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Abstract

The squared Wasserstein distance is a natural quantity to compare probability
distributions in a non-parametric setting. This quantity is usually estimated with
the plug-in estimator, defined via a discrete optimal transport problem which can be
solved to ε-accuracy by adding an entropic regularization of order ε and using for
instance Sinkhorn’s algorithm. In this work, we propose instead to estimate it with
the Sinkhorn divergence, which is also built on entropic regularization but includes
debiasing terms. We show that, for smooth densities, this estimator has a com-
parable sample complexity but allows higher regularization levels, of order ε1/2,
which leads to improved computational complexity bounds and a strong speedup
in practice. Our theoretical analysis covers the case of both randomly sampled
densities and deterministic discretizations on uniform grids. We also propose and
analyze an estimator based on Richardson extrapolation of the Sinkhorn divergence
which enjoys improved statistical and computational efficiency guarantees, under a
condition on the regularity of the approximation error, which is in particular satis-
fied for Gaussian densities. We finally demonstrate the efficiency of the proposed
estimators with numerical experiments.

1 Introduction

Certain tasks in machine learning (implicit generative modeling [41], two-sample testing [50],
structured prediction [25]) and imaging sciences (shape matching [31], computer graphics [9])
require to quantify how much two probability densities µ, ν ∈ P(Rd) differ. The squared Wasserstein
distance W 2

2 (µ, ν) (defined below) is often well suited for this purpose because of its appealing
geometrical properties [57, 52, 46] but it also raises important statistical and computational challenges.
Indeed, in many practical settings, µ and ν are only accessed via empirical or discretized measures
µ̂n, ν̂n composed of n atoms. A standard workaround is to use the plug-in estimator W 2

2 (µ̂n, ν̂n),
but although it is efficient when µ and ν are discrete [55, 56], this estimator suffers from the curse
of dimensionality when µ and ν have densities [59, Cor. 2], with an estimation error that scales
as n−2/d as we show in Section 3. Moreover, solving the discrete optimal transport problem is
computationally demanding when n is large, with a time complexity bound scaling as n2 log(n)/ε2

to reach ε-accuracy with Sinkhorn’s algorithm [20, 2]. These drawbacks give a strong motivation to
define and study alternative estimators for W 2

2 (µ, ν) when µ and ν admit smooth densities.

Entropic regularization of optimal transport. In this paper, we consider instead estimators based
on the idea of entropic regularization of optimal transport [61, 21, 36, 16]. When µ and ν have finite
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second moments, the entropy regularized optimal transport cost is defined as

Tλ(µ, ν)
def.
= min

γ∈Π(µ,ν)

∫
(Rd)2

‖y − x‖22 dγ(x, y) + 2λH(γ, µ⊗ ν) (1)

where Π(µ, ν) is the set of transport plans between µ and ν, λ ≥ 0 is the regularization parameter,
and H(γ, µ ⊗ ν) is the entropy of γ with respect to the product measure µ ⊗ ν (see details in the
Notations paragraph). The squared Wasserstein distance is defined asW 2

2 (µ, ν)
def.
= T0(µ, ν). Entropic

regularization has been popularized as a method to compute W 2
2 (µ̂n, ν̂n) efficiently or simply as a

different notion of discrepancy between measures. In contrast, we use it as a tool to directly estimate
W 2

2 (µ, ν). For this purpose, the choice Tλ(µ̂n, ν̂n) is not ideal because its large bias requires to set λ
to a small value, leading to computational difficulties.

The proposed estimators. The first estimator that we consider is Ŝλ,n = Sλ(µ̂n, ν̂n) where Sλ is
the Sinkhorn divergence [50] defined as

Sλ(µ, ν)
def.
= Tλ(µ, ν)− 1

2

(
Tλ(µ, µ) + Tλ(ν, ν)

)
. (2)

In previous work [23], the debiasing terms have been theoretically justified as a mean to have
Sλ(µ, ν) ≥ 0 with equality when µ = ν, a property not satisfied by Tλ. In the present work, we
show that they in fact allow, under regularity assumptions, to approximate W 2

2 (µ, ν) with an error
of order λ2, instead of λ log(1/λ) for the uncorrected quantity Tλ. We also consider the estimator
R̂λ,n = Rλ(µ̂n, ν̂n) where Rλ is built from Sλ via Richardson extrapolation as

Rλ(µ, ν)
def.
= 2Sλ(µ, ν)− S√2λ(µ, ν). (3)

This estimator has a smaller approximation error in o(λ2) and potentially in O(λ4) under restrictive
regularity assumptions.

Contributions. We make the following contributions:

– In Section 2, we exploit the dynamical formulation of (1) to show that |Sλ(µ, ν) −
W 2

2 (µ, ν)| ≤ λ2I where I depends on the Fisher information of µ, of ν and of the W2-
geodesic connecting them. We also give a second-order expansion of this approximation
error and detail several situations where I admits a priori bounds.

– In Section 3.1, we prove a sample complexity bound for the plug-in estimator W 2
2 (µ̂n, ν̂n)

of order n−2/d which has a tight exponent in contrast to the previously known rate n−1/d.
This is the baseline rate against which we compare the performance of Ŝλ,n and of R̂λ,n.

– In Section 3.2, we study the performance of the Sinkhorn divergence estimator Ŝλ,n given
independent samples. We show that when λ is properly chosen, it enjoys comparable sample
complexity bounds and improved computational guarantees in a certain sense. We also study
the performance when the marginals are discretized on a uniform grid in Section 3.3.

– In Section 4, we study estimators based on Richardson extrapolation such as R̂λ,n. Under
an abstract and stronger regularity assumption, this estimator enjoys better computational
and sample complexity bounds than the plug-in estimator. We discuss this assumption and
show that it is satisfied for Gaussian densities.

– In Section 5, we perform numerical experiments that confirm the benefits of the proposed
estimators and suggest that our theoretical results could be extended in several ways.

Previous Works. Without additional assumptions, no estimator achieves better statistical rates than
the plug-in estimator [44, Thm. 3]. Recent breakthroughs in statistical optimal transport [60, 33] have
shown that other estimators can exploit smoothness assumptions to attain faster and nearly minimax
estimation rates for W2 or the dual potentials, but they are a priori not computationally efficient. In
contrast, our goal in this paper is to improve the computational efficiency of estimating W 2

2 (µ, ν)
and we are not aiming at statistical optimality.

The idea of entropic regularization has a long history in computational optimal transport. It has been
shown in [2, 20] that solving Tλ(µ̂n, ν̂n) to ε-accuracy requires O(n2/(λε)) arithmetic operations
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using Sinkhorn’s algorithm if the domain is bounded (see Appendix B). We use this bound in our
discussions on computational complexity because it cleanly quantifies how harder the problem
becomes as λ becomes smaller and also because Sinkhorn’s algorithm is simple to implement and
widely used in practice. Choosing λ � ε/ log(n) allows in turn to estimateW 2

2 (µ̂n, ν̂n) to ε-accuracy
in O(n2 log(n)/ε2) operations [20]. There are however various algorithms with better guarantees
both for the regularized [20, 1, 13] and the unregularized problem [37, 47, 7]. In our numerical
experiments, we use Sinkhorn’s iterations combined with Anderson’s acceleration [3, 53], which in
practice strongly speeds up convergence.

In front of the difficulty to estimate W 2
2 (µ, ν), researchers have also turned their attention to similar

but more tractable discrepancy measures such as the sliced Wasserstein distance [49] or the Sinkhorn
divergence [50], which can be both estimated at the parametric rate [26, 40, 39, 42]. However, there
is “no free lunch” and unconditional statistical efficiency comes at the price of lack of adaptivity
and discriminative power. In particular, it is known that when λ → ∞, Sλ(µ, ν) converges to the
squared distance between the expectations of µ and ν, which is a degenerate form of Kernel Mean
Discrepancy [27, 23]. This shows that the discriminative power of Sλ decreases as λ increases, but
this phenomenon is not yet well understood nor quantified. From a theoretical viewpoint, we thus
believe that seeing Sλ as an estimator for W 2

2 allows to clarify the trade-offs at play in the choice of
λ between the statistical, approximation and computational errors.

Notations. For two probability measures µ, ν ∈ P(Rd), we denote by Π(µ, ν) the set of transport
plans between µ and ν, which is the set of measures γ ∈ P(Rd × Rd) with marginal µ (resp. ν)
on the first (resp. second) factor of Rd × Rd. The quantity H(µ, ν) is the entropy of µ relative
to ν, defined as H(µ, ν)

def.
=
∫

log(dµ/dν)dµ when µ is absolutely continuous with respect to ν,
and +∞ otherwise. When µ has a density with respect to the Lebesgue measure, written µ(x),
we define H(µ)

def.
=
∫

log(µ(x))µ(x)dx its entropy relative to the Lebesgue measure. Finally,
µ⊗ ν ∈ P(Rd×Rd) is the product measure characterized by (µ⊗ ν)(A×B) = µ(A)ν(B) for any
pair of Borel sets A,B ⊂ Rd.

2 Refined approximation bound for the Sinkhorn divergence

In this section, we study the approximation error of Sλ. To this goal, we leverage the dynamical
formulation of entropic optimal transport [12, 28, 30, 14] which states that, for µ, ν ∈ P(Rd)
absolutely continuous probability measures with compact support,

Tλ(µ, ν) + dλ log(2πλ) + λ(H(µ) +H(ν)) =

inf
ρ,v

∫ 1

0

∫
Rd

(
‖v(t, x)‖22 +

λ2

4
‖∇x log(ρ(t, x))‖22

)
ρ(t, x) dx dt , (4)

where the infimum is taken over time-dependent probability measures ρ(t, x) that interpolate between
µ at t = 0 and ν at t = 1, and time-dependent vector fields v(t, x) under the continuity equation
constraint ∂tρ(t, x) + div(ρ(t, x)v(t, x)) = 0 where div is the usual divergence operator. The first
term in the r.h.s. of Eq. (4) is the kinetic energy and the second is the Fisher information integrated in
time. For λ ≥ 0, there exists a unique minimizer of the r.h.s. [30] denoted by ρλ and we define

Iλ(µ, ν)
def.
=

∫ 1

0

∫
Rd
‖∇x log(ρλ(t, x))‖22 ρλ(t, x) dxdt . (5)

Remark that I0(µ, µ) is the Fisher information of µ and I0(µ, ν) is the Fisher information of the
Wasserstein geodesic between µ and ν. Building on [14], we next show that the Sinkhorn divergence
approximates W 2

2 (µ, ν) with an error in O(λ2), as suggested by Eq. (4).

Theorem 1. Assume that µ, ν ∈ P(Rd) have bounded densities and supports. It holds∣∣Sλ(µ, ν)−W 2
2 (µ, ν)

∣∣ ≤ λ2

4
max

{
I0(µ, ν), (I0(µ, µ) + I0(ν, ν))/2

}
.

If moreover I0(µ, ν), I0(µ, µ), I0(ν, ν) <∞ then

Sλ(µ, ν)−W 2
2 (µ, ν) =

λ2

4

(
I0(µ, ν)− (I0(µ, µ) + I0(ν, ν))/2

)
+ o(λ2).
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Proof. Denote the right-hand side of (4) by Jλ2(µ, ν) and note that Sλ(µ, ν) − W 2
2 (µ, ν) =

(Jλ2(µ, ν) − J0(µ, ν)) − (Jλ2(µ, µ) + Jλ2(ν, ν))/2 and J0(µ, µ) = J0(ν, ν) = 0. Since ρ0 is
feasible in Eq. (4), we have J0(µ, ν) ≤ Jλ2(µ, ν) ≤ J0(µ, ν) + (λ2/4)I0(µ, ν), hence the bound.
For the second claim, we prove in Appendix A (Lemma 1) that the right derivative at 0 of σ 7→ Jσ is
1
4I0(µ, ν), which justifies the Taylor expansion.

The Fisher information of µ or ν can be bounded by assuming regularity of the densities, but bounding
I0(µ, ν) is more subtle. Next, we bound I0(µ, ν) assuming regularity on the Brenier potential ϕ,
which is the convex function such that ∇ϕ is the optimal transport map from µ to ν [52].
Proposition 1. Let µ, ν ∈ P(Rd) be absolutely continuous with compact support. Assume that
the Brenier potential ϕ has a Hessian satisfying 0 ≺ κId � ∇2ϕ � KId and that ∇2ϕ is L-
Lipschitz continuous, then I0(µ, ν) ≤ 2κ−1(I0(µ, µ) + κ−2L2/3) . In particular, if ϕ is quadratic
then I0(µ, ν) ≤ 2κ−1I0(µ, µ). If d = 1, then I0(µ, ν) ≤ 2

3 (κ−1I0(µ, µ) +KI0(ν, ν)) .

Sufficient conditions on the densities of µ and ν to guarantee bounds on∇2ϕ are known (e.g. bounds
on their first derivative and on their log-densities over their convex support [17, Thm 3.3]). However,
the assumption that ∇2ϕ is Lipschitz continuous is more demanding and potentially not sharp as it
can be avoided when d = 1. Note that the Brenier potential ϕ is quadratic whenever the densities
are in the same family of elliptically contoured distributions [6]. For Gaussian densities, we show in
Appendix A that I0(µ, ν) admits an explicit expression, given in Section 4.

3 Performance analysis of the Sinkhorn divergence estimator

In this section, we discuss the performance of the Sinkhorn divergence estimator in two situations:
when we observe independent samples or when we have access to discretized densities. But first, we
study the plug-in estimator, which is the baseline against which our estimators are compared.

3.1 Analysis of the plug-in estimator

A tighter statistical bound for the plug-in estimator. Let us first study the rate of convergence
of W 2

2 (µ̂n, ν̂n) towards W 2
2 (µ, ν) where µ̂n and ν̂n are empirical distributions of n independent

samples. This is well-studied in the case µ = ν, but the case µ 6= ν was not specifically covered in
the literature except for discrete measures [55].
Theorem 2. If µ, ν ∈ P(Rd) are supported on a set of diameter 1 then it holds

E
[
|W 2

2 (µ̂n, ν̂n)−W 2
2 (µ, ν)|

]
.


n−2/d if d > 4,
n−1/2 log(n) if d = 4,
n−1/2 if d < 4,

where the notation . hides constants that only depend on the dimension d. Also, this estimator
concentrates well around its expectation, in the sense that for all t ≥ 0,

P
[
|W 2

2 (µ̂n, ν̂n)−E[W 2
2 (µ̂n, ν̂n)]| ≥ t

]
≤ 2 exp(−nt2).

To prove this result in Appendix C, we first upper bound the expected error by the Rademacher
complexity of a certain set of convex and Lipschitz functions. We use Dudley’s chaining and a bound
on the covering number of this set of functions due to Bronshtein [10] to conclude. The concentration
bound is already present in a similar form in [59, Prop. 20]. When µ = ν, this bound is well-known
and has a sharp exponent [59, 54, 8, 19, 24]. However, perhaps surprisingly, this result implies that
the plug-in estimator W2(µ̂n, ν̂n) (without the square) converges at the rate n−2/d when µ 6= ν,
while only a bound in n−1/d (the rate when µ = ν) was known. This is the content of the following
corollary. See Figure 1 for a numerical illustration of these rates.
Corollary 1. Assume that µ, ν are supported on a set of diameter 1 and satisfy W2(µ, ν) ≥ α > 0.
Then E

[
|W2(µn, νn)−W2(µ, ν)|

]
enjoys the bound given in Theorem 2 multiplied by 1/α.

Proof. It is sufficient to take expectations in the following inequality :

|W2(µ̂n, ν̂n)−W2(µ, ν)| = |W
2
2 (µ̂n, ν̂n)−W 2

2 (µ, ν)|
W2(µ, ν) +W2(µ̂n, ν̂n)

≤ 1

α
|W 2

2 (µ̂n, ν̂n)−W 2
2 (µ, ν)|.
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Figure 1: Estimation error of the plug-in estimator for µ, ν compactly supported with d = 5 (as
detailed in Appendix G). Left: error on the cost W 2

2 has rate n−2/d (Theorem 2). Right: error on W2

has rate n−1/d if µ = ν and n−2/d if µ 6= ν (Corollary 1) with Eµ[x] = 0 and Eν [x] = (1, . . . , 1).

Computational complexity via Sinkhorn’s algorithm. In previous work [2, 20], solving
Tλ(µ̂n, ν̂n) with λ > 0 has been studied as a computationally efficient way to compute T0(µ̂n, ν̂n)
and related quantities. One standard algorithm to compute Tλ is Sinkhorn’s algorithm, which can
be interpreted as alternate block maximization on the dual of Eq. (1), see Appendix B. Given two
discrete marginals µ̂n =

∑n
i=1 piδxi and ν̂n =

∑n
i=1 qjδyj , let us define the cost matrix with entries

ci,j = 1
2‖xi − yj‖

2
2. The iterates u(k), v(k) ∈ Rn, k ≥ 1 of Sinkhorn’s algorithm are defined as

follows: let v(0) = 0 ∈ Rn and let

u
(k)
i = −λ log

( n∑
j=1

e(v
(k−1)
j −ci,j)/λqj

)
and v

(k)
j = −λ log

( n∑
i=1

e(u
(k)
i −ci,j)/λpi

)
. (6)

An estimate for T̂λ,n
def.
= Tλ(µ̂n, ν̂n) is then given by T̂ (k)

λ,n = 2
∑n
i=1 u

(k)
i pi+v

(k)
i qi. These iterations

enjoy the following guarantee, proved in [20] (see details in Appendix B).

Proposition 2. It holds |T̂ (k)
λ,n − T̂λ,n| ≤ 2‖c‖2∞/(λk) where ‖c‖∞ = maxi,j ‖xi − yj‖22/2.

In particular, taking into account the fact that each iteration requires O(n2) arithmetic operations,
Sinkhorn’s algorithm returns an ε-accurate estimation of T̂λ,n in time O(n2‖c‖2∞/(λε)). Moreover,
if α > 0 is such that pi, qj ≥ α/n, we have the approximation bound |T̂λ,n − T̂0,n| ≤ 4λ log(n/α)
which follows by bounding the relative entropy of admissible transport plans [2]. By fixing
λ = ε/4(log(n/α)), we thus obtain an ε-accurate estimation of T̂0,n in O(n2 log(n/α)‖c‖2∞/ε2)
operations. As a consequence, by combining Theorem 2 and Proposition 2, we can thus give the
following computational complexity bound to estimate W 2

2 (µ, ν) given random samples that takes
into account the number of samples and the regularization level required to reach a certain accuracy.

Proposition 3. Assume that µ, ν are supported on a set of diameter 1. Using T̂ (k)
λ,n, an ε-accurate

estimation of W 2
2 (µ, ν) is achieved with probability 1− δ in Õ(ε−max{6,d+2}) operations, where Õ

hides poly-log factors in 1/ε and 1/δ.

Proof idea. We write W 2
2

def.
= W 2

2 (µ, ν), Ŵ 2
2

def.
= W 2

2 (µ̂n, ν̂n) and consider the error decomposition

|T̂ (k)
λ,n −W

2
2 | ≤ |T̂

(k)
λ,n − T̂λ,n|+ |T̂λ,n − Ŵ

2
2 |+ |Ŵ 2

2 −E[Ŵ 2
2 ]|+ E|Ŵ 2

2 −W 2
2 ]|

where each term has been bounded in the previous discussion, see details in Appendix C.

3.2 Performance of the Sinkhorn divergence estimator given random samples

Statistical performance. Let us now turn to our object of interest which is the Sinkhorn divergence
estimator Ŝλ,n

def.
= Sλ(µ̂n, ν̂n), defined from n independent samples from µ and ν. We note that all the

results in this section also apply to the estimator Tλ(µ̂n, ν̂n)− (Tλ(µ̂n/2, µ̂
′
n/2) +Tλ(ν̂n/2, ν̂

′
n/2))/2

where µ̂n/2 (resp. µ̂′n/2) is the empirical distribution of the first (resp. second) half samples from µ

(assuming n even for conciseness), which is a natural alternative definition. The following result
gives the expected error of the estimator Ŝλ,n.
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Proposition 4. Let µ, ν be supported on a set of diameter 1 and assume that |Sλ(µ, ν)−W 2
2 (µ, ν)| ≤

λ2I for some I > 0 (see guarantees in Section 2). Then, with the choice λ = n
−1
d′+4 , it holds

E
[
|Ŝλ,n −W 2

2 (µ, ν)|
]
. n

−2
d′+4 .

where d′ = 2bd/2c and . hides a constant depending only on I and d. Also, this estimator concen-

trates well around its expectation: for all t, λ ≥ 0, P
[
|Ŝλ,n −E[Ŝλ,n]| ≥ t

]
≤ 2 exp(−nt2/4).

Observe that when d is large, the exponent −2/(d′+ 4) is equivalent to −2/d which is the rate of the
plug-in estimator as shown in Theorem 2. However, except for d = 1, this exponent is slightly worse
and we believe that this is due to a weakness in our bound. In fact, in our numerical experiments we
observe that Ŝλ,n is in fact more statistically efficient than the plug-in estimator (cf. Figure 2).

Computational performance. An ideal theoretical goal would be to exhibit a computational
advantage for using Ŝλ,n in the sense of Proposition 3, but unfortunately the statistical bound in
Proposition 4 is not strong enough to allow for such a result. Still, there is a clear computational
advantage in using Ŝλ,n which is that to attain an accuracy ε, it requires a regularization level λ of
order ε1/2 instead of ε for the plug-in estimator. This advantage can be formalized as follows, where
Ŝ

(k)
λ,n is the estimation of Ŝλ,n obtained after k Sinkhorn’s iterations.

Proposition 5. Under the assumptions of Proposition 4, an ε-accurate estimation of W 2
2 (µ, ν) can

be obtained with probability 1− δ in Õ(ε−(d′+5.5)) computations via Ŝ(k)
λ,n where d′ = 2bd/2c and

Õ hides a poly-log factor in 1/δ. Given n samples, both estimators can achieve with probability
1− δ an accuracy ε � n−2/(d′+4), but in time Õ(n2ε−1.5) via Ŝ(k)

λ,n and in time Õ(n2ε−2) via T (k)
λ,n.

Proof idea. For T̂ (k)
λ,n, we consider the error decomposition of Proposition 3, while for Ŝ(k)

λ,n, we write

|Ŝ(k)
λ,n −W

2
2 | ≤ |Ŝ

(k)
λ,n − Ŝλ,n|+ |Ŝλ,n −E[Ŝλ,n]|+ E|Ŝλ,n − Sλ|+ |Sλ −W 2

2 |.

The key difference with the decomposition in the proof of Proposition 3 is that the error induced
by the entropic regularization is bounded on the population quantities instead of the empirical ones.
These terms have been bounded in the previous discussion, see details in Appendix D.

3.3 Performance of the Sinkhorn divergence estimator given densities discretized on grids

In this section, we consider the case where the marginals µ and ν are not randomly sampled, but
instead are accessed via their discretized densities which is the common situation in imaging sciences.
We show a stability property of the entropy regularized optimal transport which leads to improved
error bounds compared to the plug-in estimator.

For simplicity, we consider measures on the d dimensional torus Td = (R/Z)d with its usual distance
denoted by ‖[x− y]‖2. For a measure µ ∈ P(Td) its discretization µh at resolution h = 1/m for an
integer m is the discrete measure with n = md atoms supported on the regular grid (Z/mZ)d which
gives to each point the mass of µ on its surrounding cell. The following approximation result suggests
that regularizing the optimal transport problem increases the stability under such a discretization.
Proposition 6 (Stability under discretization). Assume that µ, ν ∈ P(Td) admit M -Lipschitz contin-
uous log-densities and let C > 0 be any constant. If h(M + λ−1) ≤ C then

|Tλ(µh, νh)− Tλ(µ, ν)| . min{h, h2(λ−1 +M + 1)}
where . hides constants that only depend on d and C.

This bound implies an error of order h2 for the entropy regularized problem while it is not known
whether such a bound is possible for λ = 0, where a naive analysis suggests a bound of order h.
When combined with the approximation error and the analysis of Sinkhorn’s iterations, this yields
the following performance guarantees for Sλ(µh, νh) as defined in Eq. (2).

Proposition 7. Assume that µ, ν ∈ P(Td) admit Lipschitz continuous log-densities and that I0(µ, ν)
is finite. We can estimate W 2

2 (µ, ν) to ε-accuracy:
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– with Tλ(µh, νh) in time Õ(ε−(2d+2)) by setting h � ε and λ � ε/ log(1/ε),

– with Sλ(µh, νh) in time O(ε−(3d/2+3/2)) by setting h � ε3/4 and λ � ε1/2.

This result suggests that Sλ(µh, νh) estimates W 2
2 (µ, ν) both faster and more accurately than

Tλ(µh, νh) for their respective optimal λ, and this behavior is observed in numerical experiments
(cf. Figure 4). Our aim with Proposition 7 is to illustrate the potential usefulness of the debiasing
terms beyond the random sampling setting, but we stress that we are just comparing simple upper
bounds which are not intended to be the best possible (in particular, we are not exploiting the fact that
the computational cost of each Sinkhorn iteration could be reduced from O(n2) to O(n log(n)) using
discrete convolutions [5, Sec. 6.3.1]). In fact, in a similar setting, a completely different analysis of
Sinkhorn’s iterations is carried in [5, Cor.1.4], where a time complexity in Õ(ε−(2d+1)) is derived for
Tλ(µh, νh).

4 Towards faster estimation with Richardson extrapolation

The systematic bias induced by the Fisher information terms in Theorem 1 can be removed using
Richardson extrapolation [35, 51], which usefulness in machine learning was recently pointed out
in [4]. This technique consists in taking linear combinations of Sλ for various values of λ > 0 in
order to estimate S0, by cancelling the successive terms of the Taylor expansion of Sλ at 0. Since in
our context the first term of Sλ − S0 is of order λ2, this suggests to define (among other possible
choices) Rλ

def.
= 2Sλ − S√2λ. Indeed, whenever Sλ = S0 + λ2I + o(λ2) for some I ∈ R, such as

under the assumptions of Theorem 1, this quantity satisfies Rλ = S0 + o(λ2).

Efficiency of Rλ under an abstract assumption. A difficulty with Rλ, or other extrapolated
estimators, is that understanding their performance requires a fine understanding of the regularization
path λ 7→ Sλ. By remarking that in Eq. (4), λ appears only via its square after debiasing, we might
conjecture that if Sλ admits a 4th order Taylor expansion at λ = 0, then the third term vanish.
Before giving some arguments in favor of this property, let us state what it implies in terms of the
performance of R̂λ,n = Ŝλ,n − Ŝ√2λ,n, the extrapolation of the estimator Ŝλ,n.

Proposition 8. Assume that µ, ν are compactly supported, that Sλ(µ, ν)−W 2
2 (µ, ν) = λ2I+O(λ4)

for some I ∈ R and let d′ = 2bd/2c. Then with λ � n−1/(d′+8) it holds

E
[
|R̂λ,n −W 2

2 (µ, ν)|
]
. n−4/(d′+8).

Moreover, with probability 1− δ, this estimator returns an ε-accurate estimation of W 2
2 (µ, ν) with

Õ(ε−(d′+11)/2) computations via Sinkhorn’s algorithm where Õ hides poly-log factors in 1/δ.

Proof. We use Lemma 5 to get

E[|R̂λ,n−W 2
2 (µ, ν)|] ≤ E[|R̂λ,n−Rλ(µ, ν)|]+ |Rλ(µ, ν)−W 2

2 (µ, ν)| . (1+λ−d
′/2)n−1/2 +λ4

and optimize the bound in λ. For the last claim we proceed as in the proof of Proposition 3.

Under this abstract assumption, there is thus a clear statistical improvement over the plug-in estimator
for d > 8 and a computational improvement for d > 6. Notice that a similar performance analysis
could be done in the deterministic setting of Section 3.3. In the rest of this section we discuss the
assumption of Proposition 8. First we show that it is satisfied in the Gaussian case and second we
propose formal calculations towards a 4th order Taylor expansion of Tλ.

Gaussian case. Let µ = N (a,A) and ν = N (b, B) be Gaussian probability distributions with
means a, b ∈ Rd and positive definite covariances A,B ∈ Rd×d. In this case, it is well known
that W 2

2 (µ, ν) = ‖a − b‖22 + d2
b(A,B) where d2

b(A,B)
def.
= tr(A) + tr(B) − 2 tr(S) with S =

(A1/2BA1/2)1/2 is the squared Bures distance [6]. More recently, an explicit expression for Tλ(µ, ν)
was derived in [34, 11, 38]. By a Taylor expansion of this expression (see Appendix F), we find that

Sλ(µ, ν)−W 2
2 (µ, ν) = −λ

2

8
d2

b(A−1, B−1) +
λ4

384
d2

b(A−3, B−3) +O(λ5).
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This expansion shows that the hypotheses of Proposition 8 are satisfied (to the exception of the
compactness assumption, but note that sample complexity bounds for Sλ are also known in this
case [40]). Also we can explicitly compute the Fisher information I0(µ, ν) = tr(S−1) (Appendix A)
which shows that the second order term is consistent, as it must, with the expansion in Theorem 1.

Formal fourth order expansion. Denoting Jλ2(µ, ν) the r.h.s. of Eq. (4), we show in Lemma 1
that σ 7→ Jσ admits a right derivative at all σ ≥ 0 which is the Fisher information 1

4I
√
σ(µ, ν) defined

in Eq. (5). Thus, if we assume that σ 7→ I√σ(µ, ν) admits a right derivative I ′0 at 0, then it holds

Tλ(µ, ν) = T0(µ, ν) − dλ log(2πλ) − λ(H(µ) + H(ν)) +
λ2

4
I0(µ, ν) +

λ4

8
I ′0 + o(λ4) ,

where I ′0 = d
d(λ2)Iλ(µ, ν)|λ=0 =

∫ 1

0

∫
Rd(‖∇ log ρ0‖2 − 2∆ρ0/ρ0)δλ2ρλ|λ=0 dx is the variation of

Fisher information in the direction of δλ2ρλ|λ=0+ , the first variation of ρλ w.r.t. λ2. Hence under this
abstract regularity assumption on I√σ(µ, ν), the result of Proposition 8 holds true.

5 Numerical experiments

In this section, we assess the statistical and computational efficiency of the proposed estimators on
synthetic problems2. While this is what our theory controls, the error on the scalar W 2

2 (µ, ν) is not a
suitable quantity to plot as it might vanish spuriously as we vary other parameters (such as n or λ),
which hinders interpretation of the plots (see Appendix G). Instead, we propose to observe a more
stringent and stable quantity, namely the L1 error on the estimated dual potential ϕ, which is the
Lagrange multiplier associated to the first marginal constraint in Eq. (1). This dual potential is the
gradient of W 2

2 (µ, ν) with respect to µ [52, Prop. 7.17], a quantity of high interest when training
machine learning models with W 2

2 as a loss function.

Specifically, given v(k) ∈ Rn obtained after k Sinkhorn’s iterations with discrete marginals µn, νn as
in Eq. (6), we define the function ûµ,ν(x) = −λ log(

∑n
j=1 e

(v
(k)
j −

1
2‖x−yj‖

2
2)/λqj). The quantity we

plot is
∫
|ϕ̂λ,n(x)−ϕ(x)|dµ(x) estimated via Monte Carlo integration or on a fine grid, where ϕ̂λ,n is

defined as follows: (i) ϕ̂λ,n = 2ûµ,ν for the biased estimator T̂λ,n, (ii) ϕ̂λ,n = 2ûµ,ν−(ûµ,µ′+ v̂µ,µ′)

for the debiased estimator Ŝλ,n and (iii) 2ϕ̂λ,n − ϕ̂√2λ,n for the extrapolated estimator R̂λ,n.

Random sampling. Figure 2 shows the approximation error for the estimators Tλ, Sλ and Rλ in
the random sampling setting. Here, µ, ν ∈ P(Rd) with d = 5 are smooth elliptically contoured
distributions with compact support and are such that the optimal potential ϕ is quadratic and admits
a closed-form, as well as the transport cost (see Appendix G). These properties guarantee that the
conclusions of Proposition 4 apply. As expected, for a given λ, Sλ and Rλ have a much smaller
bias than Tλ (left plot). Looking at the performance as a function of λ (middle plot), we see that the
error is minimal for some λ∗ that is much larger than what is needed for Tλ to achieve a comparable
accuracy. Also, choosing the best λ∗ for each n (right panel), we see that Sλ∗ has the same rate as
the plug-in estimator (estimated with Tλ with a small λ), with a better constant. We remark that Rλ
does not converge faster, which does not contradict ours results since we have no guarantee on the
specific quantity plotted here.

Overall, these estimators require less samples and a larger λ to achieve a given accuracy compared
to Tλ, which leads to substantial computational gains. This is illustrated on Figure 3 where for a
target L1 error on the potential, we chose the largest λ and smallest n that achieve this error, with
λ ∈ [0.1, 1] and n ∈ [10, 100000]. We report the computational time using the Sinkhorn’s iterations
of Eq. (6) stopped when the `1-error on the marginals is below 10−5. We observe that for small target
accuracies, the estimators Sλ and Rλ compare favorably to Tλ. In practical settings, one does not
know a priori the best choice for λ, but many machine learning tasks involving W 2

2 come with a
performance criterion, in which case cross-validation can be used to select this parameter.

2The code to reproduce these experiments is available at this webpage https://gitlab.com/
proussillon/wasserstein-estimation-sinkhorn-divergence.
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Figure 2: L1 estimation error on the first potential for µ, ν smooth compactly supported distributions
with d = 5. Left: as function of n for λ = 1. Middle: as a function of λ, for n = 10000. Right: as a
function of n for the optimal λ∗(n). Error bars show the standard deviation on 30 realizations.
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Figure 3: Best computational time achieved by the estimators to reach a given accuracy (after
optimizing over n and λ), for µ, ν smooth compactly supported distributions with d = 5.

Discretization on grids. Figure 4 shows the evolution of the errors for densities (µ, ν) on the 1-D
torus, the setting of Proposition 7. In this case, one can compute efficiently the dual potentials ϕ
using cumulative functions [48]. This figure shows that, as expected, for a fixed (h, λ) the error of Sλ
and Rλ is systematically lower than that of Tλ. Even when selecting the optimal regularization λ?(h)
for each h and for each method (which is a fair comparison), the error of Sλ and Rλ is still lower.
Furthermore, the optimal parameter λ?(h) is systematically larger for Sλ and Rλ. Additional figures
showing visual comparisons of the potentials and their approximations are provided in the appendix.

Figure 4: Left: L1 error on the first potential ϕ as a function of the grid size h, for several value of λ.
Middle: same error, displayed as a function of λ, for several grid sizes h. Right: evolution of the
optimal regularization parameter λ?(h) as a function of the grid size h.

6 Conclusion and open questions

In this paper we have exhibited the usefulness of entropic regularization with debiasing for the
estimation of the squared Wasserstein distance: it may increase both accuracy and efficiency when
the problem has a smooth nature. Numerical experiments suggest that the theory could be extended
in several directions. First, the Sinkhorn divergence estimator appears at least as statistical efficient
as the plug-in estimator, while our bound is slightly weaker. Also, the estimation of Kantorovich
potentials seems to enjoy similar guaranties, but this is not covered by our theory.
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