
A An Illustrative Example of Mori-Zwanzig Formalism

The following problem is widely used as an introductory example of the Mori-Zwanzig (MZ)
formalism [21, 51] for model order reduction: let z = [x;y] ∈ RN where x ∈ Rn, y ∈ RN−n, and
n� N . Consider the system of linear differential equations{

x′ = A11x+A12y,
y′ = A21x+A22y,

(22)

with initial values x(0) = x0 and y(0) = y0. Suppose we are interested in the time evolution of
x(t), which depends on the joint effect of x and y. However the computation of the complete system
(22) is expensive and can be prohibitive for large N . The question is whether we can derive a reduced
system only involving x from (22). To this end, we assume x is given, and solve for y from the
y-equation of (22) to obtain

y(t) = eA22ty0 +

∫ t

0

eA22(t−s)A22x(s) ds. (23)

Then we plug this back into the x-equation of (22) and obtain

x′(t) = A11x(t) +A12

∫ t

0

eA22(t−s)A22x(s) ds+A12e
A22ty0, (24)

which neglects the dependence on y(t) except for the initial value y0.

As shown in the example above, MZ formalism aims at reducing a high-dimensional system of z
into a low-dimensional system of x (resolved variable) while maintaining the effect of y (unresolved
variable). This is particularly useful if an exact solution of z is unnecessary to understand the dynamics
of x. Specialized derivations and subsequent approximation techniques can be implemented to obtain
highly efficient numerical solutions for nonlinear systems.

B Proofs

B.1 Proof of Theorem 1

Proof. Let λ∗i (t) be the conditional intensity of node i at time t, i.e., E[dXi(t)|H(t)] = λ∗i (t) dt. In
the standard diffusion model, the conditional intensity λ∗i (t) of a healthy node i (i.e., Xi(t) = 0) is
determined by the total infection rate of its infected neighbors j (i.e., Xj(t) = 1). That is,

λ∗i (t) =
∑
j

αjiXj(t)(1−Xi(t)). (25)

By taking expectation EH(t)[·] on both sides of (25), we obtain

λi(t) :=EH(t)[λ
∗
i (t)] = EH(t)

[
αjiXj(t)(1−Xi(t))

∣∣H(t)
]

=
∑
j

αji(xj − xij) =
∑
j

αji(xj − yij − eij). (26)

On the other hand, there is

λi(t) dt = EH(t)[λ
∗
i (t)] dt = EH(t)[dXi(t)|H(t)] = dEH(t)[Xi(t)|H(t)] = dxi. (27)

Combining (26) and (27) yields

x′i =
dxi(t)

dt
=
∑
j

αji(xj − yij − eij) = (Ax)i − (diag(x)Ax)i −
∑
j

αjieij

for every i ∈ [n], which verifies the x part of (6). Similarly, we can obtain

x′I =
∑
i∈I

∑
j /∈I

αji(xI − xI∪{j}) =
∑
i∈I

∑
j /∈I

αji(yI + eI − yI∪{j} − eI∪{j}). (28)
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Moreover, by taking derivative on both sides of xI(t) = yI(t) + eI(t), we obtain

x′I =
∑
i∈I

yI\{i}x
′
i + e′I =

∑
i∈I

yI\{i}
∑
j 6=i

αji(xj − xixj − eij) + e′I . (29)

Combining (28) and (29) yields the e part of (6).

It is clear that x0 = χS . For every I , at time t = 0, there is xI(0) =
∏
i∈I Xi(0) = 1 if I ⊂ S

and 0 otherwise; and the same for yI(0). Hence eI(0) = xI(0) − yI(0) = 0 for all I . Hence
z0 = [x0; e0] = [χS ;0], which verifies the initial condition of (6).

B.2 Proof of Theorem 2

Proof. Consider the system (6) over a finite time horizon [0, T ], which evolves on a smooth manifold
Γ ⊂ RN . For any real-valued phase (observable) space function g : Γ→ R, the nonlinear system (6)
is equivalent to the linear partial differential equation, known as the Liouville equation:{

∂tu(t, z) = L[u](t, z),

u(0, z) = g(z),
(30)

where the Liouville operator L[u] := f̄(z) · ∇zu. The equivalency is in the sense that the solution of
(30) satisfies u(t, z0) = g(z(t; z0)), where z(t; z0) is the solution to (6) with initial value z0.

Denote etL the Koopman operator associated with L such that etLg(z0) = g(z(t)) where z(t) is the
solution of (6). Then etL satisfies the semi-group property, i.e.,

etLg(z) = g(etLz) (31)

for all g. On the right hand side of (31), z can be interpreted as z = ι(z) = [ι1(z), . . . , ιN (z)]
where ιj(z) = zj for all j.

Now consider the projection operator P as the truncation such that Pg(z) = Pg(x, e) = g(x, 0) for
any z = (x, e), and its orthogonal complement as Q = I − P where I is the identity operator. Note
that z′(t) = dz(t)

dt = ∂
∂te

tLz0, and f̄(z(t)) = etLf(z0) = etLLz0 since Lιj(z) = fj(z) for all z
and j. Therefore (6) implies that

∂

∂t
etLz0 = etLLz0 = etLPLz0 + etLQLz0. (32)

Note that the first term on the right hand side of (32) is

etLPLz0 = PLetLz0 = PLz(t). (33)

For the second term in (32), we recall that the well-known Dyson’s identity for the Koopman operator
L is given by

etL = etQL +

∫ t

0

esLPLe(t−s)QL ds. (34)

Applying (34) to QLz0 yields

etLQLz0 = etQLQLz0 +

∫ t

0

esLPLe(t−s)QLQLz0 ds

= etQLQLz0 +

∫ t

0

PLe(t−s)QLQLesLz0 ds (35)

= etQLQLz0 +

∫ t

0

PLe(t−s)QLQLz(s) ds.

Substituting (33) and (35) into (32), we obtain

∂

∂t
etLz0 = PLz(t) + etQLQLz0 +

∫ t

0

PLe(t−s)QLQLz(s) ds, (36)

where we used the fact that etLPLz0 = PLetLz0 = PLz(t). Denote φ(t, z) := etLQLz, then we
simplify (36) into

∂

∂t
etLz0 = PLz(t) + φ(t, z0) +

∫ t

0

k(t− s, z(s)) ds, (37)
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where k(t, z) := PLφ(t, z) = PLetLQLz.

Now consider the evolution of φ(t, z), which is given by

∂tφ(t, z0) = QLφ(t, z0), (38)

with initial condition φ(0, z0) = QLz0 = Lz0−PLz0 = f̄(x0, e0)− f̄(x0,0) = 0 since e0 = 0.
Applying P on both sides of (38) yields

∂tPφ(t, z0) = PQLφ(t, z0) = 0,

with initial Pφ(0, z0) = 0. This implies that Pφ(t, z0) = 0 for all t. Hence, applying P to both
sides of (36) yields

∂

∂t
Pz(t) =

∂

∂t
PetLz0 = PLz(t) +

∫ t

0

Pk(t− s,z(s)) ds. (39)

Restricting to the first n components, Pz(t) reduces to x(t) and Pk(t− s,z(s)) reduces to k(t−
s,x(s)). Recalling that PLz(t) = Pf̄(z(t)) = f̄(x(t),0) = f(x(t)) completes the proof.

B.3 Proof of Theorem 3

Proof. From the definition of h(t) in (40), we obtain

h =

∫ t

0

K(t− s;w)x(s) ds =

∫ t

−∞
K(t− s;w)x(s) ds =

∫ ∞
0

K(s;w)x(t− s) ds (40)

where we used the fact that x(t) = 0 for t < 0. Taking derivative on both sides of (40) yields

h′ =

∫ ∞
0

K(s;w)x′(t− s) ds =

∫ ∞
0

K(s;w)f̃(x(t− s),h(t− s);A,η) ds

=

∫ t

−∞
K(t− s;w)f̃(x(s),h(s);A,η) ds =

∫ t

0

K(t− s;w)f̃(x(s),h(s);A,η) ds

where we used the fact that x′(t) = f̃(x(t),h(t);A,η) = 0 for t < 0 in the last equality.

IfK(t;w) =
∑
lBle

−Clt, then we can take derivative of (40) and obtain

h′(t) =

L∑
l=1

d

dt

(∫ t

−∞
Ble

−Cltx(s) ds
)

=

L∑
l=1

(
Blx(t)−

∫ t

−∞
BlCle

−Cltx(s) ds
)

=

L∑
l=1

(
Blx(t)−Cl

∫ t

−∞
Ble

−Cltx(s) ds
)

=

L∑
l=1

(Blx(t)−Clh(t)).

Time discretization (14) can then be obtained by finite difference in time with normalized step size 1
and proper scaling of the network parameters θ.

B.4 Proof of Theorem 4

Proof. We consider the augmented state ξ and nonlinear dynamics ḡ(·;θ) associated with m and
g(·;θ), defined as follows:

ξ0 =


m0

0
...
0

 , ξ1 = ḡ(ξ0;θ) :=


g1(m0;θ)
g2(m0;θ)

...
gT (m0;θ)

 =


m1

m2

...
mT

 , (41)

where gt stands for the composition of g(·;θ) for t times.

Without overloading the notations, we reuse J and ` of the objective function (18a) and loss function
(17) of m respectively for the augmented state ξ. In addition, following [32], we further simpify
the notation by combining the K training data into a single variable x̂ := [x̂(1), . . . , x̂(K)]; similar
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for the state variable x. In this case, the dynamics g is applied to each column of x, and the loss
function ` is to be interpreted as the average loss as in (17). Furthermore, we temporarily assume
the regularization r(θ) = 0 as it is simple to append θ to the state ξ and merge r(θ) into the loss
function `(ξ, ξ̂). Then the optimal control problem (18) is rewritten as

min
θ

J (θ) := `(ξ, ξ̂) + r(θ) (42a)

s.t. ξ1 = ḡ(ξ0;θ), ξ0 = [m0;0; . . . ;0]. (42b)

Note that (42) is a one-step optimal control with ḡ(·;θ). Now by the discrete Pontryagin’s Maximum
Principle [2], for the state ξ∗ optimally controlled by θ∗, there exists a co-state ψ∗, such that ξ∗ and
ψ∗ satisfy the following forward and backward equations for θ = θ∗:

ξ∗1 = ḡ(ξ∗0 ;θ∗), ξ∗0 = [m0;0; . . . ;0], (43a)

ψ∗0 = ψ∗1 · ∇ξḡ(ξ∗1 ;θ∗), ψ∗1 = −∇ξ`(ξ∗1 , ξ̂), (43b)

where

ξ∗1 = [m∗1; . . . ;m∗T ] and ψ∗1 = [∂m1
`(ξ∗1 , ξ̂); . . . ; ∂mT

`(ξ∗1 , ξ̂)] = [p∗1; . . . ;p∗T ]. (44)

In addition, θ∗ maximizes the HamiltonianH associated with (43):

H(ξ∗,ψ∗;θ∗) ≥ H(ξ∗,ψ∗;θ), ∀θ, where H(ξ,ψ;θ) := ψ1 · ḡ(ξ0;θ)− r(θ). (45)

Combining (44), (45), and the definition of H in (19) yields the maximization of total Hamiltonian at
the optimal control θ∗:∑T−1

t=0 H(m∗t ,p
∗
t+1;θ∗) ≥

∑T−1
t=0 H(m∗t ,p

∗
t+1;θ), ∀θ.

For any control θ and its state and co-state variables ξθ and ψθ following (43) with θ (also corre-
sponding tomθ

t and pθt for t = 0, . . . , T ), we have

∇θJ (θ) = ∇ξ`(ξθ1 , ξ̂) · ∇θξθ1 +∇θr(θ)

= [∂m1
`(ξθ1 , ξ̂); . . . ; ∂mT

`(ξθ1 , ξ̂)] · [∂θg(mθ
0 ;θ); . . . ; ∂θg(mθ

T−1;θ)] +∇θr(θ)

= −
∑T
t=1

(
pθt · ∂θg(mθ

t ;θ) + 1
T∇θr(θ)

)
= −

∑T
t=1 ∂θH(mθ

t ,p
θ
t+1;θ),

which completes the proof.

C Additional Related Work

Network structure inference Inference of diffusion network structure is an important problem
closely related to influence estimation. In particular, if the network structure and infections rates are
unknown, one often needs to first infer such information from a training dataset of sampled cascades,
each of which tracks a series of infection times and locations on the network. Existing methods have
been proposed to infer network connectivity [18, 45, 33, 14] and also the infection rates between
nodes [37, 17, 19]. Submodular optimization is applied to infer network connectivity [18, 45, 33]
by considering the most probable [18] or all [45, 33] directed trees supported by each cascade. One
of the early works that incorporate spatio-temporal factors into network inference is introduced in
[33]. Utilizing convex optimization, transmission functions [14], the prior probability [37], and the
transmission rate [17] over edges are inferred from cascades. In addition to static networks, the
infection rates are considered but also in the unobserved dynamic network changing over time [19].
Besides cascades, other features of dynamical processes on networks have been used to infer the
diffusion network structures. To avoid using predefined transmission models, the statistical difference
of the infection time intervals between nodes in the same cascade versus those not in any cascade
was considered in [46]. A given time series of the epidemic prevalence, i.e., the average fraction of
infected nodes was applied to discover the underlying network. The recurrent cascading behavior is
also explained by integrating a feature vector describing the additional features [50]. A graph signal
processing (GSP) approach is developed to infer graph structure from dynamics on networks [35, 11].
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D Experiment Supplements

D.1 Implementation details

In our NMF implementation, we use a standard LSTM architecture and 3 dense layers for the RNN ε
at each time t. Regularization terms using l1-norm of all parameters are added to the loss function
to promote their sparsity and robustness. Specifically, we use 0.001 to weightA and 0.0001 to all
other trainable parameters, respectively. The NMF networks are trained and tested in TensorFlow
[1] using Adam optimizer with default parameters (lr=0.001, β1=0.9, β2=0.999, ε=1e-8) on a Linux
workstation with Intel 8-Core Turbo 5GHz CPU, 64GB of memory, and an Nvidia RTX 2080Ti GPU.
The LSTM model is trained and tested in the same setting as NMF except a fixed regularization
weight 0.001 for all trainable parameters. InfluLearner is trained in Matlab, and the number of
features is set to 128. All experiments are performed on the same machine. Given ground truth node
infection probability x∗, the Mean Absolute Error (MAE) of influence (Inf) and infection probability
(Prob) of estimated x are defined by |1 · (xt − x∗t )| and ‖xt − x∗t ‖1/n for every t, respectively.

D.2 Inference of node interdependencies

Due to its highly interpretable structure, NMF can also learn the node inter-dependencies through
A. In addition to the quantitative evaluations provided in Section 4, we show the visual appearance
of A inferred by NMF in Figure 3. The ground truth A∗ and A inferred by NETRATE are also
provided for comparison. As we can see,A inferred by NMF is much more faithful toA∗ than that
by NETRATE. Note that NETRATE requires knowledge of specific diffusion model type (Rayleigh
in this test) whereas NMF does not. This result shows that NMF is versatile and robust when only
cascade data are available.

(a) True (b) NETRATE (c) NMF

Figure 3: Ground truthA∗ (left) andA inferred NETRATE (middle) and NMF (right) under the same
color scale using cascaded data from a Hierarchical network with Rayleigh diffusion model.

D.3 Accuracy and Scalability

Accuracy for networks of increasing sizes We test NMF on networks of increasing sizes up to
n=2,048 with |E| = 2n for each n using Hierarchical network and exponential diffusion model on
cascade data containing 10,000 cascades. We also generate 100 extra cascades with 20%-validation
and 80%-test. Figure 4 (a)–(b) shows the MAE of influence (Inf) and infection probability (Prob)
estimated by NMF versus time for varying n, which indicate that the error remains low for large
networks.

Scalability We compare NMF to InfluLearner in terms of runtime for the influence estimation. For
InfluLearner, we draw 200 features. For NMF, the batch size of training cascade data is set to 50 for
the network with more than 2,048 nodes, and is 100 for smaller networks. The training is terminated
when the average MAE of infection probability on validation data does not decrease for 20 epochs.
Figure 4 (c) shows the comparison on runtime (in seconds) of training as we increase the network
size n in InfluLearner and NMF. Note that the original implementation of InfluLearner [12] is in
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Matlab and the computational time increases drastically in network density, whereas our method
retains similar runtime regardless of network density.
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Figure 4: (a)–(b) MAE of influence (Inf) and infection probability (Prob) estimated by NMF for
Hierarchical networks with increasing network sizes from 256 to 2048. (c) runtime (in seconds) for
training versus network sizes in log-log scale.

D.4 Additional results of infection probability estimation

We test a total of 9 combinations of network structures and diffusion models. Specifically, we generate
Hierarchical (Hier), Core-periphery (Core), and Random (Rand) networks, and use Exponential
(Exp), Rayleigh (Ray) and Weibull (Wbl) diffusion models on each of these networks. All scale and
shape parameters are drawn from Unif[0.1, 1] and Unif[1, 10], respectively. Here we stretch NMF
and apply to Weibull diffusion model even it has two parameters for each edge. The experiment
setting and evaluation metrics are the same as in Section 4. The MAE of influence and node infection
probabilities are shown in Figure 5, which shows that NMF consistently performs well with low
estimation error after trained by cascade data. Again, it is worth noting that InfluLearner requires the
identity of source node for every infection in the entire cascade during training, which is generally
not available in practice nor needed in NMF.
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(a) Hier + Exp
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(b) Hier + Ray
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(c) Hier + Wbl
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(d) Core + Exp
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(e) Core + Ray
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(f) Core + Wbl
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(g) Rand + Exp
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(h) Rand + Ray
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Figure 5: MAE of influence (top) and node infection probability (bottom) by LSTM, InfluLearner,
and NMF on each of the 9 different combinations of Hierarchical (Hier), Core-periphery (Core)
and Random (Rand) networks, and exponential (Exp), Rayleigh (Ray) and Weibull (Wbl) diffusion
models. Mean (centerline) and standard deviation (shade) over 100 tests are shown.
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