
We sincerely thank all reviewers for your interest in the paper and the insightful reviews!1

[Responses to R#1] Q1. Can we estimate the bounds from data? Yes! This is an important question, and we will add2

a new corollary stating that all our bounds can be computed from data. In fact, obtaining a preliminary estimate onL∗ is a3

step within our two-stage procedure for the variance-dependent rate (see lines 167-172). A very similar analysis answers4

this question: we can simply use L̂∗ := Pn`(ĥERM; z) to estimate L∗, and use V̂∗ := Pn[`(ĥERM; z)2]− Pn`(ĥERM; z)5

to estimate V∗. Furthermore, we can reuse the samples for pure evaluation purpose. Similar to the inequality above line6

181, we can bound both (L̂∗−L∗)2 and |V̂ −V∗| by O(r∗). This precision is enough to rewrite our original bounds by7

L̂∗ and V̂∗, with other quantities unchanged in order. Q2. Do we require more efforts to find ψ? We first note that8

all previous analyses also require knowing ψ because they rely on knowledge of r∗—the fixed point of Bψ (see lines9

162-166). When one know the covering numbers, one standard choice of ψ is Dudley’s integral used in Examples 1,2.10

These illustrate that there is little additional efforts in this identification. Q3. ψ is dependent on n? Yes, by definition11

one must take different ψ for different n (e.g., when taking n→∞, ψ should be 0). The standard notion “Rademacher12

complexity" also depends on fixed n. Notation. We will clarify that a ∨ b = max{a, b} in the preliminaries.13

[Response to R#2] Q2. Can the bounds be descirbed for neural networks? Yes, though the description contains14

eigenvalues that are hard to compute analytically. Our theory systematically provides improved problem-dependent rates15

as long as one can find good ψ and the class is rich. A line of recent works on infinitely wide neural networks consider16

the equivalence between the prediction function found by gradient descent, and the RKHS induced by the “Neural17

Tangent Kernel." Many of these works explicitly express the resulting kernel matrix, so our theorems are applicable as18

illustrated in Example 3. However, our bounds contain eigenvalues of the kernel matrix, and it is difficult to assess their19

decay pattern without further analysis. Q2. Explain why traditional analysis is optimal for parametric classes? We20

will add the following explanation under line 100. Due to the conceptual proof (2.6), the gap between our result and21

the traditional analysis originates from the “sub-root" inequality ψ(r; δ)/
√
r ≤ ψ(r∗; δ)/

√
r∗, which is true for all22

sub-root ψ. This inequality becomes an equality when ψ(r; δ) = O(
√
dr/n) in the parametric case. However, when23

F is rich, ψ(r; δ)/
√
r will be strictly decreasing so that the “sub-root" inequality can be loose (e.g., in Example 1,24

ψ = O(
√
r1−ρ/n) so that

√
ψ(r; δ)/

√
r = O(

√
1/(n · rρ)). The richer F is, the more improvement from our theory.25

Writing. We will reorganize Sections 2-3, and do our best to make the comparison in Section 6 clearer.26

[Responses to R#3] We are glad to see your appreciation of our machinery! We hope our techniques can become27

standard tools to prove adaptive generalization error bounds. Q1. Trade-off between optimality and practicality?28

There is indeed a trade-off between statistical performance and computation. Similar to majority of previous works29

[12, 18, 5], our moment-penalized estimator does not preserve convexity of the population risk, while ERM and the30

estimator in [16] do preserve that convexity. In our answer to R#1’s Q1, we explain how to compute the bounds from31

data. When choosing among different estimators, one can estimate different bounds to decide whether the added price of32

optimization results in suitable gains to make it worthwhile. Q2. Optimality of our results? A short answer is that, both33

our variance-dependent rate and loss-dependent rate exhibit optimal direct dependence on n when the excess loss class34

satisfies standard metric entropy growth conditions. For example, when logN (ε, ` ◦H − ` ◦ h∗;L2(Pn)) ≤ O(ε−2ρ)35

for a fixed ρ ∈ (0, 1), both rates match the optimal direct dependence on n given by Dudley’s integral. Judging36

whether the variance-dependent rate is optimal in all regimes requires constructing a particular class of problems where37

Var[`(h∗; z)] = V∗. Although we strongly believe it can be done under a suitable minimax framework, we do not have38

a rigorous proof yet. Our loss-dependent rate is proposed for the particular algorithm ERM so the minimax framework39

requires further restrictions.40

[Responses to R#4] Thank you for your throughout reading! The typo list is very helpful, and we will carefully check41

the whole manuscript. There are indeed typos on the B factor, but all our rates are actually sharp on B. The generic42

correction is: our loss/variance-dependent rates are ψ(V∗; δ) ∨ r∗

B ∨
B log(1/δ)

n and ψ(BL∗; δ) ∨ r∗

B ∨
B log(1/δ)

n ; the43

previously best known loss/variance-dependent rates are
√
L∗r∗/B∨ r∗

B ∨
B log(1/δ)

n and
√
V∗r∗/B2∨ r∗

B ∨
B log(1/δ)

n .44

Q1. Pf in inequality (2.6)? We agree that it is better and clearer to firstly write Pf in the last term of (2.6), then45

explains that Pf is close to Pnf when evaluated at a fixed f , and finally contrast this term to the result of the traditional46

analysis. Q2. Comparison in line 144? In line 207 we explain that for most classes of interests, r∗ will be at least of47

order B
2

n (this is the order of r∗ for a one-dimensional class). We will explain this before line 144 so that we only need48

to compare the orders of BL∗ and r∗. On Theorem 2 and line 209. In the result of Theorem 2 we should correct r∗ to49

r∗/B, and line 209 is correct (see our generic correction). Indeed, as r∗ is the fixed point of Bψ, whenever one want to50

take it outside ψ, the order should be r∗

B . Correction to VC classes. That term should be corrected to log(B2/V∗),51

and the regime in which we improve all known results is actually B2/(log n)α ≤ V∗ with arbitrary fixed α > 0. Still,52

this is the first result that closes the notorious O(log n) gap without invoking any further assumptions onH (e.g., the53

complicated “capacity function" assumption in [5]). However, as richer classes exhibit much more improvements, we54

will shorten the discussion on VC classes and expand the discussion on kernel classes.55


