
A Bellman Equations for Markov Games

In this section, we present the Bellman equations for different types of values in Markov games.

Fixed policies. For any pair of Markov policy (µ, ν), by definition of their values in (1) (2), we
have the following Bellman equations:

Qµ,νh (s, a, b) = (rh + PhV µ,νh+1)(s, a, b), V µ,νh (s) = (Dµh×νhQ
µ,ν
h)(s)

for all (s, a, b, h) ∈ S ×A× B × [H], where V µ,νH+1(s) = 0 for all s ∈ SH+1.

Best responses. For any Markov policy µ of the max-player, by definition, we have the following
Bellman equations for values of its best response:

Qµ,†h (s, a, b) = (rh + PhV µ,†h+1)(s, a, b), V µ,†h (s) = inf
ν∈∆B

(Dµh×νQ
µ,†
h)(s),

for all (s, a, b, h) ∈ S ×A× B × [H], where V µ,†H+1(s) = 0 for all s ∈ SH+1.

Similarly, for any Markov policy ν of the min-player, we also have the following symmetric version
of Bellman equations for values of its best response:

Q†,νh (s, a, b) = (rh + PhV †,νh+1)(s, a, b), V †,νh (s) = sup
µ∈∆A

(Dµ×νhQ
†,ν
h)(s).

for all (s, a, b, h) ∈ S ×A× B × [H], where V †,νH+1(s) = 0 for all s ∈ SH+1.

Nash equilibria. Finally, by definition of Nash equilibria in Markov games, we have the following
Bellman optimality equations:

Q?h(s, a, b) =(rh + PhV ?h+1)(s, a, b)

V ?h (s) = sup
µ∈∆A

inf
ν∈∆B

(Dµ×νQ?h)(s) = inf
ν∈∆B

sup
µ∈∆A

(Dµ×νQ?h)(s).

for all (s, a, b, h) ∈ S ×A× B × [H], where V ?H+1(s) = 0 for all s ∈ SH+1.

B Properties of Coarse Correlated Equilibrium

Recall the definition for CCE in our main paper (4), we restate it here after rescaling. For any pair of
matrix P,Q ∈ [0, 1]n×m, the subroutine CCE(P,Q) returns a distribution π ∈ ∆n×m that satisfies:

E(a,b)∼πP (a, b) ≥max
a?

E(a,b)∼πP (a?, b) (8)

E(a,b)∼πQ(a, b) ≤min
b?

E(a,b)∼πQ(a, b?)

We make three remarks on CCE. First, a CCE always exists since a Nash equilibrium for a general-
sum game with payoff matrices (P,Q) is also a CCE defined by (P,Q), and a Nash equilibrium
always exists. Second, a CCE can be efficiently computed, since above constraints (8) for CCE
can be rewritten as n + m linear constraints on π ∈ ∆n×m, which can be efficiently resolved by
standard linear programming algorithm. Third, a CCE in general-sum games needs not to be a Nash
equilibrium. However, a CCE in zero-sum games is guaranteed to be a Nash equalibrium.
Proposition 9. Let π = CCE(Q,Q), and (µ, ν) be the marginal distribution over both players’
actions induced by π. Then (µ, ν) is a Nash equilibrium for payoff matrix Q.

Proof of Proposition 9. Let N? be the value of Nash equilibrium for Q. Since π = CCE(Q,Q), by
definition, we have:

E(a,b)∼πQ(a, b) ≥max
a?

E(a,b)∼πQ(a?, b) = max
a?

Eb∼νQ(a?, b) ≥ N?

E(a,b)∼πQ(a, b) ≤min
b?

E(a,b)∼πQ(a, b?) = min
b?

Ea∼µQ(a, b?) ≤ N?

This gives:
max
a?

Eb∼νQ(a?, b) = min
b?

Ea∼µQ(a, b?) = N?

which finishes the proof.

13

Intuitively, a CCE procedure can be used in Nash Q-learning for finding an approximate Nash equi-
librium, because the values of upper confidence and lower confidence—Q and Q will be eventually
very close, so that the preconditions of Proposition 9 becomes approximately satisfied.

C Proof for Nash Q-learning

In this section, we present proofs for results in Section 3.

We denote V k, Qk, πk for values and policies at the beginning of the k-th episode. We also introduce
the following short-hand notation [P̂khV](s, a, b) := V (skh+1).

We will use the following notations several times later: suppose (s, a, b) was taken at the in episodes
k1, k2, . . . at the h-th step. Since the definition of ki depends on the tuple (s, a, b) and h, we will
show the dependence explicitly by writing kih(s, a, b) when necessary and omit it when there is no
confusion. We also define Nk

h (s, a, b) to be the number of times (s, a, b) has been taken at the
beginning of the k-th episode. Finally we denote nkh = Nk

h

(
skh, a

k
h, b

k
h

)
.

The following lemma is a simple consequence of the update rule in Algorithm 1, which will be used
several times later.

Lemma 10. Let t = Nk
h (s, a, b) and suppose (s, a, b) was previously taken at episodes k1, . . . , kt <

k at the h-th step. The update rule in Algorithm 1 is equivalent to the following equations.

Q
k

h(s, a, b) = α0
tH +

t∑
i=1

αit

[
rh(s, a, b) + V

ki

h+1(sk
i

h+1) + βi

]
(9)

Qk
h
(s, a, b) =

t∑
i=1

αit

[
rh(s, a, b) + V k

i

h+1(sk
i

h+1)− βi
]

(10)

C.1 Learning values

We begin an auxiliary lemma. Some of the analysis in this section is adapted from [14] which studies
Q-learning under the single agent MDP setting.

Lemma 11. ([14, Lemma 4.1]) The following properties hold for αit:

1. 1√
t
≤
∑t
i=1

αi
t√
i
≤ 2√

t
for every t ≥ 1.

2. maxi∈[t] α
i
t ≤ 2H

t and
∑t
i=1(αit)

2 ≤ 2H
t for every t ≥ 1.

3.
∑∞
t=i α

i
t = 1 + 1

H for every i ≥ 1.

We also define β̃t := 2
∑t
i=1 α

i
tβi ≤ O(

√
H3ι/t). Now we are ready to prove Lemma 3.

Proof of Lemma 3. We give the proof for one direction and the other direction is similar. For the
proof of the first claim, let t = Nk

h (s, a, b) and suppose (s, a, b) was previously taken at episodes
k1, . . . , kt < k at the h-th step. Let Fi be the σ-algebra generated by all the random variables in
until the ki-th episode. Then {αit[(P̂k

i

h − Ph)V ?h+1] (s, a, b)}ti=1 is a martingale differene sequence
w.r.t. the filtration {Fi}ti=1. By Azuma-Hoeffding,∣∣∣∣∣

t∑
i=1

αit

[(
P̂k

i

h − Ph
)
V ?h+1

]
(s, a, b)

∣∣∣∣∣ ≤ 2H

√√√√ t∑
i=1

(
αit
)2
ι ≤ β̃t

Here we prove a stronger version of the first claim by induction: for any (s, a, b, h, k) ∈ S × A ×
B × [H]× [K],

Q
k

h(s, a, b) ≥ Q?h(s, a, b) ≥ Qk
h
(s, a, b), V

k

h(s) ≥ V ?h (s) ≥ V kh(s).

14

Suppose the guarantee is true for h+ 1, then by the above concentration result,

(Q
k

h −Q?h)(s, a, b) ≥ α0
tH +

t∑
i=1

αit

(
V
ki

h+1 − V ?h+1

)(
sk

i

h+1

)
≥ 0.

Also,

V
k

h(s)− V ?h (s) =(Dπk
h
Q
k

h+1)(s)− max
µ∈∆A

min
ν∈∆B

(Dµ×νQ?h+1)(s)

≥ max
µ∈∆A

(Dµ×νk
h
Q
k

h)(s)− max
µ∈∆A

(Dµ×νk
h
Q?h)(s) ≥ 0

where Q
k

h(s, a, b) ≥ Q?h(s, a, b) has just been proved. The other direction is proved similarly.

Now we continue with the proof of the second claim. Let t = nkh and define δkh :=(
V
k

h − V
k
h

) (
skh
)
, then by definition

δkh =E(a,b)∼πk
h

(
Q
k

h −Q
k

h

) (
skh, a, b

)
=
(
Q
k

h −Q
k

h

) (
skh, a

k
h, b

k
h

)
+ ζkh

(i)
= α0

tH +

t∑
i=1

αitδ
kih(skh,a

k
h,b

k
h)

h+1 + 2β̃t + ζkh

where (i) is by taking the difference of equation (9) and equation (10) and

ζkh := E(a,b)∼πk
h

(
Q
k

h −Q
k

h

) (
skh, a, b

)
−
(
Q
k

h −Q
k

h

) (
skh, a

k
h, b

k
h

)
is a martingale difference sequence.

Taking the summation w.r.t. k, we begin with the first two terms,
K∑
k=1

α0
nk
h
H =

K∑
k=1

HI
{
nkh = 0

}
≤ SABH

K∑
k=1

nk
h∑

i=1

αink
h
δ
kih(skh,a

k
h,b

k
h)

h+1

(i)

≤
K∑
k′=1

δk
′

h+1

∞∑
i=nk′

h +1

α
nk′
h
i

(ii)

≤
(

1 +
1

H

) K∑
k=1

δkh+1.

where (i) is by changing the order of summation and (ii) is by Lemma 11.

Plugging them in,
K∑
k=1

δkh ≤ SABH +

(
1 +

1

H

) K∑
k=1

δkh+1 +

K∑
k=1

(
2β̃nk

h
+ ζkh

)
.

Recursing this argument for h ∈ [H] gives
K∑
k=1

δk1 ≤ eSABH2 + 2e

H∑
h=1

K∑
k=1

β̃nk
h

+

H∑
h=1

K∑
k=1

(1 + 1/H)h−1ζkh

By pigeonhole argument,

K∑
k=1

β̃nk
h
≤ O (1)

K∑
k=1

√
H3ι

nkh
= O (1)

∑
s,a,b

NK
h (s,a,b)∑
n=1

√
H3ι

n
≤ O

(√
H3SABKι

)
= O

(√
H2SABTι

)
By Azuma-Hoeffding,

H∑
h=1

K∑
k=1

(1 + 1/H)h−1ζkh ≤ e
√

2H3Kι = eH
√

2Tι

with high probability. The proof is completed by putting everything together.

15

C.2 Certified policies

Algorithm 1 only learns the value of game but itself cannot give a near optimal policy for each player.
In this section, we analyze the certified policy based on the above exploration process (Algorithm 2)
and prove the sample complexity guarantee. To this end, we need to first define a new group of
policies µ̂kh to facilitate the proof , and ν̂kh are defined similarly. Notice µ̂kh is related to µ̂ defined in
Algorithm 2 by µ̂ = 1

k

∑k
i=1 µ̂

i
1.

Algorithm 5 Policy µ̂kh
1: Initialize: k′ ← k.
2: for step h′ = h, h+ 1, . . . ,H do
3: Observe sh′ .
4: Sample ah′ ∼ µk

′

h (sh′).
5: Observe bh′ .
6: t← Nk′

h (sh′ , ah′ , bh′).
7: Sample i from [t] with P(i) = αit.
8: k′ ← kih′(sh′ , ah′ , bh′)

We also define µ̂kh+1[s, a, b] for h ≤ H − 1, which is an intermediate algorithm only involved
in the analysis. The above two policies are related by µ̂kh+1 [s, a, b] =

∑t
i=1 α

i
tµ̂
k
h+1 where t =

Nk
h (s, a, b). ν̂kh+1[s, a, b] is defined similarly.

Algorithm 6 Policy µ̂kh+1[s, a, b]

1: t← Nk
h (s, a, b).

2: Sample i from [t] with P(i) = αit.
3: k′ ← kih(s, a, b)
4: for step h′ = h+ 1, . . . ,H do
5: Observe sh′ .
6: Sample ah′ ∼ µk

′

h (sh′).
7: Observe bh′ .
8: t← Nk′

h (sh′ , ah′ , bh′).
9: Sample i from [t] with P(i) = αit.

10: k′ ← kih′(sh′ , ah′ , bh′)

Since the policies defined in Algorithm 5 and Algorithm 6 are non-Markov, many notations for
values of Markov policies are no longer valid here. To this end, we need to define the value and
Q-value of general policies starting from step h, if the general policies starting from the h-th step
do not depends the history before the h-th step. Notice the special case h = 1 has already been
covered in Section 2. For a pair of general policy (µ, ν) which does not depend on the hostory
before the h-th step, we can still use the same definitions (1) and (2) to define their value V µ,νh (s)

and Qµ,νh (s, a, b) at step h. We can also define the best response ν†(µ) of a general policy µ as

the minimizing policy so that V µ,†h (s) ≡ V
µ,ν†(µ)
h (s) = infν V

µ,ν
h (s) at step h. Similarly, we

can define Qµ,†h (s, a, b) ≡ Q
µ,ν†(µ)
h (s, a, b) = infν Q

µ,ν
h (s, a, b). As before, the best reponse of a

general policy is not necessarily Markovian.

It should be clear from the definition of Algorithm 5 and Algorithm 6 that µ̂kh, ν̂kh , µ̂kh+1[s, a, b]

and ν̂kh+1[s, a, b] does not depend on the history before step h, therefore related value and Q-value
functions are well defined for the corresponding steps. Now we can show the policies defined above
are indeed certified.
Lemma 12. For any p ∈ (0, 1), with probability at least 1 − p, the following holds for any
(s, a, b, h, k) ∈ S ×A× B × [H]× [K],

Q
k

h(s, a, b) ≥ Q†,ν̂
k
h+1[s,a,b]

h (s, a, b), V
k

h(s) ≥ V †,ν̂
k
h

h (s)

Qk
h
(s, a, b) ≤ Qµ̂

k
h+1[s,a,b],†
h (s, a, b), V kh(s) ≤ V µ̂

k
h,†

h (s)

16

Proof of Lemma 12. We first prove this for h = H .

Q
k

H(s, a, b) =α0
tH +

t∑
i=1

αit [rH(s, a, b) + βi]

≥rH(s, a, b) = Q
†,ν̂k

H+1

H (s, a, b)

because H is the last step and

V
k

H(s) =(Dπk
H
Q
k

H)(s) ≥ sup
µ∈∆A

(Dµ×νk
H
Q
k

H)(s)

≥ sup
µ∈∆A

(Dµ×νk
H
rH)(s) = V

†,νk
H

H (s) = V
†,ν̂k

H

H (s)

because πkH is CCE, and by definition ν̂kH = νkH .

Now suppose the claim is true for h + 1, consider the h case. Consider a fixed tuple (s, a, b) and
let t = Nk

h (s, a, b). Suppose (s, a, b) was previously taken at episodes k1, . . . , kt < k at the h-th
step. Let Fi be the σ-algebra generated by all the random variables in until the ki-th episode. Then

{αit[rh(s, a, b) + V
†,ν̂ki

h+1

h+1 (sk
i

h+1) + βi]}ti=1 is a martingale differene sequence w.r.t. the filtration
{Fi}ti=1. By Azuma-Hoeffding and the definition of bi,

t∑
i=1

αit

[
rh(s, a, b) + V

†,ν̂ki

h+1

h+1 (sk
i

h+1) + βi

]
≥

t∑
i=1

αitQ
†,ν̂ki

h+1

h (s, a, b)

with high probability. Combining this with the induction hypothesis,

Q
k

h(s, a, b) =α0
tH +

t∑
i=1

αit

[
rh(s, a, b) + V

ki

h+1(sk
i

h+1) + βi

]

≥
t∑
i=1

αit

[
rh(s, a, b) + V

†,ν̂ki

h+1

h+1 (sk
i

h+1) + βi

]
≥

t∑
i=1

αitQ
†,ν̂ki

h+1

h (s, a, b)

(i)

≥max
µ

t∑
i=1

αitQ
µ,ν̂ki

h+1

h (s, a, b) = Q
†,ν̂k

h+1[s,a,b]

h (s, a, b)

where we have taken the maximum operator out of the summation in (i),which does not increase
the sum.

On the other hand,

V
k

h(s) =(Dπk
h
Q
k

h)(s)
(i)

≥ sup
µ∈∆A

(Dµ×νk
h
Q
k

h)(s)

(ii)

≥ max
a∈A

Eb∼νk
h
Q
†,ν̂k

h+1[s,a,b]

h (s, a, b) = V
†,ν̂k

h

h (s)

where (i) is by the definition of CCE and (ii) is the induction hypothesis. The other direction is

proved by performing smilar arguments on Qk
h
(s, a, b), Q

µ̂k
h+1[s,a,b],†
h (s, a, b), V kh(s) and V µ̂

k
h,†

h (s).

Finally we give the theoretical guarantee of the policies defined above.

Proof of Theorem 4. By lemma 12, we have

K∑
k=1

(
V
†,ν̂k

1
1 − V µ̂

k
1 ,†

1

)
(s1) ≤

K∑
k=1

(
V
k

1 − V
k
1

)
(s1)

17

and Lemma 3 upper bounds this quantity by

K∑
k=1

(
V
†,ν̂k

1
1 − V µ̂

k
1 ,†

1

)
(s1) ≤ O

(√
H4SABTι

)
By definition of the induced policy, with probability at least 1 − p, if we run Nash Q-learning
(Algorithm 1) for K episodes with

K ≥ Ω

(
H5SABι

ε2

)
,

its induced policies (µ̂, ν̂) (Algorithm 2) will be ε-optimal in the sense V †,ν̂1 (s1)−V µ̂,†1 (s1) ≤ ε.

D Proof for Nash V-learning

In this section, we present proofs of the results in Section 4. We denote V k, µk, νk for values and
policies at the beginning of the k-th episode. We also introduce the following short-hand notation
[P̂khV](s, a, b) := V (skh+1).

We will use the following notations several times later: suppose the state s was visited at episodes
k1, k2, . . . at the h-th step. Since the definition of ki depends on the state s , we will show the
dependence explicitly by writing kih(s) when necessary and omit it when there is no confusion. We
also define Nk

h (s) to be the number of times the state s has been visited at the beginning of the k-th
episode. Finally we denote nkh = Nk

h

(
skh
)
. Notice the definitions here are different from that in

Appendix C.

The following lemma is a simple consequence of the update rule in Algorithm 3, which will be used
several times later.

Lemma 13. Let t = Nk
h (s) and suppose s was previously visited at episodes k1, . . . , kt < k at the

h-th step. The update rule in Algorithm 3 is equivalent to the following equations.

V
k

h(s) = α0
tH +

t∑
i=1

αit

[
rh(s, ak

i

h , b
ki

h) + V
ki

h+1(sk
i

h+1) + βi

]
(11)

V kh(s) =

t∑
i=1

αit

[
rh(s, a

kih
h , b

kih
h) + V

kih
h+1(s

kih
h+1)− β

i

]
(12)

D.1 Missing algorithm details

We first give Algorithm 7: the min-player counterpart of Algorithm 3. Almost everything is sym-
metric except the definition of loss function to keep it non-negative.

D.2 Learning values

As usual, we begin with learning the value V ? of the Markov game. We begin with an auxiliary
lemma, which justifies our choice of confidence bound.

Lemma 14. Let t = Nk
h (s) and suppose state s was previously taken at episodes k1, . . . , kt < k at

the h-th step. Choosing ηt =
√

logA
At and η

t
=
√

logB
Bt , with probability 1 − p, for any (s, h, t) ∈

S × [H]× [K], there exist a constant c s.t.

max
µ

t∑
i=1

αitDµ×νki

h

(
rh + PhV

ki

h+1

)
(s)−

t∑
i=1

αit

[
rh

(
s, ak

i

h , b
ki

h

)
+ V

ki

h+1

(
sk

i

h+1

)]
≤ c
√

2H4Aι/t

t∑
i=1

αit

[
rh

(
s, ak

i

h , b
ki

h

)
+ V k

i

h+1

(
sk

i

h+1

)]
−min

ν

t∑
i=1

αitDµki

h ×ν

(
rh + PhV

ki

h+1

)
(s) ≤ c

√
2H4Bι/t

18

Algorithm 7 Optimistic Nash V-learning (the min-player version)

1: Initialize: for any (s, a, b, h), V h(s)← 0, Lh(s, b)← 0, Nh(s)← 0, νh(b|s)← 1/B.
2: for episode k = 1, . . . ,K do
3: receive s1.
4: for step h = 1, . . . ,H do
5: take action bh ∼ νh(·|sh), observe the action ah from opponent
6: observe reward rh(sh, ah, bh) and next state sh+1.
7: t = Nh(sh)← Nh(sh) + 1.
8: V h(sh)← max{0, (1− αt)V h(sh) + αt(rh(sh, ah, bh) + V h+1(sh+1)− β

t
)}

9: for all b ∈ B do
10: `h(sh, b)← [rh(sh, ah, bh) + V h+1(sh+1)]I{bh = b}/[νh(bh|sh) + η

t
].

11: Lh(sh, b)← (1− αt)Lh(sh, b) + αt`h(sh, b).
12: set νh(·|sh) ∝ exp[−(η

t
/αt)Lh(sh, ·)].

Proof of Lemma 14. We prove the first inequality. The proof for the second inequality is similar. We
consider thoughout the proof a fixed (s, h, t) ∈ S× [H]× [K]. Define Fi as the σ-algebra generated

by all the random variables before the kih-th episode. Then {rh(s, ak
i

h , b
ki

h) + V
ki

h+1(sk
i

h+1)}ti=1 is a
martingale sequence w.r.t. the filtration {Fi}ti=1. By Azuma-Hoeffding,

t∑
i=1

αitDµki

h ×ν
ki

h

(
rh + PhV

ki

h+1

)
(s)−

t∑
i=1

αit

[
rh

(
s, ak

i

h , b
ki

h

)
+ V

ki

h+1

(
sk

i

h+1

)]
≤ 2
√
H3ι/t

So we only need to bound

max
µ

t∑
i=1

αitDµ×νki

h

(
rh + PhV

ki

h+1

)
(s)−

t∑
i=1

αitDµki

h ×ν
ki

h

(
rh + PhV

ki

h+1

)
(s) := R?t (13)

where R?t is the weighted regret in the first t times of visiting state s, with respect to the optimal
policy in hindsight, in the following adversarial bandit problem. The loss function is defined by

li(a) = E
b∼νki

h (s)
{H − h+ 1− rh (s, a, b)− PhV

ki

h+1 (s, a, b)}

with weight wi = αit. We note the weighted regret can be rewrite as R?t =
∑t
i=1 wi

〈
µ?h − µ

ki
h , li

〉
where µ?h is argmax for (13), and the loss function satisfies li(a) ∈ [0, H]

Therefore, Algorithm 3 is essentially performing follow the regularized leader (FTRL) algorithm
with changing step size for each state to solve this adversarial bandit problem. The policy we are
using is µk

i

h (s, a) and the optimistic biased estimator

l̂i(a) =
H − h+ 1− rh(sk

i

h , a
ki

h , b
ki

h)− V k
i

h+1(sk
i

h+1)

µk
i

h (s, a) + ηi
· I
{
ak

i

h = a
}

is used to handle the bandit feedback.

A more detailed discussion on how to solve the weighted adversarial bandit problem is included in
Appendix F. Note that wi = αit is monotonic inscreasing, i.e. maxi≤t wi = wt. By Lemma 17, we
have

R?t ≤ 2Hαtt
√
Atι+

3H
√
Aι

2

t∑
i=1

αit√
i

+
1

2
Hαttι+H

√√√√2ι

t∑
i=1

(
αit
)2

≤ 4H2
√
Aι/t+ 3H

√
Aι/t+H2ι/t+

√
4H3ι/t

≤ 10H2
√
Aι/t

with probability 1 − p/(SHK). Finally by a union bound over all (s, h, t) ∈ S × [H] × [K], we
finish the proof.

19

We now prove the following Lemma 15, which is an analoge of Lemma 3 in Nash Q-learning.

Lemma 15. For any p ∈ (0, 1], choose hyperparameters as in (6) for large absolute constant c and
ι = log(SABT/p). Then, with probability at least 1− p, Algorithm 3 and 7 will jointly provide the
following guarantees

• V kh(s) ≥ V ?h (s) ≥ V kh(s) for all (s, h, k) ∈ S × [K]× [H].

• (1/K) ·
∑K
k=1(V

k

1 − V
k
1)(s1) ≤ O

(√
H6S(A+B)ι/K

)
.

Proof of Lemma 15. We proof the first claim by backward induction. The claim is true for h =

H+1. Asumme for any s, V
k

h+1(s) ≥ V ?h+1 (s), V kh+1(s) ≤ V ?h+1 (s). For a fixed (s, h) ∈ S× [H]

and episode k ∈ [K], let t = Nk
h (s) and suppose swas previously visited at episodes k1, . . . , kt < k

at the h-th step. By Bellman equation,

V ?h (s) =max
µ

min
ν

Dµ×ν
(
rh + PhV ?h+1

)
(s)

=max
µ

t∑
i=1

αitmin
ν

Dµ×ν
(
rh + PhV ?h+1

)
(s)

≤max
µ

t∑
i=1

αitDµ×νki

h

(
rh + PhV ?h+1

)
(s)

≤max
µ

t∑
i=1

αitDµ×νki

h

(
rh + PhV

ki

h+1

)
(s)

Comparing with the decomposition of V
k

h(s) in Equation (11) and use Lemma 14, we can see if
βt = c

√
AH4ι/t, then V

k

h(s) ≥ V ?h (s). Similar by taking β
t

= c
√
BH4ι/t, we also have

V kh(s) ≤ V ?h (s).

The second cliam is to bound δkh := V
k

h(skh)− V kh(skh) ≥ 0. Similar to what we have done in Nash
Q-learning analysis, taking the difference of Equation (11) and Equation (12),

δkh =V
k

h(skh)− V kh(skh)

=α0
nk
h
H +

nk
h∑

i=1

αink
h

[(
V
kih(skh)

h+1 − V k
i
h(skh)
h+1

)(
s
kih(skh)
h+1

)
+ βi + β

i

]

=α0
nk
h
H +

nk
h∑

i=1

αink
h
δ
kih(skh)
h+1 + β̃nk

h

where

β̃j :=

j∑
i=1

αij(bi + bi) ≤ c
√

(A+B)H4ι/j.

Taking the summation w.r.t. k, we begin with the first two terms,

K∑
k=1

α0
nk
h
H =

K∑
k=1

HI
{
nkh = 0

}
≤ SH

K∑
k=1

nk
h∑

i=1

αink
h
δ
kih(skh)
h+1

(i)

≤
K∑
k′=1

δk
′

h+1

∞∑
i=nk′

h +1

α
nk′
h
i

(ii)

≤
(

1 +
1

H

) K∑
k=1

δkh+1.

where (i) is by changing the order of summation and (ii) is by Lemma 11. Putting them together,

20

Algorithm 8 Policy µ̂kh
1: sample k′ ← Uniform([k]).
2: for step h′ = h, h+ 1, . . . ,H do
3: observe sh′ , and set t← Nk′

h′ (sh′).
4: sample m ∈ [t] with P(m = i) = αit.
5: k′ ← kmh′(sh′).
6: take action ah′ ∼ µk

′

h′(·|sh′).

K∑
k=1

δkh =

K∑
k=1

α0
nk
h
H +

K∑
k=1

nk
h∑

i=1

αink
h
δ
kih(skh)
h+1 +

K∑
k=1

β̃nk
h

≤HS +

(
1 +

1

H

) K∑
k=1

δkh+1 +

K∑
k=1

β̃nk
h

Recursing this argument for h ∈ [H] gives

K∑
k=1

δk1 ≤ eSH2 + e

H∑
h=1

K∑
k=1

β̃nk
h

By pigeonhole argument,

K∑
k=1

β̃nk
h
≤ O (1)

K∑
k=1

√
(A+B)H4ι

nkh
= O (1)

∑
s

nK
h (s)∑
n=1

√
(A+B)H4ι

n

≤ O
(√

H4S(A+B)Kι
)

= O
(√

H3S(A+B)Tι
)

Expanding this formula repeatedly and apply pigeonhole argument we have

K∑
k=1

[V
k

h − V
k
h](s1) ≤ O(

√
H5S(A+B)Tι).

which finishes the proof.

D.3 Certified policies

As before, we construct a series of new policies µ̂kh in Algorithm 8. Notice µ̂kh is related to µ̂ defined
in Algorithm 4 by µ̂ = 1

k

∑k
i=1 µ̂

i
1. Also we need to consider value and Q-value functions of general

policies which does not depend on the hostory before the h-th step. See Appendix C.2 for details.
Again, we can show the policies defined above are indeed certified.

Lemma 16. For any p ∈ (0, 1), with probability at least 1 − p, the following holds for any
(s, a, b, h, k) ∈ S ×A× B × [H]× [K],

V
k

h(s) ≥ V †,ν̂
k
h

h (s), V kh(s) ≤ V µ̂
k
h,†

h (s)

Proof of Lemma 16. We prove one side by induction and the other side is similar. The claim is
trivially satisfied for h = H+1. Suppose it is ture for h+1, consider a fixed state s. Let t = Nk

h (s)
and suppose s was previously visited at episodes k1, . . . , kt < k at the h-th step. Then using

21

Lemma 13,

V
k

h(s) = α0
tH +

t∑
i=1

αit

[
rh(s, ak

i

h , b
kih
h) + V

ki

h+1(sk
i

h+1) + βi

]
(i)

≥ max
µ

t∑
i=1

αitDµ×νki

h

(
rh + PhV

ki

h+1

)
(s)

(ii)

≥ max
µ

t∑
i=1

αitDµ×νki

h

(
rh + PhV

†,ν̂ki

h+1

h+1

)
(s)

= V
†,ν̂k

h

h (s)

where (i) is by using Lemma 14 and the definition of βi, and (ii) is by induction hypothesis.

Equipped with the above lemmas, we are now ready to prove Theorem 5.

Proof of Theorem 5. By lemma 16, we have

K∑
k=1

(
V
†,ν̂k

1
1 − V µ̂

k
1 ,†

1

)
(s1) ≤

K∑
k=1

(
V
k

1 − V
k
1

)
(s1)

and Lemma 15 upper bounds this quantity by

K∑
k=1

(
V
†,ν̂k

1
1 − V µ̂

k
1 ,†

1

)
(s1) ≤ O

(√
H5S(A+B)Tι

)
By definition of the induced policy, with probability at least 1 − p, if we run Nash V-learning
(Algorithm 3) for K episodes with

K ≥ Ω

(
H6S(A+B)ι

ε2

)
,

its induced policies (µ̂, ν̂) (Algorithm 4) will be ε-optimal in the sense V †,ν̂1 (s1)−V µ̂,†1 (s1) ≤ ε.

E Proofs of Hardness for Learning the Best Responses

In this section we give the proof of Theorem 6, and Corollary 8. Our proof is inspired by a com-
putational hardness result for adversarial MDPs in [37, Section 4.2], which constructs a family of
adversarial MDPs that are computationally as hard as an agnostic parity learning problem.

Section E.1, E.2, E.3 will be devoted to prove Theorem 6, while Corollary 8 is proved in Section
E.4. Towards proving Theorem 6, we will:

• (Section E.1) Construct a Markov game.

• (Section E.2) Define a series of problems where a solution in problem implies another.

• (Section E.3) Based on the believed computational hardness of learning paries with noise
(Conjecture 7), we conclude that finding the best response of non-Markov policies is com-
putationally hard.

E.1 Markov game construction

We now describe a Markov game inspired the adversarial MDP in [37, Section 4.2]. We define a
Markov game in which we have 2H states, {i0, i1}Hi=2, 10 (the initial state) and ⊥ (the terminal
state)4. In each state the max-player has two actions a0 and a1, while the min-player has two actions

22

State/Action (a0, b0) (a0, b1) (a1, b0) (a1, b1)
i0 (i+ 1)0 (i+ 1)0 (i+ 1)0 (i+ 1)1

i1 (i+ 1)1 (i+ 1)0 (i+ 1)1 (i+ 1)1

Table 2: Transition kernel of the hard instance.

b0 and b1. The transition kernel is deterministic and the next state for steps h ≤ H − 1 is defined in
Table 2:

At the H-th step, i.e. states H0 and H1, the next state is always ⊥ regardless of the action chosen
by both players. The reward function is always 0 except at the H-th step. The reward is determined
by the action of the min-player, defined by

State/Action (·, b0) (·, b1)
H0 1 0
H1 0 1

Table 3: Reward of the hard instance.

At the beginning of every episode k, both players pick their own policies µk and νk, and execute
them throughout the episode. The min-player can possibly pick her policy νk adaptive to all the
observations in the earlier episodes. The only difference from the standard Markov game protocol
is that the actions of the min-player except the last step will be revealed at the beginning of each
episode, to match the setting in agnostic learning parities (Problem 2 below). Therefore we are
actually considering a easier problem (for the max-player) and the lower bound naturally applies.

E.2 A series of computationally hard problems

We first introduce a series of problems and then show how the reduction works.

Problem 1 The max-player ε-approximates the best reponse for any general policy ν in the Markov
game defined in Appendix E.1 with probability at least 1/2, in poly(H, 1/ε) time.

Problem 2 Let x = (x1, · · · , xn) be a vector in {0,1}n, T ⊆ [n] and 0 < α < 1/2.The parity
of x on T is the boolean function φT (x) = ⊕i∈Txi. In words, φT (x) outputs 0 if the number of
ones in the subvector (xi)i∈T is even and 1 otherwise. A uniform query oracle for this problem is a
randomized algorithm that returns a random uniform vector x, as well as a noisy classification f(x)
which is equal to φT (x) w.p. α and 1− φT (x) w.p. 1− α. All examples returned by the oracle are
independent. The learning parity with noise problem consists in designing an algorithm with access
to the oracle such that,

• (Problem 2.1) w.p at least 1/2, find a (possibly random) function h : {0, 1}n → {0, 1}
satisy EhPx[h(x) 6= φT (x)] ≤ ε, in poly(n, 1/ε) time.

• (Problem 2.2) w.p at least 1/4, find h : {0, 1}n → {0, 1} satisy Px[h(x) 6= φT (x)] ≤ ε,
in poly(n, 1/ε) time.

• (Problem 2.3) w.p at least 1− p, find h : {0, 1}n → {0, 1} satisy Px[h(x) 6= φT (x)] ≤ ε,
in poly(n, 1/ε, 1/p) time.

We remark that Problem 2.3 is the formal definition of learning parity with noise [20, Definition 2],
which is conjectured to be computationally hard in the community (see also Conjecture 7).

Problem 2.3 reduces to Problem 2.2 Step 1: Repeatly apply algorithm for Problem 2.2 ` times
to get h1, . . . , h` such that mini Px[hi(x) 6= φT (x)] ≤ ε with probability at least 1 − (3/4)`. This
costs poly(n, `, 1/ε) time. Let i? = argmini erri where erri = Px[hi(x) 6= φT (x)].

4In [37] the states are denoted by {ia, ib}Hi=2 instead. Here we slightly change the notation to make it
different from the notation of the actions

23

Step 2: Construct estimators using N additional data (x(j), y(j))
N

j=1,

êrri :=
1
N

∑N
j=1 I{hi(x(j)) 6= y(j)} − α

1− 2α
.

Pick î = argmini êrri. When N ≥ log(1/p)/ε2, with probability at least 1− p/2, we have

max
i
|êrri − erri| ≤

ε

1− 2α
.

This means that

errî ≤ êrrî +
ε

1− 2α
≤ êrri? +

ε

1− 2α
≤ erri? +

2ε

1− 2α
≤ O(1)ε.

This step uses poly(n,N, `) = poly(n, 1/ε, log(1/p), `) time.

Step 3: Pick ` = log(1/p), we are guaranteed that good events in step 1 and step 2 happen with
probability ≥ 1 − p/2 and altogether happen with probability at least 1 − p. The total time used is
poly(n, 1/ε, log(1/p)). Note better dependence on p than required.

Problem 2.2 reduces to Problem 2.1: If we have an algorithm that gives Eh∼DPx[h(x) 6=
φT (x)] ≤ ε with probability 1/2. Then if we sample ĥ ∼ D, by Markov’s inequality, we have
with probability ≥ 1/4 that

Px[ĥ(x) 6= φT (x)] ≤ 2ε

Problem 2.1 reduces to Problem 1: Consider the Markov game constructed above with H − 1 =
n. The only missing piece we fill up here is the policy ν of the min-player, which is constructed as
following. The min-player draws a sample (x, y) from the uniform query oracle, then taking action
b0 at the step h ≤ H − 1 if xh = 0 and b1 otherwise. For the H-th step, the min-player take action
b0 if y = 0 and b1 otherwise. Also notice the policy µ̂ of the max-player can be descibed by a set
T̂ ⊆ [H] where he takes action a1 at step h if h and a0 otherwise. As a result, the max-player
receive non-zero result iff φT̂ (x) = y.

In the Markov game, we have V µ̂,ν1 (s1) = P(φT̂ (x) = y). As a result, the optimal policy µ∗
corresponds to the true parity set T . As a result,

(V †,ν1 − V µ̂,ν1)(s1) = Px,y(φT (x) = y)− Px,y(φT̂ (x) = y) ≤ ε

by the ε-approximation guarantee.

Also notice

Px,y(φT̂ (x) 6= y)− Px,y(φT (x) 6= y) =(1− α)Px(φT̂ (x) 6= φT (x)) + αPx(φT̂ (x) = φT (x))− α
=(1− 2α)Px(φT̂ (x) 6= φT (x))

This implies:

Px(φT̂ (x) 6= φT (x)) ≤ ε

1− 2α

E.3 Putting them together

So far, we have proved that Solving Problem 1 implies solving Problem 2.3, where Problem 1 is the
problem of learning ε-approximate best response in Markov games (the problem we are interested
in), and Problem 2.3 is precisely the problem of learning parity with noise [20]. This concludes the
proof.

E.4 Proofs of Hardness Against Adversarial Opponents

Corollary 8 is a direct consequence of Theorem 6, as we will show now.

24

Proof of Corollary 8. We only need to prove a polynomial time no-regret algorithm also learns the
best response in a Markov game where the min-player following non-Markov policy ν. Then the
no-regret guarantee implies,

V †,ν1 (s1)− 1

K

K∑
k=1

V µ
k,ν

1 (s1) ≤ poly(S,H,A,B)K−δ

where µk is the policy of the max-player in the k-th episode. If we choose µ̂ uniformly randomly
from {µk}Kk=1, then

V †,ν1 (s1)− V µ̂,ν1 (s1) ≤ poly(S,H,A,B)K−δ.

Choosing ε = poly(S,H,A,B)K−δ , K = poly(S,H,A,B, 1/ε) and the running time of the
no-regret algorithm is still poly(S,H,A,B, 1/ε) to learn the ε-approximate best response.

To see that the Corollary 8 remains to hold for policies that are Markovian in each episode and non-
adaptive, we can take the hard instance in Theorem 6 and let νk denote the min-player’s policy in
the k-th episode. Note that each νk is Markovian and non-adaptive on the observations in previous
episodes. If there is a polynomial time no-regret algorithm against such

{
νk
}

, then by the online-
to-batch conversion similar as the above, the mixture of {µk}Kk=1 learns a best response against ν in
polynomial time.

F Auxiliary Lemmas for Weighted Adversarial Bandit

In this section, we formulate the bandit problem we reduced to in the proof of Lemma 14. Al-
though the machnisms are already well understood, we did not find a good reference of Follow the
Regularized Leader (FTRL) algorithm with

1. changing step size

2. weighted regret

3. high probability regret bound

For completeness, we give the detailed derivation here.

Algorithm 9 FTRL for Weighted Regret with Changing Step Size

1: for episode t = 1, . . . ,K do
2: θt(a) ∝ exp[−(ηt/wt) ·

∑t−1
i=1 wi l̂i(a)]

3: Take action at ∼ θt(·), and observe loss l̃t(at).
4: l̂t(a)← l̃t(a)I{at = a}/(θt(a) + γt) for all a ∈ A.

We assume l̃i ∈ [0, 1]A and Ei l̃i = li. Define A = |A|, we set the hyperparameters by

ηt = γt =

√
logA

At

Define the filtration Ft by the σ-algebra generated by {ai, li}t−1
i=1 . Then the regret can be defined as

Rt (θ∗) :=

t∑
i=1

wiEa∼θ∗ [li(a)− li(ai)|Fi] =

t∑
i=1

wi 〈θi − θ∗, li〉

We can easily check the definitions here is just an abstract version of that in the proof of Lemma 14
with rescaling. To state the regret guarantee, we also define ι = log(p/AK) for any p ∈ (0, 1]. Now
we can upper bound the regret by

25

Lemma 17. Following Algorithm 9, with probability 1− 3p, for any θ∗ ∈ ∆A and t ≤ K we have

Rt (θ∗) ≤ 2 max
i≤t

wi
√
Atι+

3
√
Aι

2

t∑
i=1

wi√
i

+
1

2
max
i≤t

wiι+

√√√√2ι

t∑
i=1

w2
i

Proof. The regret Rt(θ∗) can be decomposed into three terms

Rt (θ∗) =

t∑
i=1

wi 〈θi − θ∗, li〉

=

t∑
i=1

wi

〈
θi − θ∗, l̂i

〉
︸ ︷︷ ︸

(A)

+

t∑
i=1

wi

〈
θi, li − l̂i

〉
︸ ︷︷ ︸

(B)

+

t∑
i=1

wi

〈
θ∗, l̂i − li

〉
︸ ︷︷ ︸

(C)

and we bound (A) in Lemma 19, (B) in Lemma 20 and (C) in Lemma 21.

Setting ηt = γt =
√

logA
At , the conditions in Lemma 19 and Lemma 21 are satisfied. Putting them

together and take union bound, we have with probability 1− 3p

Rt (θ∗) ≤wt logA

ηt
+
A

2

t∑
i=1

ηiwi +
1

2
max
i≤t

wiι+A

t∑
i=1

γiwi +

√√√√2ι

t∑
i=1

w2
i + max

i≤t
wiι/γt

≤2 max
i≤t

wi
√
Atι+

3
√
Aι

2

t∑
i=1

wi√
i

+
1

2
max
i≤t

wiι+

√√√√2ι

t∑
i=1

w2
i

The rest of this section is devoted to the proofs of the Lemmas used in the proofs of Lemma 17. We
begin the following useful lemma adapted from Lemma 1 in [21], which is crucial in constructing
high probability guarantees.

Lemma 18. For any sequence of coefficients c1, c2, . . . , ct s.t. ci ∈ [0, 2γi]
A is Fi-measurable, we

have with probability 1− p/AK,

t∑
i=1

wi

〈
ci, l̂i − li

〉
≤ max

i≤t
wiι

Proof. Define w = maxi≤t wi. By definition,

wi l̂i (a) =
wi l̃i (a) I {ai = a}

θi (a) + γi
≤ wi l̃i (a) I {ai = a}
θi (a) + wi l̃i(a)I{ai=a}

w γi

=
w

2γi

2γiwi l̃i(a)I{ai=a}
wθi(a)

1 + γiwi l̃i(a)I{ai=a}
wθi(a)

(i)

≤ w

2γi
log

(
1 +

2γiwi l̃i (a) I {ai = a}
wθi (a)

)

where (i) is because z
1+z/2 ≤ log (1 + z) for all z ≥ 0.

Defining the sum

Ŝi =
wi
w

〈
ci, l̂i

〉
, Si =

wi
w
〈ci, li〉 ,

26

we have

Ei
[
exp

(
Ŝi

)]
≤ Ei

[
exp

(∑
a

ci (a)

2γi
log

(
1 +

2γiwi l̃i (a) I {ai = a}
wθi (a)

))]
(i)

≤ Ei

[∏
a

(
1 +

ci (a)wi l̃i (a) I {ai = a}
wθi (a)

)]

= Ei

[
1 +

∑
a

ci (a)wi l̃i (a) I {ai = a}
wθi (a)

]
= 1 + Si ≤ exp (Si)

where (i) is because z1 log (1 + z2) ≤ log (1 + z1z2) for any 0 ≤ z1 ≥ 1 and z2 ≥ −1. Here we
are using the condition ci (a) ≤ 2γi to guarantee the condition is satisfied.

Equipped with the above bound, we can now prove the concentration result.

P

[
t∑
i=1

(
Ŝi − Si

)
≥ ι

]
= P

[
exp

[
t∑
i=1

(
Ŝi − Si

)]
≥ AK

p

]

≤ p

AK
Et

[
exp

[
t∑
i=1

(
Ŝi − Si

)]]

≤ p

AK
Et−1

[
exp

[
t−1∑
i=1

(
Ŝi − Si

)]
Et

[
exp

(
Ŝt − St

)]]

≤ p

AK
Et−1

[
exp

[
t−1∑
i=1

(
Ŝi − Si

)]]
≤ · · · ≤ p

AK

The claim is proved by taking the union bound.

Using Lemma 18, we can bound the (A)(B)(C) separately as below.

Lemma 19. If ηi ≤ 2γi for all i ≤ t, with probability 1− p, for any t ∈ [K] and θ∗ ∈ ∆A,

t∑
i=1

wi

〈
θi − θ∗, l̂i

〉
≤ wt logA

ηt
+
A

2

t∑
i=1

ηiwi +
1

2
max
i≤t

wiι

Proof. We use the standard analysis of FTRL with changing step size, see for example Exercise
28.13 in [17]. Notice the essential step size is ηt/wt,

t∑
i=1

wi

〈
θi − θ∗, l̂i

〉
≤ wt logA

ηt
+

1

2

t∑
i=1

ηiwi

〈
θi, l̂

2
i

〉
≤ wt logA

ηt
+

1

2

t∑
i=1

∑
a∈A

ηiwi l̂i (a)

(i)

≤ wt logA

ηt
+

1

2

t∑
i=1

∑
a∈A

ηiwili (a) +
1

2
max
i≤t

wiι

≤ wt logA

ηt
+
A

2

t∑
i=1

ηiwi +
1

2
max
i≤t

wiι

where (i) is by using Lemma 18 with ci(a) = ηi. The any-time guarantee is justifed by taking union
bound.

27

Lemma 20. With probability 1− p, for any t ∈ [K],

t∑
i=1

wi

〈
θi, li − l̂i

〉
≤ A

t∑
i=1

γiwi +

√√√√2ι

t∑
i=1

w2
i

Proof. We further decopose it into

t∑
i=1

wi

〈
θi, li − l̂i

〉
=

t∑
i=1

wi

〈
θi, li − Ei l̂i

〉
+

t∑
i=1

wi

〈
θi,Ei l̂i − l̂i

〉
The first term is bounded by

t∑
i=1

wi

〈
θi, li − Ei l̂i

〉
=

t∑
i=1

wi

〈
θi, li −

θi
θi + γi

li

〉

=

t∑
i=1

wi

〈
θi,

γi
θi + γi

li

〉
≤ A

t∑
i=1

γiwi

To bound the second term, notice〈
θi, l̂i

〉
≤
∑
a∈A

θi (a)
I {at = a}
θi(a) + γi

≤
∑
a∈A

I {ai = a} = 1,

thus {wi
〈
θi,Ei l̂i − l̂i

〉
}ti=1 is a bounded martingale difference sequence w.r.t. the filtration

{Fi}ti=1. By Azuma-Hoeffding,

t∑
i=1

〈
θi,Ei l̂i − l̂i

〉
≤

√√√√2ι

t∑
i=1

w2
i

Lemma 21. With probability 1− p, for any t ∈ [K] and any θ∗ ∈ ∆A, if γi is non-increasing in i,

t∑
i=1

wi

〈
θ∗, l̂i − li

〉
≤ max

i≤t
wiι/γt

Proof. Define a basis {ej}Aj=1 of RA by

ej (a) =

{
1 if a = j

0 otherwise

Then for all the j ∈ [A], apply Lemma 18 with ci = γtej . Sine now ci(a) ≤ γt ≤ γi, the condition
in Lemma 18 is satisfied. As a result,

t∑
i=1

wi

〈
ej , l̂i − li

〉
≤ max

i≤t
wiι/γt

Since any θ∗ is a convex combination of {ej}Aj=1, by taking the union bound over j ∈ [A], we have

t∑
i=1

wi

〈
θ∗, l̂i − li

〉
≤ max

i≤t
wiι/γt

28

