultaneously. Both players observe the actions of the opponents, receive reward
rh(sh, ah, bh), and then the environment transitions to the next state sh+1 ∼ Ph(·|sh, ah, bh). The
episode ends when sH+1 is reached.

1We assume the rewards in [0, 1] for normalization. Our results directly generalize to randomized reward
functions, since learning the transition is more difficult than learning the reward.
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Markov policy, value function A Markov policy µ of the max-player is a collection of H func-
tions {µh : S → ∆A}h∈[H], which maps from a state to a distribution of actions. Here ∆A is the
probability simplex over action set A. Similarly, a policy ν of the min-player is a collection of H
functions {νh : S → ∆B}h∈[H]. We use the notation µh(a|s) and νh(b|s) to present the probability
of taking action a or b for state s at step h under Markov policy µ or ν respectively.

We use V µ,νh : S → R to denote the value function at step h under policy µ and ν, so that V µ,νh (s)
gives the expected cumulative rewards received under policy µ and ν, starting from s at step h:

V µ,νh (s) := Eµ,ν
[∑H

h′=h rh′(sh′ , ah′ , bh′)
∣∣∣ sh = s

]
. (1)

We also define Qµ,νh : S × A × B → R to denote Q-value function at step h so that Qµ,νh (s, a, b)
gives the cumulative rewards received under policy µ and ν, starting from (s, a, b) at step h:

Qµ,νh (s, a, b) := Eµ,ν
[∑H

h′=h rh′(sh′ , ah′ , bh′)
∣∣∣ sh = s, ah = a, bh = b

]
. (2)

For simplicity, we use notation of operator Ph so that [PhV ](s, a, b) := Es′∼Ph(·|s,a,b)V (s′) for any
value function V . We also use notation [DπQ](s) := E(a,b)∼π(·,·|s)Q(s, a, b) for any action-value
function Q. By definition of value functions, we have the Bellman equation

Qµ,νh (s, a, b) = (rh + PhV µ,νh+1)(s, a, b), V µ,νh (s) = (Dµh×νhQ
µ,ν
h )(s)

for all (s, a, b, h) ∈ S ×A× B × [H]. We define V µ,νH+1(s) = 0 for all s ∈ SH+1.

Best response and Nash equilibrium For any Markov policy of the max-player µ, there ex-
ists a best response of the min-player, which is a Markov policy ν†(µ) satisfying V µ,ν

†(µ)
h (s) =

infν V
µ,ν
h (s) for any (s, h) ∈ S × [H]. Here the infimum is taken over all possible policies which

are not necessarily Markovian (we will define later in this section). We define V µ,†h := V
µ,ν†(µ)
h . By

symmetry, we can also define µ†(ν) and V †,νh . It is further known (cf. [9]) that there exist Markov
policies µ?, ν? that are optimal against the best responses of the opponents, in the sense that

V µ
?,†

h (s) = supµ V
µ,†
h (s), V †,ν

?

h (s) = infν V
†,ν
h (s), for all (s, h).

We call these optimal strategies (µ?, ν?) the Nash equilibrium of the Markov game, which satisfies
the following minimax equation: 2

supµ infν V
µ,ν
h (s) = V µ

?,ν?

h (s) = infν supµ V
µ,ν
h (s).

Intuitively, a Nash equilibrium gives a solution in which no player has anything to gain by changing
only her own policy. We further abbreviate the values of Nash equilibrium V µ

?,ν?

h and Qµ
?,ν?

h as
V ?h and Q?h. We refer readers to Appendix A for Bellman optimality equations for values of best
responses or Nash equilibria.

General (non-Markovian) policy In certain situations, it is beneficial to consider general, history-
dependent policies that are not necessarily Markovian. A (general) policy µ of the max-player is a
set of H maps µ :=

{
µh : R × (S × A × B × R)h−1 × S → ∆A

}
h∈[H]

, from a random number
z ∈ R and a history of length h—say (s1, a1, b1, r1, · · · , sh), to a distribution over actions inA. By
symmetry, we can also define the (general) policy ν of the min-player, by replacing the action set A
in the definition by set B. The random number z is sampled from some underlying distribution D,
but may be shared among all steps h ∈ [H].

For a pair of general policy (µ, ν), we can still use the same definitions (1) to define their value
V µ,ν1 (s1) at step 1. We can also define the best response ν†(µ) of a general policy µ as the mini-

mizing policy so that V µ,†1 (s1) ≡ V
µ,ν†(µ)
1 (s1) = infν V

µ,ν
h (s1) at step 1. We remark that the best

response of a general policy is not necessarily Markovian.

2The minimax theorem here is different from the one for matrix games, i.e. maxφminψ φ
>Aψ =

minψmaxφ φ
>Aψ for any matrix A, since here V µ,νh (s) is in general not bilinear in µ, ν.
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Algorithm 1 Optimistic Nash Q-learning

1: Initialize: for any (s, a, b, h), Qh(s, a, b)← H , Q
h
(s, a, b)← 0, Nh(s, a, b)← 0,

πh(a, b|s)← 1/(AB).
2: for episode k = 1, . . . ,K do
3: receive s1.
4: for step h = 1, . . . ,H do
5: take action (ah, bh) ∼ πh(·, ·|sh).
6: observe reward rh(sh, ah, bh) and next state sh+1.
7: t = Nh(sh, ah, bh)← Nh(sh, ah, bh) + 1.
8: Qh(sh, ah, bh)← (1− αt)Qh(sh, ah, bh) + αt(rh(sh, ah, bh) + V h+1(sh+1) + βt)
9: Q

h
(sh, ah, bh)← (1− αt)Qh(sh, ah, bh) + αt(rh(sh, ah, bh) + V h+1(sh+1)− βt)

10: πh(·, ·|sh)← CCE(Qh(sh, ·, ·), Qh(sh, ·, ·))
11: V h(sh)← (Dπh

Qh)(sh); V h(sh)← (Dπh
Q
h
)(sh).

Learning Objective There are two possible learning objectives in the setting of Markov games.
The first one is to find the best response for a fixed opponent. Without loss of generality, we consider
the case where the learning agent is the max-player, and the min-player is the opponent.
Definition 1 (ε-approximate best response). For an opponent with an fixed unknown general policy
ν, a general policy µ̂ is the ε-approximate best response if V †,ν1 (s1)− V µ̂,ν1 (s1) ≤ ε.

The second goal is to find a Nash equilibrium of the Markov games. We measure the suboptimality
of any pair of general policies (µ̂, ν̂) using the gap between their performance and the performance
of the optimal strategy (i.e. Nash equilibrium) when playing against the best responses respectively:

V †,ν̂1 (s1)− V µ̂,†1 (s1) =
[
V †,ν̂1 (s1)− V ?1 (s1)

]
+
[
V ?1 (s1)− V µ̂,†1 (s1)

]
Definition 2 (ε-approximate Nash equilibrium). A pair of general policies (µ̂, ν̂) is an ε-
approximate Nash equilibrium, if V †,ν̂1 (s1)− V µ̂,†1 (s1) ≤ ε.

Loosely speaking, Nash equilibria can be viewed as “the best responses to the best responses”. In
most applications, they are the ultimate solutions to the games. In Section 3 and 4, we present sharp
guarantees for learning an approximate Nash equilibrium with near-optimal sample complexity.
However, rather surprisingly, learning a best response in the worst case is more challenging than
learning the Nash equilibrium. In Section 5, we present a computational hardness result for learning
an approximate best response.

3 Optimistic Nash Q-learning

In this section, we present our first algorithm Optimistic Nash Q-learning and its corresponding
theoretical guarantees.

Algorithm part I: learning values Our algorithm Optimistic Nash Q-learning (Algorithm 1) is
an optimistic variant of Nash Q-learning [11]. For each step in each episode, it (a) takes actions
according to the previously computed policy πh, and observes the reward and next state, (b) performs
incremental updates on Q-values, and (c) computes new greedy policies and updates V -values. Part
(a) is straightforward; we now focus on explaining part (b) and part (c).

In part (b), the incremental updates on Q-values (Line 8, 9) are almost the same as standard Q-
learning [34], except here we maintain two separate Q-values—Qh and Q

h
, as upper and lower

confidence versions respectively. We add and subtract a bonus term βt in the corresponding updates,
which depends on t = Nh(sh, ah, bh)—the number of times (sh, ah, bh) has been visited at step h.
We pick parameter αt and βt as follows for some large constant c , and log factors ι:

αt = (H + 1)/(H + t), βt = c
√
H3ι/t (3)

In part (c), our greedy policies are computed using a Coarse Correlated Equilibrium (CCE) subrou-
tine, which is first introduced by [36] to solve Markov games using value iteration algorithms. For
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Algorithm 2 Certified Policy µ̂ of Nash Q-learning

1: sample k ← Uniform([K]).
2: for step h = 1, . . . ,H do
3: observe sh, and take action ah ∼ µkh(·|sh).
4: observe bh, and set t← Nk

h (sh, ah, bh).
5: sample m ∈ [t] with P(m = i) = αit.
6: k ← kmh (sh, ah, bh)

any pair of matrices Q,Q ∈ [0, H]A×B , CCE(Q,Q) returns a distribution π ∈ ∆A×B such that

E(a,b)∼πQ(a, b) ≥max
a?

E(a,b)∼πQ(a?, b) (4)

E(a,b)∼πQ(a, b) ≤min
b?

E(a,b)∼πQ(a, b?)

It can be shown that a CCE always exists, and it can be computed by linear programming in poly-
nomial time (see Appendix B for more details).

Now we are ready to state an intermediate guarantee for optimistic Nash Q-learning. We assume
the algorithm has played the game for K episodes, and we use V k, Qk, Nk, πk to denote values,
visitation counts, and policies at the beginning of the k-th episode in Algorithm 1.

Lemma 3. For any p ∈ (0, 1], choose hyperparameters αt, βt as in (3) for a large absolute constant
c and ι = log(SABT/p). Then, with probability at least 1−p, Algorithm 1 has following guarantees

• V kh(s) ≥ V ?h (s) ≥ V kh(s) for all (s, h, k) ∈ S × [H]× [K].

• (1/K) ·
∑K
k=1(V

k

1 − V
k
1)(s1) ≤ O

(√
H5SABι/K

)
.

Lemma 3 makes two statements. First, it claims that the V
k

h(s) and V kh(s) computed in Algorithm 1
are indeed upper and lower bounds of the value of the Nash equilibrium. Second, Lemma 3 claims
that the averages of the upper bounds and the lower bounds are also very close to the value of Nash
equilibrium V ?1 (s1), where the gap decrease as 1/

√
K. This implies that in order to learn the value

V ?1 (s1) up to ε-accuracy, we only need O(H5SABι/ε2) episodes.

However, Lemma 3 has a significant drawback: it only guarantees the learning of the value of Nash
equilibrium. It does not imply that the policies (µk, νk) used in Algorithm 1 are close to the Nash
equilibrium, which requires the policies to have a near-optimal performance even against their best
responses. This is a major difference between Markov games and standard MDPs, and is the reason
why standard techniques from the MDP literature does not apply here. To resolve this problem, we
propose a novel way to extract a certified policy from the optimistic Nash Q-learning algorithm.

Algorithm part II: certified policies We describe our procedure of executing the certified policy
µ̂ of the max-player is described in Algorithm 2. Above, µkh, ν

k
h denote the marginal distributions

of πkh produced in Algorithm 1 over action set A,B respectively. We also introduce the following
quantities that directly induced by αt:

α0
t :=

∏t
j=1 (1− αj), αit := αi

∏t
j=i+1 (1− αj) (5)

whose properties are listed in the following Lemma 11. Especially,
∑t
i=1 α

i
t = 1, so {αit}ti=1

defines a distribution over [t]. We use kmh (s, a, b) to denote the index of the episode where (s, a, b)
is observed in step h for the m-th time. The certified policy ν̂ of the min-player is easily defined by
symmetry. We note that µ̂, ν̂ are clearly general policies, but they are no longer Markov policies.

The intuitive reason why such policy µ̂ defined in Algorithm 2 is certified by Nash Q-learning
algorithm, is because the update equation in line 8 of Algorithm 1 and equation (5) gives relation:

Q
k

h(s, a, b) = α0
tH +

∑t
i=1 α

i
t

[
rh(s, a, b) + V

kih(s,a,b)

h+1 (s
kih(s,a,b)
h+1 ) + βi

]
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Algorithm 3 Optimistic Nash V-learning (the max-player version)

1: Initialize: for any (s, a, b, h), V h(s)← H , Lh(s, a)← 0, Nh(s)← 0, µh(a|s)← 1/A.
2: for episode k = 1, . . . ,K do
3: receive s1.
4: for step h = 1, . . . ,H do
5: take action ah ∼ µh(·|sh), observe the action bh from opponent.
6: observe reward rh(sh, ah, bh) and next state sh+1.
7: t = Nh(sh)← Nh(sh) + 1.
8: V h(sh)← min{H, (1− αt)V h(sh) + αt(rh(sh, ah, bh) + V h+1(sh+1) + βt)}.
9: for all a ∈ A do

10: `h(sh, a)← [H − rh(sh, ah, bh)− V h+1(sh+1)]I{ah = a}/[µh(ah|sh) + ηt].
11: Lh(sh, a)← (1− αt)Lh(sh, a) + αt`h(sh, a).
12: set µh(·|sh) ∝ exp[−(ηt/αt)Lh(sh, ·)].

This certifies the good performance against the best responses if the max-player plays a mixture of
policies {µk

i
h(s,a,b)
h+1 }ti=1 at step h + 1 with mixing weights {αit}ti=1 (see Appendix C.2 for more

details). A recursion of this argument leads to the certified policy µ̂—a nested mixture of policies.

We now present our main result for Nash Q-learning, using the certified policies (µ̂, ν̂).
Theorem 4 (Sample Complexity of Nash Q-learning). For any p ∈ (0, 1], choose hyperparameters
αt, βt as in (3) for large absolute constant c and ι = log(SABT/p). Then, with probability at least
1− p, if we run Nash Q-learning (Algorithm 1) for K episodes where

K ≥ Ω
(
H5SABι/ε2

)
,

the certified policies (µ̂, ν̂) (Algorithm 2) will be ε-approximate Nash, i.e. V †,ν̂1 (s1)−V µ̂,†1 (s1) ≤ ε.

Theorem 4 asserts that if we run the optimistic Nash Q-learning algorithm for more than
O(H5SABι/ε2) episodes, the certified policies (µ̂, ν̂) extracted using Algorithm 2 will be ε-
approximate Nash equilibrium (Definition 2).

We make two remarks. First, the executions of the certified policies µ̂, ν̂ require the storage of {µkh}
and {νkh} for all k, h ∈ [H] × [K]. This makes the space complexity of our algorithm scales up
linearly in the total number of episodes K. Second, Q-learning style algorithms (especially online
updates) are crucial in our analysis for achieving sample complexity linear in S. They enjoy the
property that every sample is only been used once, on the value function that is independent of this
sample. In contrast, value iteration type algorithms do not enjoy such an independence property,
which is why the best existing sample complexity scales as S2 [2]. 3

4 Optimistic Nash V-learning

In this section, we present our new algorithm Optimistic Nash V-learning and its corresponding
theoretical guarantees. This algorithm improves over Nash Q-learning in sample complexity from
Õ(SAB) to Õ(S(A+B)), when only highlighting the dependency on S,A,B.

Algorithm description Nash V-learning combines the idea of Follow-The-Regularized-Leader
(FTRL) in the bandit literature with the Q-learning algorithm in reinforcement learning. This al-
gorithm does not require extra information exchange between players other than standard game
playing, thus can be ran separately by the two players. We describe the max-player version in Algo-
rithm 3. See Algorithm 7 in Appendix D for the min-player version, where V h, Lh, νh, η

t
and β

t
are defined symmetrically.

For each step in each episode, the algorithm (a) first takes action according to µh, observes the action
of the opponent, the reward, and the next state, (b) performs an incremental update on V , and (c)

3Despite [1] provides techniques to improve the sample complexity from S2 to S for value iteration in MDP,
the same techniques can not be applied to Markov games due to the unique challenge that, in Markov games,
we aim at finding policies that are good against their best responses.
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Algorithm 4 Certified Policy µ̂ of Nash V-learning

1: sample k ← Uniform([K]).
2: for step h = 1, . . . ,H do
3: observe sh, and set t← Nk

h (sh).
4: sample m ∈ [t] with P(m = i) = αit.
5: k ← kmh (sh).
6: take action ah ∼ µkh(·|sh).

updates policy µh. The first two parts are very similar to Nash Q-learning. In the third part, the agent
first computes `h(sh, ·) as the importance weighted estimator of the current loss. She then computes
the weighted cumulative loss Lh(sh, ·). Finally, the policy µh is updated using FTRL principle:

µh(·|sh)← argminµ∈∆A ηt〈Lh(sh, ·), µ〉+ αtKL(µ‖µ0)

Here µ0 is the uniform distribution over all actions A. Solving above minimization problem gives
the update equation as in Line 12 in Algorithm 3. In multi-arm bandit, FTRL can defend against
adversarial losses, with regret independent of the number of the opponent’s actions. This property
turns out to be crucial for Nash V-learning to achieve sharper sample complexity than Nash Q-
learning (see the analog of Lemma 3 in Lemma 15).

Similar to Nash Q-learning, we also propose a new algorithm (Algorithm 4) to extract a certified pol-
icy from the optimistic Nash V-learning algorithm. The certified policies are again non-Markovian.
We choose all hyperparameters as follows, for some large constant c , and log factors ι.

αt =
H + 1

H + t
, ηt =

√
logA

At
, η

t
=

√
logB

Bt
, βt = c

√
H4Aι

t
, β

t
= c

√
H4Bι

t
, (6)

We now present our main result on the sample complexity of Nash V-learning.

Theorem 5 (Sample Complexity of Nash V-learning). For any p ∈ (0, 1], choose hyperparameters
as in (6) for large absolute constant c and ι = log(SABT/p). Then, with probability at least 1− p,
if we run Nash V-learning (Algorithm 3 and 7) for K episodes with

K ≥ Ω
(
H6S(A+B)ι/ε2

)
,

its induced policies (µ̂, ν̂) (Algorithm 4) will be ε-approximate Nash, i.e. V †,ν̂1 (s1)− V µ̂,†1 (s1) ≤ ε.

Theorem 4 claims that if we run the optimistic Nash V-learning for more thanO(H6S(A+B)ι/ε2)
episodes, the certified policies (µ̂, ν̂) extracted from Algorithm 4 will be ε-approximate Nash (Defi-
nition 2). Nash V-learning is the first algorithm of which the sample complexity matches the infor-
mation theoretical lower bound Ω(H3S(A+B)/ε2) up to poly(H) factors and logarithmic terms.

5 Hardness for Learning the Best Response

In this section, we present a computational hardness result for computing the best response against
an opponent with a fixed unknown policy. We further show that this implies the computational
hardness result for achieving sublinear regret in Markov games when playing against adversarial
opponents, which rules out a popular approach to design algorithms for finding Nash equilibria.

We first remark that if the opponent is restricted to only play Markov policies, then learning the
best response is as easy as learning a optimal policy in the standard single-agent Markov decision
process, where efficient algorithms are known to exist. Nevertheless, when the opponent can as well
play any policy which may be non-Markovian, we show that finding the best response against those
policies is computationally challenging.

We say an algorithm is a polynomial time algorithm for learning the best response if for any policy
of the opponent ν, and for any ε > 0, the algorithm finds the ε-approximate best response of policy
ν (Definition 1) with probability at least 1/2, in time polynomial in S,H,A,B, ε−1.

We can show the following hardness result for finding the best response in polynomial time.
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Theorem 6 (Hardness for learning the best response). There exists a Markov game with determinis-
tic transitions and rewards defined for any horizon H ≥ 1 with S = 2, A = 2, and B = 2, such that
if there exists a polynomial time algorithm for learning the best response for this Markov game, then
there exists a polynomial time algorithm for learning parity with noise (see problem description in
Appendix E).

We remark that learning parity with noise is a notoriously difficult problem that has been used to
design efficient cryptographic schemes. It is conjectured by the community to be hard.
Conjecture 7 ([16]). There is no polynomial time algorithm for learning party with noise.

Theorem 6 with Conjecture 7 demonstrates the fundamental difficulty—if not strict impossibility—
of designing a polynomial time for learning the best responses in Markov games. The intuitive
reason for such computational hardness is that, while the underlying system has Markov transitions,
the opponent can play policies that encode long-term correlations with non-Markovian nature, such
as parity with noise, which makes it very challenging to find the best response. It is known that
learning many other sequential models with long-term correlations (such as hidden Markov models
or partially observable MDPs) is as hard as learning parity with noise [20].

5.1 Hardness for Playing Against Adversarial Opponent

Theorem 6 directly implies the difficulty for achieving sublinear regret in Markov games when
playing against adversarial opponents in Markov games. Our construction of hard instances in the
proof of Theorem 6 further allows the adversarial opponent to only play Markov policies in each
episode. Since playing against adversarial opponent is a different problem with independent interest,
we present the full result here.

Without loss of generality, we still consider the setting where the algorithm can only control the
max-player, while the min-player is an adversarial opponent. In the beginning of every episode
k, both players pick their own policies µk and νk, and execute them throughout the episode. The
adversarial opponent can possibly pick her policy νk adaptive to all the observations in the earlier
episodes.

We say an algorithm for the learner is a polynomial time no-regret algorithm if there exists a δ > 0
such that for any adversarial opponent, and any fixedK > 0, the algorithm outputs policies {µk}Kk=1
which satisfies the following, with probability at least 1/2, in time polynomial in S,H,A,B,K.

Regret(K) = sup
µ

K∑
k=1

V µ,ν
k

1 (s1)−
K∑
k=1

V µ
k,νk

1 (s1) ≤ poly(S,H,A,B)K1−δ (7)

Theorem 6 directly implies the following hardness result for achieving no-regret against adversarial
opponents, a result that first appeared in [25].
Corollary 8 (Hardness for playing against adversarial opponent). There exists a Markov game with
deterministic transitions and rewards defined for any horizon H ≥ 1 with S = 2, A = 2, and
B = 2, such that if there exists a polynomial time no-regret algorithm for this Markov game, then
there exists a polynomial time algorithm for learning parity with noise (see problem description in
Appendix E). The claim remains to hold even if we restrict the adversarial opponents in the Markov
game to be non-adaptive, and to only play Markov policies in each episode.

Similar to Theorem 6, Corollary 8 combined with Conjecture 7 demonstrates the fundamental diffi-
culty of designing a polynomial time no-regret algorithm against adversarial opponents for Markov
games.

Implications on algorithm design for finding Nash Equilibria Corollary 8 also rules out a nat-
ural approach for designing efficient algorithms for finding approximate Nash equilibrium through
combining two no-regret algorithms. In fact, it is not hard to see that if the min-player also runs
a non-regret algorithm, and obtain a regret bound symmetric to (7), then summing the two re-
gret bounds shows the mixture policies (µ̂, ν̂)—which assigns uniform mixing weights to policies
{µk}Kk=1 and {νk}Kk=1 respectively—is an approximate Nash equilibrium. Corollary 8 with Con-
jecture 7 claims that any algorithm designed using this approach is not a polynomial time algorithm.
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Broader Impact

As this is a theoretical contribution, we do not envision that our direct results will have a tangible
societal impact. Our broader line of inquiry could impact a line of thinking about how to design more
sample-efficient algorithms for multi-agent reinforcement learning, which could be useful towards
making artificial intelligence more resource and energy efficient.
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