
Supplementary Material

Supplementary material for the paper: “Faster Wasserstein Distance Estimation with the Sinkhorn
Divergence” authored by Lénaïc Chizat, Pierre Roussillon, Flavien Léger, François-Xavier Vialard
and Gabriel Peyré (NeurIPS 2020). This supplementary material is organized as follows:

• Appendix A contains the proofs of Section 2,
• Appendix B recaps the convergence analysis of [20] to obtain Proposition 2,
• Appendix C contains the proofs of Section 3.1,
• Appendix D contains the proofs of Section 3.2,
• Appendix E contains the proofs of Section 3.3,
• in Appendix F, we derive the Taylor expansion for Gaussian distributions presented in

Section 4,
• finally, Appendix G contains details on the settings of the numerical experiments and

additional figures.

A Bounds on the approximation error

Dynamic entropy regularized optimal transport. Let us first justify how to obtain Eq. (4) since
our conventions are slightly different than in [14]. In that reference, for µ and ν absolutely continuous
with compact support, the authors define

λCλ(µ, ν) = min
γ∈Π(µ,ν)

λH(γ,K)

where K = (2πλ)−d/2 exp(−‖y − x‖22/(2λ))dxdy is the heat kernel at time λ/2. In contrast, we
can see from Eq. (1) that

1

2
Tλ(µ, ν) = min

γ∈Π(µ,ν)
λH(γ, K̃)

where K̃ = exp(−‖y − x‖22/(2λ))µ(x)ν(y)dxdy. We directly deduce that 1
2Tλ(µ, ν) =

λCλ(µ, ν)− λH(µ)− λH(ν)− dλ
2 log(2πλ). Thus Eq. (4) follows by the dynamic formulation of

entropy regularized optimal transport in [14] which reads

λCλ(µ, ν)− λ

2
H(µ)− λ

2
H(ν) = min

ρ,v

∫ 1

0

∫
Rd

(1

2
‖v(t, x)‖22 +

λ2

8
‖∇x log ρ(t, x)‖22

)
ρ(t, x)dxdt

where the constraints on (ρ, v) are as in Eq. (4). Note that ∇x log ρ refers to the weak logarithmic
gradient of ρ, which in particular does not requires ρ > 0 to be well defined, but only that for almost
every t ∈ [0, 1], ρ(t, ·) admits a distributional gradient which is an absolutely continuous measure
with respect to ρ(t, ·), and ∇x log ρt

def.
= d∇ρt

dρt
refers to its density with respect to ρt (see e.g. [29]).

First order expansion. Let us state and prove a lemma that intervenes in the proof of Theorem 1.
Arguments towards this expansion appeared in [14, Theorem 1.6] but under an abstract twice-
differentiability assumption that is not needed in our statement.
Lemma 1. Assume that µ, ν ∈ P(Rd) have bounded densities and supports. It holds

d

dσ
Jσ|σ=0+

=
1

4
I0(µ, ν)

where, as in the proof of Theorem 1, Jλ2(µ, ν) refers to the right-hand side of (4). More generally,
the right derivative of σ 7→ Jσ exists for all σ ≥ 0 and equals 1

4I
√
σ(µ, ν).

Proof. Since σ 7→ Jσ(µ, ν) is defined as an infimum of affine functions in σ, it is concave. Let
(σn)n∈N be a decreasing sequence of positive real numbers converging to 0 and let

αn =
Jσn − J0

σn
.
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By concavity, αn is non-decreasing and admits a limit J ′0 = d
dσJσ|σ=0+ that is the right derivative of

J at 0. Our goal is to show that J ′0 = I0(µ, ν)/4. By the argument in the proof of Theorem (1), we
have αn ≤ I0(µ, ν)/4 ∀n thus J ′0 ≤ I0(µ, ν)/4, so we just have to prove the other inequality.

Let (ρn, vn)n≥0 be a sequence of minimizers for the r.h.s. of Eq. (4) (which is in fact unique
although we do not use that fact here [30]) with λ2 = σn and let Vn =

∫ 1

0

∫
Rd ‖vn‖

2
2dρn and

In =
∫ 1

0

∫
Rd ‖∇ log(ρn)‖22dρn. Since Vn is uniformly bounded and converges to V0 = W 2

2 (µ, ν),
we have that ρn converges weakly (in duality with continuous functions with compact support) to ρ0,
the unique constant speed Wasserstein geodesic between µ and ν (see, e.g. [18, Cor. 4.10] or by an
application of [29, Proposition 2.2] as below). Moreover, since Vn ≥ V0, it holds

αn =
Vn − V0

σn
+

1

4
In ≥

1

4
In

and in particular we have the uniform bound In ≤ I0. It follows by [29, Proposition 2.2] applied to the
quantity In =

∫ 1

0

∫
Rd ‖

d(∇ρn)
dρn

‖22dρn(x, t) that∇ρn, seen as a vector valued measure on [0, 1]× Rd,
admits a weak limit denoted ω which is absolutely continuous with respect to ρ0 and that lim inf In ≥∫ 1

0

∫
Rd ‖

dω
dρ0
‖22dρ0(t, x). Since for any compactly supported function ϕ ∈ C1([0, 1] × Rd;Rd) it

holds
∫

divx(ϕ)dρn →
∫

divx(ϕ)dρ0 and
∫
ϕ · d(∇ρn)→

∫
ϕ · dω, we have that ω = ∇xρ0 and

thus the previous integral is precisely the Fisher information of ρ0 integrated in time. It follows that
lim inf In ≥ I0 hence J ′0 ≥ 1

4I0 which concludes the proof. Inspecting the above argument, we see
that in fact it applies directly to the case σ > 0 (except that of course the trajectory recovered as
n→∞ is ρ√σ), hence our second claim.

Bounds on the Fisher information of the geodesic. Let us now prove the bounds on the Fisher
information of the Wasserstein geodesic that appear in Proposition 1. The main idea is to express
I0(µ, ν) in terms of the initial and final densities and the Brenier potential.

Proof of Proposition 1. Let us express I0(µ, ν) in terms of the densities ρ0 and ρ1 (of µ and ν
respectively) and the Brenier potential ϕ which is the convex function such that (∇ϕ)#µ = ν, i.e. ν
is the pushforward of µ by the map ∇ϕ. Let (ρt)t∈[0,1] be the density of the W2-geodesic between µ
and ν. We start with the conservation of mass formula which holds under our regularity assumptions:

ρ0(x) = det(∇2ϕt(x))ρt(∇ϕt(x)))

where ϕt(x)
def.
= (1− t)‖x‖22/2 + tϕ(x) is such that (∇ϕt)#ρ0 = ρt. By taking the logarithm we get

log ρ0(x) = log ρt(∇ϕt(x)) + log det(∇2ϕt(x)).

Let us now take the gradient of this expression. We denote by d3ϕ(x) : Rd → Rd×d the weak
differential of x 7→ ∇2ϕ(x) (which exists for almost every x and is bounded since∇2ϕ is assumed
Lipschitz) and by [d3ϕ(x)]∗ : Rd×d → Rd its adjoint. Using the fact that the differential of
A 7→ log detA at A is the scalar product with A−1 we get that for almost every x ∈ Rd,

∇ log ρ0(x) = ∇2ϕt(x)∇ log ρt(∇ϕt(x)) + [d3ϕt(x)]∗[∇2ϕt(x)]−1. (7)

It follows that

I0(µ, ν) =

∫ 1

0

∫
Rd
‖∇ log ρt(x)‖22ρt(x)dxdt

=

∫ 1

0

∫
Rd
‖∇ log ρt(∇ϕt(x))‖22ρ0(x)dxdt

=

∫ 1

0

∫
Rd
‖[∇2ϕt(x)]−1∇ log ρ0(x)− t[∇2ϕt(x)]−1[d3ϕ(x)]∗[∇2ϕt(x)]−1‖22ρ0(x)dxdt

where we have used the fact that d3ϕt(x) = td3ϕ(x).
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General case. In the general case, we simply use the bounds ∇2ϕt(x) � ((1 − t) + tκ)Id and
‖d3ϕ(x)‖ ≤ L almost everywhere in operator norm and the identity |a+ b|2 ≤ 2|a|2 + 2|b|2 valid
for any a, b ∈ R to get

I0(µ, ν) ≤ 2
(∫ 1

0

dt

(1 + (κ− 1))2

)
I0(µ, µ) + 2

(∫ 1

0

t2dt

(1 + (κ− 1))4

)
L2

= 2κ−1I0(µ, µ) + (2/3)κ−3L2.

One dimensional case. When d = 1, from Eq. (7) at time t = 1, we get

ϕ′′′(x) = ∇ log ρ0(x)ϕ′′(x)−∇ρ1(∇ϕ(x))ϕ′′(x)2.

Plugging this expression in the previous integral leads to:

I0(µ, ν) =

∫
R

∫ 1

0

(
(1− t)∇ log ρ0 + t∇ log ρ1(∇ϕ(x))ϕ′′(x)2(

(1− t) + tϕ′′(x)
)2

)2

dtρ0(x)dx

With the valid change of variables 1− s = tϕ′′(x)
(1−t)+tϕ′′(x) (and thus s = 1−t

(1−t)+tϕ′′(x) ), we obtain:

I0(µ, ν) =

∫
R

∫ 1

0

1

ϕ′′(x)

(
(1− s)∇ log ρ0(x) + s∇ log ρ1(ϕ′(x))ϕ′′(x)

)2

dsρ0(x)dx

=

∫
R

∫ 1

0

1

ϕ′′(x)

(
(1− s)∇ log ρ0(x) + s∇ log(ρ1 ◦ ϕ′)(x)

)2

dsρ0(x)dx

This leads to the bound I0(µ, ν) ≤ (2/3)κ−1I0(µ, µ) + (2/3)KI0(ν, ν) since (ϕ′)#µ = ν.

Gaussian case. Let us now give the explicit expression of the Fisher information of the Wasserstein
geodesic between Gaussian distributions, which is mentioned in Section 4. Whenever we deal with a
positive semidefinite matrix A, the matrix A1/2 refers to its unique positive semidefinite square root.
Proposition 9. If µ = N (0, A), ν = N (0, B) then I0(µ, ν) = trS−1 with S = (A1/2BA1/2)1/2.

Remark in particular that the expansion in Theorem 1 then gives

Sλ(µ, ν)−W 2
2 (µ, ν) =

1

8
(2I0(µ, ν)− I0(µ, µ)− I0(ν, ν)) =

1

8
(2 trS−1 − trA−1 − trB−1)

which is consistent, as it must, with the expansion in Section 4.

Proof. When the Brenier potential ϕ = 1
2x
>Hx is quadratic, we have by the proof of Proposition 1

I0(µ, ν) =

∫
Rd

∫ 1

0

‖[∇2ϕt(x)]−1∇ log ρ0(x)‖22ρ0(x)dtdx.

Putting ourselves in a basis diagonalizing H , the integration in time is explicit and we get

I0(µ, ν) =

∫
Rd
‖H−1/2∇ log ρ0(x)‖22ρ0(x)dx.

It turns out that if µ = N (0, A), ν = N (0, B), then ϕ(x) = 1
2x

THx where [6]

H = A−1/2
(
A1/2BA1/2

)1/2

A−1/2

and thus

I0(µ, ν) =

∫
Rd
‖H−1/2∇ log ρ0(x)‖22ρ0(x)dx.

=

∫
Rd
‖H−1/2A−1x‖22ρ0(x)dx

= EX∼N (0,A)

[
XT
(
A−1H−1A−1

)
X
]

= tr
(
A−1H−1A−1A

)
= tr

(
A−1H−1

)
= tr

((
A1/2BA1/2

)−1/2)
where the last row is obtained using [45, Eq. (378)].
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B Computational complexity of Sinkhorn’s algorithm

In this appendix, we recall the computational complexity analysis of Sinkhorn’s algorithm from [20],
in order to state Proposition 11 exactly as per our needs (while this result is implicit in [20]). There
is nothing specific in this analysis about the squared-distance cost so we just assume that the cost
c : Rd × Rd → R is continuous, keeping in mind that in our case, c(x, y) = 1

2‖y − x‖
2
2. We also

consider a compact set X ⊂ Rd and measures µ, ν ∈ P(X ) which are concentrated on this set. We
consider the dual objective function of entropy regularized optimal transport [46]:

Fλ(u, v) =

∫
Rd
udµ+

∫
Rd
vdν+λ

(
1−
∫

(Rd)2
exp((u(x)+v(y)−c(x, y))/λ)dµ(x)dν(y)

)
. (8)

By Fenchel duality, we have with c(x, y) = 1
2‖y − x‖

2
2 that

1

2
Tλ(µ, ν) = max

u,v
Fλ(u, v) (9)

where the maximum is over pairs of continuous real-valued functions on Rd, (u, v) ∈ C(X )2.
Sinkhorn’s algorithm is alternate maximization on u and v: it starts with u0, v0 = 0 and defines,

uk+1 = uk − λ log

∫
Rd

exp((uk(·) + vk(y)− c(·, y))/λ)dν(y), vk+1 = vk if k is odd

vk+1 = vk − λ log

∫
Rd

exp((uk(x) + vk(·)− c(x, ·))/λ)dµ(x), uk+1 = uk if k is even.

This form of the iterations that distinguishes between even and odd updates is convenient for
the analysis, but beware that the index k here is twice the index appearing in Proposition 2, so the
statements are adjusted consequently. We also introduce γk = exp((uk(x)+vk(y)−c(x, y))/λ)µ⊗ν,
which is such that the update can be written: uk+1 = uk + λ log(dµ/dπ1

#γk) if k odd and vk+1 =

vk + λ log(dν/dπ2
#γk) if k even, where π1

#γ is the marginal of γ on the first factor of Rd × Rd

and π2
#γ its marginal on the second. The following is a rearrangement of some intermediate results

in [20] in a simplified form which is sufficient to our purpose.

Proposition 10. Assume c ≥ 0 and let ‖c‖∞ = sup(x,y)∈X 2 c(x, y). Sinkhorn’s iterates satisfy, for
k ≥ 1,

0 ≤ max
u,v

Fλ(u, v)− Fλ(uk, vk) ≤ 2‖c‖2∞
λk

Proof. First, remark that the iterations are such that
∫

dγk = 1 for k ≥ 1, so it holds Fλ(u, v) =∫
udµ+

∫
vdν for (u, v) = (uk, vk) and also for any maximizer (u, v) = (u∗, v∗). The key of the

proof is the following equality first noticed by [2]. If k is odd, then

Fλ(uk+1, vk+1)− Fλ(uk, vk) = −λ
∫

log
(∫

exp((uk(x) + vk(y)− c(x, y))/λ)dν(y)
)

dµ(x)

= λ

∫
log(dµ/dπ1

#γk)dµ = λH(µ, π1
#γk).

Let us define ∆k = Fλ(u∗, v∗) − Fλ(uk, vk) ≥ 0. Using Pinsker’s inequality and Lemma 2 it
follows

∆k −∆k+1 ≥
λ

2
‖µ− π1

#γk‖21 ≥
λ

2‖c‖2∞
∆2
k.

We can similarly prove the same inequality for k even. We conclude as in the usual proof of gradient
descent for smooth functions [43, Thm. 2.1.14]: by dividing by ∆k∆k+1 we have

1

∆k+1
− 1

∆k
≥ λ

2‖c‖2∞
∆k

∆k+1
≥ λ

2‖c‖2∞
.

Summing these inequalities yields a telescopic sum and we get 1/∆k ≥ λk/(2‖c‖2∞) which allows
to conclude.
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From this analysis, we deduce the following complexity to approximate Tλ and T0 using Sinkhorn’s
iterations, adapted from [20].

Proposition 11. Assume that µn =
∑n
i=1 piδxi and νn =

∑n
j=1 qjδyj are discrete measures with

n atoms such that pi, qj ≥ α/n for some α > 0. Then Sinkhorn’s algorithm returns an ε-accurate
estimation of Tλ(µ, ν) in time O(n2‖c‖2∞/(λε)). Moreover, fixing λ = ε/4(log(n) + log(1/α)), it
returns an ε-accurate estimation of T0(µ, ν) in O(n2 log(n)‖c‖2∞/ε2) operations.

Proof. The first claim is a direct consequence of Proposition 10 since when µ and ν have a finite
support of size n, an iteration of Sinkhorn can be performed with O(n2) operations. The second
claim follows from the bound

0 ≤ Tλ(µ, ν)− T0(µ, ν) ≤ 2λH(γ∗, µ⊗ ν) ≤ 4λ(log n+ log(1/α))

where γ∗ is the optimal transport plan for T0.

Lemma 2. Under the assumptions and notations of Proposition 10 it holds

∆k ≤ ‖c‖∞
(
‖µ− π1

#γk‖1 + ‖ν − π2
#γk‖1

)
where ‖µ‖1

def.
= sup‖u‖∞≤1

∫
u(x)dµ(x) denotes the total variation norm in the space of measures.

Proof. Remark that Fλ is differentiable in (u, v) with gradient (µ− π1
#γk, ν − π2

#γk) at (uk, vk).
The concavity inequality then gives

∆k ≤
∫

(u∗ − uk)d(µ− π1
#γk) +

∫
(v∗ − vk)d(ν − π2

#γk).

Also, for any u ∈ C(X ) and α = (maxu+ minu)/2, using the fact that
∫
µ =

∫
π1

#γk, we have∫
ud(µ− π1

#γk) =

∫
(u− α)d(µ− π1

#γk) ≤ 1

2
(maxu−minu)‖µ− π1

#γk‖1.

Finally, for u = u∗ or u = uk for k ≥ 1, we have, for some v ∈ C(X ), and for all x, x′ ∈ X

u(x) = −λ log

∫
exp((v(y)− c(x, y))/λ)dν(y) ≤ ‖c‖∞ − u(x′)

because c(x, y) ≤ c(x′, y) + ‖c‖∞. Thus (maxu−minu)/2 ≤ ‖c‖∞/2. The conclusion follows
by bounding all terms this way.

C Properties of the plug-in estimator

In this section we prove Theorem 2 about the rate of convergence of T0(µ̂n, ν̂n) to T0(µ, ν) (we
recall that, by definition W 2

2 (µ, ν) = T0(µ, ν)). We start with the following lemma which bounds
the estimation error by simpler quantities. Note that we consider measures on the centered ball of
radius R in Rd, for some R > 0, which is without loss of generality compared to other bounded sets
since Tλ(µ, ν) is invariant by translation of both measures. In the following lemma µn, νn ∈ P(Rd)
can be unrelated to µ, ν but this lemma will later be applied to the case where µn, νn are empirical
distributions of n samples, hence our choice of notation.

Lemma 3. Let µ, ν, µn, νn ∈ P(Rd) be concentrated on the centered ball of radius R. Then it holds∣∣∣1
2
T0(µ, ν)− 1

2
T0(µn, νn)

∣∣∣ ≤ ∣∣∣1
2

∫
‖x‖22d(µ− µn)(x)

∣∣∣+
∣∣∣1
2

∫
‖x‖22d(ν − νn)(x)

∣∣∣
+ sup
ϕ∈FR

∣∣∣ ∫ ϕd(µn − µ)
∣∣∣+ sup

ϕ∈FR

∣∣∣ ∫ ϕd(νn − ν)
∣∣∣

where FR is the set of convex and R-Lipschitz functions on the ball of radius R.
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Proof. The first part of the proof is fairly classical. By Kantorovich duality, we have

1

2
T0(µ, ν) = max

u,v∈C(X )

∫
udµ+

∫
vdν

where X is the closed ball of radius R and under the constraint that u(x) + v(y) ≤ 1
2‖y− x‖

2
2 for all

(x, y) ∈ X 2 and there exists a maximizer [52]. By expanding the square and changing the unknown
(ϕ,ψ) = (1

2‖ · ‖
2
2 − u, 1

2‖ · ‖
2
2 − v), we can equivalently write

1

2
T0(µ, ν) =

1

2

∫
‖x‖22dµ(x) +

1

2

∫
‖x‖22dν(x)− min

ϕ,ψ∈C(X )

(∫
ϕdµ+

∫
ψdν

)
under the constraint that ϕ(x) + ψ(y) ≥ 〈x, y〉 for all (x, y) ∈ X 2. In the minimization problem, fix
an arbitrary ψ ∈ C(X ) and notice that the value of the objective cannot increase if we replace ϕ by
ψ∗ defined by ψ∗(x) = maxy∈X 〈x, y〉 − ψ(y) and the couple (ψ∗, ψ) still satisfies the constraint.
Repeating this process by now fixing ψ∗, we find that the couple (ψ∗, ψ∗∗) satisfies the constraint
and has a smaller objective value. Now, as a supremum of affine functions, ψ∗ is convex. For any
y0 ∈ X , let x0 be such that ψ∗(y0) = 〈x0, y0〉 − ψ(x0), and observe that for all y ∈ X{

ψ∗(y0) = 〈x0, y0〉 − ψ(y0)

ψ∗(y) ≥ 〈x0, y〉 − ψ(y)
⇒ ψ∗(y0)− ψ∗(y) ≤ 〈x0, y0 − y〉 ≤ R‖y0 − y‖2.

Since y0 and y are arbitrary, this shows that ψ∗ is R-Lipschitz, i.e., |ψ∗(y)− ψ∗(y′)| ≤ R‖y − y′‖2
for all (y, y′) ∈ X 2. We thus have

1

2
T0(µ, ν) =

1

2

∫
‖x‖22dµ(x) +

1

2

∫
‖x‖22dν(x)− min

ϕ∈FR

(∫
ϕdµ+

∫
ϕ∗dν

)
.

The rest of the proof is inspired by [40, Prop. 2] (which analyzes the sample complexity of Tλ for
λ > 0). Let us denote Sµ,ν(ϕ)

def.
=
∫
ϕdµ +

∫
ϕ∗dν and ϕµ,ν the minimizer of Sµ,ν over FR. By

optimality, we have

Sµ,ν(ϕµn,ν)− Sµn,ν(ϕµn,ν) ≤ Sµ,ν(ϕµ,ν)− Sµn,ν(ϕµn,ν) ≤ Sµ,ν(ϕµ,ν)− Sµn,ν(ϕµ,ν).

It follows that

|Sµ,ν(ϕµ,ν)− Sµn,ν(ϕµn,ν)| ≤ max
{
|Sµ,ν(ϕµn,ν)− Sµn,ν(ϕµn,ν)|, |Sµ,ν(ϕµ,ν)− Sµn,ν(ϕµ,ν)|

}
≤ sup
ϕ∈FR

|Sµ,ν(ϕ)− Sµn,ν(ϕ)| = sup
ϕ∈FR

∣∣∣ ∫ ϕd(µn − µ)
∣∣∣.

As a consequence, we have∣∣∣1
2
T0(µ, ν)− 1

2
T0(µn, ν)

∣∣∣ ≤ ∣∣∣1
2

∫
‖x‖22d(µ− µn)(x)

∣∣∣+ sup
ϕ∈FR

∣∣∣ ∫ ϕd(µn − µ)
∣∣∣.

We finally conclude with the triangle inequality

|T0(µ, ν)− T0(µn, νn)| ≤ |T0(µ, ν)− T0(µn, ν)|+ |T0(µn, ν)− T0(µn, νn)|

and by bounding the second term in the same fashion.

The next technical step is to bound the supremum of an empirical process that appears in the bound
of Lemma 3.

Lemma 4. Let µ ∈ P(Rd) be concentrated on the ball of radius R and µ̂n an empirical distribution
of n independent samples. Then it holds

E
[

sup
ϕ∈FR

∣∣∣ ∫ ϕd(µ̂n − µ)
∣∣∣] .


R2n−1/2 if d < 4,

R2n−1/2 log(n) if d = 4,

R2n−2/d if d > 4

where the notation . hides a constant depending only on d and FR is defined in Lemma 3.
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Proof. First notice that we can include in the definition of FR the property that ϕ(0) = 0 without
changing the supremum. With this additional property, we in particular have that ‖ϕ‖∞ ≤ R2 for all
ϕ ∈ FR. By a classical symmetrization argument [58, Thm. 4.10], we have

E
[

sup
ϕ∈FR

∣∣∣ ∫ ϕd(µ̂n − µ)
∣∣∣] ≤ 2Eσ,X

[
sup
ϕ∈FR

∣∣∣ 1
n

n∑
i=1

σiϕ(Xi)
∣∣∣]︸ ︷︷ ︸

Rn(FR,µ)

where σ1, . . . , σn are independent Rademacher random variables taking the values {−1,+1} with
equal probability and X1, . . . , Xn are independent random variables with law µ. This quantity
Rn(FR, µ) is the Rademacher complexity of FR under the distribution µ. It can be bounded by
Dudley’s chaining technique (see [58, Thm. 5.22] and the associated discussion): it holds, for some
universal constant C > 0,

Rn(FR, µ) ≤ C inf
δ>0

(
δ + n−1/2

∫ R2

δ

√
logN∞(FR, u)du

)
where N∞(FR, u) is the covering number of the set FR for the metric ‖ · ‖∞ at scale u. Then we use
the covering number bound of Bronshtein [10], as reported in [32, Thm. 1] which states that there
exists constants C1, C2 > 0 depending only on d such that if u/R2 ≤ C1 then

logN∞(FR, u) ≤ C2(u/R2)−d/2.

After a change of variable we thus have that

Rn(FR, µ) . R2
(

inf
δ>0

δ + n−1/2

∫ 1

δ

u−d/4du
)
.

The claim follows by optimizing over δ which gives δ = 0 for d < 4, δ = n−1/2 for d = 4 and
δ = n−2/d for d > 4.

We are now in position to conclude the proof of Theorem 2.

Proof of Theorem 2. Let us assume without loss of generality that µ, ν are concentrated on the
centered closed ball of radius R in Rd (which can be taken as R = 1/2 under our assumptions, but
let us continue with an arbitrary R for explicitness of the proof). Given Lemma 3 and Lemma 4, it
only remains to bound the quantity

A
def.
= E

∣∣∣1
2

∫
‖x‖22d(µ− µ̂n)(x)

∣∣∣
and the corresponding quantity for ν. Considering independent samples of the random variable
Y = 1

2‖X‖
2
2 where the law of X is µ, our goal is to bound A = E| 1n

∑n
i=1 Yi − EY |. By

Chebyshev’s inequality and the fact that the variance of Y is bounded by R4, we have for all t ≥ 0,

P
[∣∣ 1
n

n∑
i=1

Yi −EY
∣∣ ≥ t] ≤ min{1, R4/(nt2)}.

Finally, by the integral representation of the expectation of a nonnegative random variable we have

A =

∫ ∞
0

P
[∣∣ 1
n

n∑
i=1

Yi −EY
∣∣ ≥ t]dt ≤ R2

√
n

+

∫ ∞
R2n−1/2

R4

nt2
dt = 2R2n−1/2

which is sufficient to conclude. The concentration bound is proved separately in Proposition 12.

Let us now prove the concentration bound, which is a consequence of the bounded difference
inequality. We give a unified proof for Tλ and T0 since the argument is similar. The result for T0

was known [59] but we are not aware of a similar result for λ > 0 (note that the concentration bound
in [26] has an undesirable exponential dependency in λ and the central limit theorem in [40] does not
a priori gives the dependency in λ).
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Proposition 12. Assume that µ, ν ∈ P(Rd) are concentrated on a set of diameter D. It holds for all
t ≥ 0, λ ≥ 0 and n ≥ 1,

P
[∣∣Tλ(µn, νn)−E[Tλ(µn, νn)]

∣∣ ≥ t] ≤ 2 exp(−nt2/D4).

Proof. As in [59], we want to apply the bounded difference inequality but we study the stability
of the primal problem (instead of the dual) in order to cover the regularized case painlessly. The
empirical measures are of the form µn = 1

n

∑n
i=1 δxi and νn = 1

n

∑n
j=1 δyj . Let c ∈ Rn×n be the

cost matrix with entries ci,j = 1
2‖xi − yj‖

2
2. With those notations, it holds

1

2
Tλ(µn, νn) = min

∑
i,j

ci,jPi,j + λ
∑
i,j

Pi,j log(n2Pi,j)

where the minimum is over matrices P ∈ Rn×n+ such that P1 = 1/n and P>1 = 1/n (i.e. nP is
bistochastic). Let P ∗ be a minimizer. Now let µ̃n = 1

n (
∑n−1
i=1 δxi + δx̃n) for some x̃i in the same set

of diameter D. This changes one row in the cost matrix, each entry in this row being changed by at
most D2/2. Thus using P ∗ as a candidate in the minimization problem defining Tλ(µ̃n, νn) we get
Tλ(µ̃n, νn) ≤ Tλ(µn, νn) + D2

n . Interchanging the role of µn and µ̃n, we get the reverse inequality
and thus

|Tλ(µ̃n, νn)− Tλ(µn, νn| ≤
D2

n
.

The same stability can be shown about perturbing νn by one sample. The proposition follows by
applying the bounded difference inequality [58, Cor. 2.21], paying attention to the fact that the total
number of samples is 2n.

Finally, let us give the details of the proof of Proposition 3.

Proof of Proposition 3. By the concentration result we have that with probability 1 − δ,
|W 2

2 (µn, νn) − EW 2
2 (µn, νn)| . n−1/2

√
log(2/δ). Let us break down the proof into three cases

depending on the dimension d.

If d < 4, then by choosing n & log(2/δ)ε−2, the quantity W 2
2 (µn, νn) has the desired accuracy

with probability 1− δ. Also choosing λ . ε/(2 log n) guarantees that |T̂λ,n − Ŵ 2
2 | . ε. Thus, the

computational complexity is O(n2/(λε)) = Õ(ε−6).

If d > 4, we can choose n & log(2/δ)d/4ε−d/2 to reach the desired accuracy, which leads to a
computational complexity in Õ(ε−d−2).

Finally if d = 4, we can choose n such that ε � n−1/2(log(n) +
√

log(2/δ)) which leads to a
computational complexity in O(n2 log(n)ε−2) = O(ε−6(log n+

√
log(2/δ))4) = Õ(ε−6).

D Analysis of the Sinkhorn divergence estimator given samples

Let us first state a result on the sample complexity to estimate Sλ with Ŝλ,n which is defined, given
x1, . . . , xn i.i.d. samples from µ and y1, . . . , yn i.i.d. samples from ν, as Ŝλ,n = Sλ(µ̂n, ν̂n) as in
Eq. (2) where µ̂n = 1

n

∑n
i=1 δxi and ν̂n = 1

n

∑n
i=1 δyi . Since the following result has not yet been

stated in the precise form that we use, we give a short proof below. It essentially just requires to
combine the results from [40] and [26].

Lemma 5. Let µ, ν ∈ P(Rd) be concentrated on a set of diameter 1, let µ̂n, ν̂n be empirical
distributions with n independent samples and let d′ = 2bd/2c. Then

E
[
|Ŝλ,n − Sλ(µ, ν)|

]
. (1 + λ−d

′/2)n−1/2

where . hides a constant that only depends on d.
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Proof. It has been shown in [40, Cor. 2], with a strategy similar to that employed in the end of the
proof of Lemma 3, that∣∣∣1

2
Tλ(µ̂n, ν̂n)− 1

2
Tλ(µ, ν)

∣∣∣ ≤ sup
f∈F

∣∣∣ ∫ fd(µ̂n − µ)
∣∣∣+ sup

f∈F

∣∣∣ ∫ fd(ν̂n − ν)
∣∣∣

where F is any class of functions that is large enough to contain all the solutions to Eq. (9) for all
pairs of measures µ, ν ∈ P(Rd) concentrated on a set of diameter 1. It was shown in [26, Thm. 2]
that F can be chosen as a ball in the Sobolev space Hs, s ≥ 1 with diameter C(1 + λ1−s) for some
C > 0 that only depends on d and s. In particular, for s = d′/2 + 1, Hs is a reproducible kernel
Hilbert space. Thus, using the notion of Rademacher complexity introduced in the proof of Lemma 4
and its bound for balls in reproducible kernel Hilbert spaces (as in [26, Prop. 2]), it follows

E
[

sup
f∈F

∣∣∣ ∫ fd(µ̂n − µ)
∣∣∣] ≤ 2Rn(F , µ) . (1 + λ−d

′/2)n−1/2.

This is sufficient to bound the expected estimation error of Tλ. Let us now turn our attention to Ŝλ,n.
It holds

|Ŝλ,n − Sλ(µ, ν)| ≤ |Tλ(µ̂n, ν̂n)− Tλ(µ, ν)|

+
1

2
|Tλ(µ̂n, µ̂n)− Tλ(µ, µ)|+ 1

2
|Tλ(ν̂n, ν̂n)− Tλ(ν, ν)|.

The argument in [40] goes through for each term and it follows that Ŝλ,n admits the same statistical
bound (up to a constant) than T̂λ,n.

Proof of Proposition 4. Let W 2
2 = W 2

2 (µ, ν) and Sλ = Sλ(µ, ν). We consider the following error
decomposition:

E
[
|Ŝλ,n −W 2

2 |
]
≤ E

[
|Ŝλ,n − Sλ|

]
+ |Sλ −W 2

2 | . (1 + λ−d
′/2)n−1/2 + λ2

where the first bound is from Lemma 5 and the second bound is an assumption. We then optimize
the bound in λ which gives λ � n−1/(d′+4) and an error in n−2/(d′+4). For the concentration bound,
we use the argument in the proof of Proposition 12 in Appendix C. Observe that if only one of the
samples drawn from µ is changed, the resulting change in Ŝλ,n is at most 2/n which leads to, by the
bounded difference inequality,

P
[∣∣Sλ(µn, νn)−E[Sλ(µn, νn)]

∣∣ ≥ t] ≤ 2 exp(−nt2/4).

Proof of Proposition 5. For Ŝ(k)
λ,n we consider the error decomposition

|Ŝ(k)
λ,n −W

2
2 | ≤ |Ŝ

(k)
λ,n − Ŝλ,n|+ |Ŝλ,n −E[Ŝλ,n]|+ E|Ŝλ,n − Sλ|+ |Sλ −W 2

2 |.

Let us choose λ � n−1/(d′+4) as in Proposition 4. By the concentration result of Proposition 4,
we have that with probability 1− δ, |Ŝλ,n − EŜλ,n| . n−1/2

√
log(2/δ) and thus |Ŝλ,n −W 2

2 | .
n−2/(d′+4) + n−1/2

√
log(2/δ). Thus by choosing n & log(2/δ)ε−(d′+4)/2 the quantity Ŝλ,n

has the desired accuracy with probability 1 − δ. It follows that the computational complexity is
O(n2/(λε)) = Õ(ε−d

′−5.5).

For the second claim, we just remark that n−2/(d′+4) dominates the rate of the plug-in estimator given
in Theorem 2 for all d, so both estimators can achieve an error of this order. However the difference
is that with Ŝλ,n a regularization level λ � ε−1/2 is sufficient while λ . ε/ log(n) is required for
T̂λ,n to achieve this error ε. The time complexity bounds then follows by Proposition 2.
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E Analysis of deterministic discretization

In this section, we consider probability distributions on the torus µ, ν ∈ P(Td) with densities with
respect to the Lebesgue measure (also denoted µ, ν) and c(x, y) = 1

2‖[y − x]‖22 which is half the
squared distance on the torus. We denote [x] = x + k0 where k0 ∈ Zd is such that ‖x + k‖2 is
minimal (k0 is unique Lebesgue almost everywhere). We denote by (uλ, vλ) the couple of minimizers
of Eq. (8) that are fixed points of Sinkhorn’s iterations

uλ(x) = −λ log

∫
e(vλ(y)−c(x,y))/λdν(y), vλ(y) = −λ log

∫
e(uλ(x)−c(x,y))/λdµ(x) (10)

and such that uλ(0) = 0. These properties uniquely define (uλ, vλ) and we consider pλ(x, y) =
exp

(
(uλ(x) + vλ(y) − c(x, y))/λ

)
µ(x)ν(y) which is the unique solution to (1). The following

lemma gives some regularity estimates on pλ. What is required in its proof is regularity of the
marginals and of the cost function (which we fix to be the half squared-norm cost for consistency).
Lemma 6 (Regularity of pλ). Assume that µ, ν ∈ P(Td) admitM -Lipschitz continuous log-densities.
Then for almost every z ∈ (Td)2 it holds

‖∇ log pλ(z)‖2 ≤ 4
√
dλ−1 + 2M.

Moreover, it holds for all z, z′ ∈ (Td)2

|pλ(z)− pλ(z′)| ≤ (e(4
√
dλ−1+M)‖[z−z′]‖2 − 1)pλ(z).

Proof. By differentiating the definition of pλ, we have for almost every (x, y) ∈ (Td)2

∇x log pλ(x, y) =
1

λ
(∇uλ(x)− [x− y]) +∇m(x).

where m is the log-density of µ. By differentiating Eq. (10), we also have

∇uλ(x) =

∫
[x− y]e(uλ(x)+vλ(y)−c(x,y))/λdν(y)

and thus ‖∇uλ(x)‖2 ≤ supy∈Td ‖[y − x]‖2 =
√
d. It follows that supx,y∈Td ‖∇x log pλ(x, y)‖2 ≤

2
√
d

λ + M , from which we deduce the first bound by also taking into account the ∇y component.
Now let α = 4

√
dλ−1 + 2M . By Grönwall’s inequality, we have e−α‖[z−z

′]‖2pλ(z) ≤ pλ(z′) ≤
eα‖[z−z

′]‖2pλ(z) for all z, z′ ∈ (Td)2. It follows that |pλ(z′)− pλ(z)| ≤ max{eα‖[z′−z]‖2 − 1, 1−
e−α‖[z

′−z]‖2}pλ(z) which implies our claim.

For a measure µ ∈ P(Td) we call µh its finite volume discretization at resolution h = 1/m for
m ∈ N on the grid (Z/mZ)d. It is built via the following process: let qh : Td → Td be defined
by qh(x1, . . . , xd) = ( 1

mbmx1 + 1/2c, . . . , 1
mbmxd + 1/2c). It maps each point x ∈ Td to its

closest point on the grid (Z/mZ)d (with some arbitrary rule for ties). Then let µh
def.
= (qh)#µ which

gives to each point in the grid the mass that µ gives to its surrounding cell. Also, let us label the
points in (Z/mZ)d from 1 to n = md as (xi)

n
i=1 (we also use the notation yi = xi) and let us

call Qj ⊂ Td the set of points which are mapped to the point labeled by j ∈ {1, . . . , n}. We also
call Qi,j = Qi × Qj ⊂ (Td)2. We now state and prove a result that is slightly more precise than
Proposition 6 were we control the error made by replacing measures by their discretization in the
estimation of Tλ.
Proposition 13 (Stability under discretization). Assume that µ, ν ∈ P(Td) admit M -Lipschitz
continuous log-densities and let C > 0 be any constant. If h(M + λ−1) ≤ C then

−h2(1 +M) . Tλ(µh, νh)− Tλ(µ, ν) . min{h, h2(λ−1 +M + 1)}
where . hides constants that only depend on d and C.

Proof. The principle of the proof is to build admissible transport plans for the continuous (resp. dis-
crete) problem from an admissible transport plan for the discrete (resp. continuous) problem and to
bound the associated primal objectives functions.
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From discrete to continuous plans. Consider any γh ∈ Π(µh, νh) and consider γ ∈ Π(µ, ν) the
(unique) measure with a constant density with respect to µ ⊗ ν on each cell Qi,j and such that
(qh ⊗ qh)#γ = γh (see [26, Def. 1] for a detailed construction in Rd). By construction, it holds
H(γ, µ⊗ ν) = H(γh, µh ⊗ νh). Let us bound the difference ∆i,j =

∫
Qi,j

( 1
2‖[y − x]‖22 − 1

2‖[xi −
yj ]‖22)dγ(x, y). For clarity, let us assume that [x − y] = x − y for all (x, y) ∈ Qi,j , the argument
being the same in each cell. We start with a second order Taylor expansion of the cost (which is exact
with our quadratic cost):

1

2
‖y − x‖22 −

1

2
‖xi − yj‖22 = (xi − yj)>(x− xi) + (yj − xi)>(y − yi)

+
1

2
‖x− xi‖22 +

1

2
‖y − yi‖22 − (x− xi)>(y − yi).

Integrating the terms in the second row over Qi,j , we get a quantity bounded by dh2/2. For the
terms in the first row, we see that we have to bound integrals of the form |

∑
j

∫
Qi,j

(xi − yj)>(x−
xi)dγ(x, y)| ≤

√
d|
∫
Qi

(x− xi)µ(x)dx|. So let us consider specifically the following integral:

∆i =
∣∣∣ ∫
Qi

(x− xi)µ(x)dx
∣∣∣

=
∣∣∣ ∫
Qi

(x− xi)(µ(x)− |Qi|−1

∫
Qi

µ(x′)dx′)dx
∣∣∣

≤
√
dh|Qi|−1

∫
Q2
i

|µ(x)− µ(x′)|dxdx′

where we used the fact that xi is the center of mass of Qi for the Lebesgue measure and we denoted
|Qi| the Lebesgue measure of Qi. Now, since logµ is M -Lipschitz an application of Grönwall’s
inequality as in the proof of Lemma 6 shows that |µ(x)− µ(x′)| ≤ (eM‖x−x

′‖2 − 1)µ(x). It thus
follows that

∆i ≤
√
dh(eMh

√
d − 1)µ(Qi) .Mh2µ(Qi).

Putting all the bounds together and summing over all cells Qi,j we get∫
(Td)2

(1

2
‖[y − x]‖22 −

1

2
‖[xi − yj ]‖22

)
dγ(x, y) . h2(1 +M).

From this it follows that for λ ≥ 0, we have Tλ(µ, ν)− Tλ(µh, νh) . h2(1 +M).

From continuous to discrete plans. Consider any γ ∈ Π(µ, ν) and consider its discretization γh =
(qh ⊗ qh)#γ. By the “information processing inequality”, it holds H(γh, µh ⊗ νh) ≤ H(γ, µ⊗ ν).
Also, since the cost function is

√
d-Lipschitz on Td, we have the naive discretization bound∣∣∣ ∫

(Td)2

1

2
‖x− y‖22d(γ − γh)(x, y)

∣∣∣ . h.

This is sufficient to deduce that Tλ(µh, νh)− Tλ(µ, ν) . h for all λ ≥ 0. Let us see however that
a finer discretization bound can be given when γ is the optimal solution of the entropy regularized
problem using the regularity shown in Lemma 6. We denote z = (x, y) ∈ (Td)2 and zi,j = (xi, yi)
and we have, by decomposing the error into a first and second order term as in the first part of the
proof,∣∣∣ ∫

(Td)2

1

2
‖y − x‖22d(γ(x, y)− γh(x, y))

∣∣∣ =
∣∣∣∑
i,j

∫
Qi,j

(
1

2
‖y − x‖22 −

1

2
‖xi − yj‖22)dγ(x, y)

∣∣∣
.
∑
i,j

∣∣∣ ∫
Qi,j

(z − zi,j)pλ(z)dz
∣∣∣+ h2.

It remains to estimate the integral terms as can be done as in the first part of the proof by using the
regularity of log pλ given by Lemma 6∣∣∣ ∫

Qi,j

(z − zi,j)pλ(z)dz
∣∣∣ . h|Qi,j |−1

∫
Qi,j

∫
Qi,j

|pλ(z)− pλ(z′)|dzdz′

≤ h(e(4
√
dλ−1+M)

√
dh − 1)pλ(Qi,j)

. h2(λ−1 +M)pλ(Qi,j).
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The conclusion follows by summing over all cells Qi,j .

We now proceed to the proof of Proposition 7. This proof would be immediate if we were working on
Rd by combining the stability of Proposition 6 with the approximation error of Theorem 1. However,
our framework in this section is that of the torus, and has to be so because there is no compactly
supported measures with continuous log-densities on Rd. In the setting of the torus, the equivalence
from Eq. (4) holds for a slightly different cost function built from the heat kernel on the torus, as
proved in [30] for general manifolds. This cost function is

c̃λ(x, y) = −λ log
( ∑
k∈Zd

exp
(
− 1

2λ
‖x− y − k‖22

))
.

Let T̃λ(µ, ν) be the entropy regularized optimal transport cost as defined in Eq. (1) where the
cost function c(x, y) = 1

2‖[x − y]‖22 is replaced by c̃λ, and let S̃λ be the corresponding Sinkhorn
divergence, as defined in Eq. (2). A direct extension of Theorem 1 then gives that if µ, ν ∈ P(Rd)
have bounded densities and supports then

|S̃λ(µ, ν)−W 2
2 (µ, ν)| ≤ λ2

4
max{2I0(µ, ν), I0(µ, µ) + I0(ν, ν)}. (11)

In the next lemma, we control the error that is made when replacing S̃λ by Sλ, which is asymptotically
exponentially small.

Lemma 7. Assume that µ, ν ∈ P(Td) admit log-densities which are Lipschitz continuous. Then
there exists c1, c′1, c2 > 0 such that

0 ≤ Tλ(µ, ν)− T̃λ(µ, ν) ≤ c1e−c2/λ.

In particular, we have |S̃λ(µ, ν)− Sλ(µ, ν)| ≤ c′1e−c2/λ.

In contrast to the other statements in this paper, this one is purely asymptotic in the sense that the
constants may depend on µ and ν. This is due to a technical difficulty near the cut-locus where the
convergence of c̃λ towards c is only in O(λ) which is too slow for our purposes. We can avoid this
difficulty by exploiting the fact that the optimal transport map stays away from the cut locus and
using the uniform convergence of the dual potentials (uλ, vλ) towards (u0, v0) but we are not aware
of quantitative versions of these results.

Proof. The inequality T̃λ(µ, ν) ≤ Tλ(µ, ν) is immediate since c̃λ ≤ c. The main difficulty is thus to
prove the other bound. For this, let (uλ, vλ) be the unique pair of maximizers of Eq. (9) such that
uλ(0) = 0. As λ→ 0, this pair converges uniformly to a couple of functions (u0, v0) which is the
unique solution to the unregularized dual problem such that u0(0) = 0, see e.g. [5]. Letting F̃λ be the
dual of the regularized problem Eq. (8) where c is replaced by c̃λ, we have 1

2 T̃λ(µ, ν) = sup F̃λ(u, v)
where the supremum is over pairs of continuous functions on the torus. Thus we have

1

2
Tλ(µ, ν)− 1

2
T̃λ(µ, ν) ≤ Fλ(uλ, vλ)− F̃λ(uλ, vλ)

= λ

∫
(Td)2

e(uλ(x)+vλ(y)−c(x,y))/λ
(
e(c−c̃)/λ − 1

)
dµ(x)dν(y).

It remains to bound this integral and we will do so by dividing the domain (Td)2 into two sets.

By the regularity theory of optimal transport on the torus [15], we know that u0 is continuously
differentiable (note that our assumption on the regularity of µ and ν is indeed stronger than Hölder
continuity). It follows by [5, Lem. 2.4] that the optimal transport map T is continuous and its graph
G = {(x, T (x)) ; x ∈ Td} does not intersect the singular set S of (x, y) 7→ ‖[y − x]‖22, i.e. the set
where this function is not differentiable. As both sets are compact, they are thus at a positive distance
2δ > 0 from each other. Let Gδ be the closed set of points that are at a distance less than or equal
to δ from G (which is itself at a distance δ from S). Since in our context G is precisely the set of
points (x, y) where u0(x) + v0(y) = c(x, y) (see again [5, Lem. 2.4]), there exists α > 0 such that
u0(x) + v0(x)− c(x, y) ≤ −2α for all (x, y) ∈ Gcδ = (Td)2 \Gδ .
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Let (I) and (II) be the value of the integral above on Gcδ and Gδ respectively, so that Tλ(µ, ν) −
T̃λ(µ, ν) ≤ 2(I) + 2(II). On the one hand, by uniform convergence of the potentials, there exists
λ0 > 0 such that ∀λ < λ0, ‖uλ − u0‖∞ + ‖vλ − v0‖∞ ≤ α and thus ∀λ ≤ λ0,

(I) ≤ λe−α/λ|e‖c−c̃λ‖∞/λ + 1| = o(e−α/(2λ))

because c̃λ converges uniformly to c as λ→ 0. On the other hand

(II) ≤ λ sup
z∈Gδ

(e(c(z)−c̃(z))/λ − 1) = λ sup
z∈Gδ

∑
k∈Zd\{k0(z)}

e(‖z−k0(z)‖22−‖z−k‖
2
2)/(2λ)

where k0(z) is such that ‖[z]‖2 = ‖z − k0‖2 and is unique for z ∈ Gδ. Letting β =
infz∈Gδ,k 6=k0(z) ‖z − k‖22 − ‖z − k0(z)‖22, we have β > 0 since Gδ is at a positive distance from the
singular set S and we have (II) . λe−β/(2λ) because the series

∑
k 6=k0 e

(β+‖z−k0‖22−‖z−k‖
2
2)/(2λ)

is nonincreasing in λ (notice that the exponent is nonpositive). Summing (I) and (II) leads to the
result.

We are finally in a position to prove Proposition 7.

Proof of Proposition 7. We decompose the error as

|Sλ(µh, νh)−W 2
2 (µ, ν)| ≤ |Sλ(µh, νh)−Sλ(µ, ν)|+|Sλ(µ, ν)−S̃λ(µ, ν)|+|S̃λ(µ, ν)−W 2

2 (µ, ν)|.
The first term is in O(h2(λ−1 +M + 1)) by Proposition 6. The second term is bounded by c1e−c2/λ
by Lemma 7. The third term is bounded by (λ2/4) max{I0(µ, ν), I0(µ, µ) + I0(ν, ν)} as seen
in Eq. (11), which is a variation of Theorem 1. Moreover, the assumption that µ and ν have M -
Lipschitz continuous log-densities leads to the bound I0(µ, µ), I0(ν, ν) ≤M2, which justifies why
the statement of Proposition 7 does not requires specifically that these quantities be finite. Thus, we
have

|Sλ(µh, νh)−W 2
2 (µ, ν)| . h2λ−1 + λ2.

Minimizing in λ suggests to take λ = h2/3 and leads to an error bound in O(h4/3). In terms of the
accuracy ε, we thus have h � ε3/4 and λ � ε1/2. The computational complexity bound follows by
Proposition 2 which gives a bound in O(n2λ−1ε−1) and the fact that n = h−d � ε−3d/4, hence a
bound in O(ε−3d/2−3/2).

For the computational complexity bound via Tλ, we use the error decomposition
|Tλ(µh, νh)−W 2

2 (µ, ν)| ≤ |Tλ(µh, νh)− T0(µh, νh)|+ |T0(µh, νh)− T0(µ, ν)|
where the first term is in O(λ log(n)) and the second term is in O(h) by Proposition 6. Thus to reach
an accuracy ε > 0, we may choose h � ε and λ � ε/ log(n) which leads to a time complexity in
Õ(ε−2d−2).

F Analysis of the Gaussian case

Let µ = N (a,A) and ν = N (b, B) be Gaussian probability distributions with means a, b ∈ Rd and
positive definite covariances A,B ∈ Rd×d. The following explicit formula for Tλ is proven in [34]:

Tλ(µ, ν) = ‖a− b‖22 + tr(A) + tr(B)− 2 tr(DAB
λ ) + dλ(1− log(2λ)) + λ log det(2DAB

λ + λI)

where A1/2 denotes the unique positive definite square root of a positive definite matrix A and
DAB
λ = (A1/2BA1/2 + λ2I/4)1/2 (notice that A1/2BA1/2 = M>M for M = B1/2A1/2 is

positive definite). When λ = 0, we recover the well known explicit formula (see e.g. [6]):
W 2

2 (µ, ν) = ‖a− b‖22 + tr(A) + tr(B)− 2 tr(S).

where S = (A1/2BA1/2)1/2. Notice that this expression involves the squared Bures distance [6]
between positive definite matrices defined as d2

b(A,B)
def.
= tr(A) + tr(B)− 2 tr(S).

The expression above leads to the following formula for ∆ = Sλ(µ, ν)−W 2
2 (µ, ν):

∆ = (tr(DAA
λ )− tr(DAA

0 )) + (tr(DBB
λ )− tr(DBB

0 ))− 2(tr(DAB
λ )− tr(DAB

0 ))

+
λ

2

(
2 log det(2DAB

λ + λI)− log det(2DAA
λ + λI)− log det(2DBB

λ + λI
)
.
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Fourth-order expansion of ∆. Let us first expand individual terms using the fact that all the
matrices involved are positive definite. We have

DAA
λ = A(I + (λ2/4)A−2)1/2

= A+
λ2

8
A−1 − λ4

128
A−3 +O(λ5).

Also, since log det(I + λA) = λ tr(A)− (λ2/2) tr(A2) + (λ3/3) tr(A3) + O(λ4), we obtain the
expansion

λ

2
log det(2DAA

λ + λI) =
λ

2
log det(2A+ (λ2/4)A−1 + λI +O(λ4))

=
λ

2
log det(2A) +

λ

2
log det(I + (λ/2)A−1 + (λ2/8)A−2 +O(λ4))

=
λ

2
log det(2A) +

λ2

4
tr(A−1)− λ4

96
tr(A−3) +O(λ5).

Putting all pieces together with the notation S = (A1/2BA1/2)1/2 leads to

∆ =
λ2

8
tr(A−1)− λ4

128
tr(A−3) +

λ2

8
tr(B−1)− λ4

128
tr(B−3)− λ2

4
tr(S−1) +

λ4

64
tr(S−3)

+ λ log det(2S)− λ

2
log det(2A)− λ

2
log det(2B)

+
λ2

2
tr(S−1)− λ

2

4
tr(A−1)− λ

2

4
tr(B−1)− λ

4

48
tr(S−3)+

λ4

96
tr(A−3)+

λ4

96
tr(B−3)+O(λ5).

The log det terms cancel each other and some simplifications in the other terms lead to

∆ =
λ2

8

(
2 tr(S−1)− tr(A−1)− tr(B−1)

)
− λ4

384

(
2 tr(S−3)− tr(A−3)− tr(B−3)

)
+O(λ5).

Interestingly, this expression can be expressed purely in terms of Bures distances:

Sλ(µ, ν)−W 2
2 (µ, ν) = −λ

2

8
d2

b(A−1, B−1) +
λ4

384
d2

b(A−3, B−3) +O(λ5).

This shows that the terms in this expansion are non-zero unless A = B and also determines their
sign.

G Numerical settings and additional experiments

G.1 Sampling method

In this paragraph, we detail the setting of the random sampling experiments (Figure 2 and Figure 6).
In those experiments, the distributions µ and ν are elliptically contoured and centered, which allows
to have a closed form expression for the optimal transport cost T0 and the dual potential ϕ (the
Lagrange multiplier associated to the first marginal constraint in the computation of T0(µ, ν) in
Eq. (1)), which only depends on the two covariances [6]. Specifically, given two measures µ, ν that
belong to the same family of elliptically contoured distributions, with respective covariances A and
B and with 0 means, we have

T0(µ, ν) = d2
b(A,B) and ϕ(x) = x>(Id−M)x

where d2
b(A,B) = tr(A) + tr(B) − 2 tr(S) and M = A1/2SA1/2 where S is as defined in

Appendix F. Let us detail how we have chosen the covariances and our choice of elliptically contoured
distribution.

Choice of the covariances. The covariances A,B ∈ Rd×d are generated randomly, independently
and identically according to the following process, that we detail for A. Let M ∈ Rd×k be a random
matrix with i.i.d. entries following a standard normal distribution N (0, 1), with k = d/α for some
α ∈ (0, 1). We then define Ã = MM>, which is a random positive semidefinite matrix. By
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non-asymptotic versions of the Marčenko-Pastur Theorem (e.g. [58, Eq.(1.11)]), the eigenvalues
of Ã are contained within a small enlargement of the interval [(1−

√
α)2, (1 +

√
α)2] with a high

probability that increases with d. We then define A = Ã/ tr Ã. With our choice α = 1/3, this allows
to define generic covariance matrices of trace 1 with a controlled anisotropy: the ratio between the
largest and smallest eigenvalue is with high probability of order 0.07 for large d (but note that since
we work with relatively small values of d, this ratio is subject to fluctuations).

Choice of the distributions. Given a covariance A we generate a sample X as follows:

1. U ∼ U(Sd−1) ( U is uniformly distributed on the sphere in Rd)
2. Z ∼ N (0, 1)

3. R = α| arctan(Z/β)|1/d where α > 0 is such that E[R2] = d

4. X = R ·A1/2U

Here β > 0 is a free parameter that determines the shape of the distribution and we have chosen
β = 2 because it tends to yield nice bell shaped densities (see Figure 5). Also, α is a quantity that only
depends on d and β that we estimate via Monte-Carlo integration. Let us describe the distribution of
X .
Proposition 14. The law of X is elliptically contoured, centered, and has a compact support. Its
covariance is A and its density with respect to the Lebesgue measure (denoted by µ(x)) is given by

µ(x) ∝ (1 + tan(y)2) exp(−β2 tan(y)2/2) (12)

where y = (‖x‖A−1/α)d and ‖x‖2A−1 = x>A−1x. In particular, if A is nonsingular then its Fisher
information is finite: I0(µ, µ) <∞.

It follows that if µ and ν are the densities of random variables generated via this procedure, with
respective covariances A and B, then Theorem 1 together with Proposition 1 guarantee that Proposi-
tion 4 applies. We illustrate the results of Proposition 14 in Figure 5.

Proof. By construction µ is elliptically contoured and centered [22, Chap. 2]. It is compactly
supported because the range of z 7→ | arctan(z/β)| is [0, π/2). Also the covariance of X is

E
[
XX>

]
=

1

d
E
[
R2
]
A = A.

Let Y = arctan(Z/β) and let FY (resp. fY ) be the cumulative (resp. probability) distribution
function of Y . We have for x ∈ R,

FR(x) = P
[
R ≤ x

]
= P

[
α| arctan(Z/β)|1/d ≤ x

]
= P

[
|Y | ≤ (x/α)d

]
= F|Y |((x/α)d).

Differentiating this relation, it follows that fR(x) ∝ xd−1f|Y |((x/α)d). Then by [22, Thm. 2.9 &
Eq. (2.43)], we have

µ(x) ∝ ‖x‖1−dA−1fR(‖x‖A−1) ∝ f|Y |((‖x‖A−1/α)d).

It thus remains to compute the density f|Y | which, by symmetry of Y around 0, is precisely twice
the density fY for nonnegative arguments. Denoting g(z) = arctan(z/β), by the change of variable
formula, we have

fY (y) =
fZ(g−1(y))

g′(g−1(y))
∝ (1 + tan(y)2) · exp(−β2 tan(y)2/2)

which gives the density of µ, up to a multiplicative constant. Let us now show that the Fisher
information I0(µ, µ) =

∫
Rd ‖

∇µ(x)
µ(x) ‖

2
2µ(x)dx is finite, with the assumption thatA = Id for simplicity

(the general case can be treated similarly). We have µ(x) = fY (h(‖x‖2)) with h(r) = (r/α)d and
by direct computations:

I0(µ, µ) ∝
∫
Rd

(f ′(h(‖x‖2))

f(h(‖x‖2))

)2

‖x‖2d−2
2 f(h(‖x‖2))dx ∝

∫ π/2

0

(f ′(h(r))

f(h(r))

)2

r3d−3f(h(r))dr

f ′Y (y) ∝ exp(−β2 tan(y)2/2)
(
β2 tan(y)(1 + tan(y)2)(1− β2 tan(y)2)

)
.
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Figure 5: Density used for the random sampling experiments, when A = Id/d. Left: radial profile of
the density as given by Eq. (12), i.e. t 7→ µ(t~u) for some ~u ∈ Sd−1. Right: 104 samples for d = 2.

Then by posing z = tanh(r), we get

I0(µ, µ) ∝
∫
R+

(β4z2(1− β2z2)2 arctan(z)2−2/d) exp(−β2z2/2)dz

where ∝ in those computations just means that the right-hand side is finite if and only if the left-hand
side is finite. Since the right-hand side is finite, this shows that I0(µ, µ) <∞.

G.2 Additional random sampling experiment

On Figure 6, we show the same experiment as in Section 5 but in dimension d = 10 and moreover
we report the error on the transport cost T0(µ, ν) and the rate of Theorem 2, which were not shown
on Figure 2. The plot on the right shows the estimation error on T0(µ, ν), which is the quantity that
we control in our theoretical analysis. This plot confirms several of our results: (i) the convergence
rate in n−2/d of the plug-in estimator proved in Theorem 2 (note that we compute it with a small
entropic regularization, which might explain the slight deviation from the rate n−2/d that we observe
for n large), and (ii) the fact that Tλ has a much larger bias than Sλ and Rλ. Even more interestingly,
Sλ and Rλ have a smaller error than the plug-in estimator. However, we should also be cautious
when interpreting such a plot because T0(µ, ν) is a scalar, and it is easy to make the error vanish
when varying a parameter, such as n or λ. In particular, the local minimum observed for Sλ and Rλ
is simply due to the fact that the error changes its sign as n grows.

This phenomenon led us to report the error on a different quantity, the L1 error on the potential, which
is not subject to this phenomenon and which also raises interesting open questions. Notice however
that this quantity may behave quite differently than the estimation error on T0(µ, ν). In particular, we
see on Figure 5-(left), that the rate of convergence of the plug-in estimator is in fact faster than n−2/d

in this experiment.

G.3 Additional figures for the discretization experiment

Figure 7 shows the same setting as on Figure 4 and gives more details. The densities of µ and ν on
the 1-dimensional torus T are shown on the top row at several levels of discretization. The two other
rows show the evolution of the estimated potentials as n varies for the optimal λ (middle row) or as λ
varies for n large (bottom row) towards the true potentials (u0, v0) (shown in dark color). Here u0 is
the Lagrange multiplier associated to the first marginal constraint in the computation of T0(µ, ν) in
Eq. (1) and v0 is the one associated to the second marginal constraint. On Figure 7, we denote by
(uh, vh) the potentials associated to the estimator Tλ and by (ūh, v̄h) those associated to the estimator
Sλ, as defined in Section 5. This figure illustrates that for λ large, the error is systematically smaller
with the debiasing terms.
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Figure 6: L1 error on the first potential (left) and error on the estimated cost (right) for different
estimators, for µ, ν smooth compactly supported distributions with d = 10, as a function of n for
λ = 1. Error bars show the standard deviation on 30 realizations

Figure 7: Rows 1 and 2: convergence of the dual potentials (u0,h, v0,h) and (ū0,h, v̄0,h) towards
(u0, v0) for decreasing sampling step h. The top row shows the discretized measures (µh, νh) (the
measure is a sum of Dirac masses, which is vizualized as a piecewise constant function to indicate
the cells over which the densities have been integrated). Last row: same but for the convergence of
(uλ,0, vλ,0) and (ūλ,0, v̄λ,0) as λ gets smaller.
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