
Appendix

MMD biased estimator

Eq. 12 provides an unbiased empirical estimator of MMD. This estimator requires computing the
non-diagonal elements of the Gramian of all the samples (i.e. all possible k(x, x′) with x , x′) which
time complexity scales quadratically with the number of samples. If the feature map φ can be defined
explicitly, a biased estimator of MMD squared is

d̂MMD( p̂, p)2 =

∥∥∥∥∥∥ 1
N

N∑
i=1

φ(xi) −
1
M

M∑
j=1

φ(x′j)

∥∥∥∥∥∥2

H

.

This estimator time complexity scales linearly with the number of samples.

Derivation of the score function estimator of MMD’s gradient

We need to compute

∇θ dMMD(p̂, p)2 = ∇θ E
x,x′∼p

[k(x, x′)] − 2∇θ E
x∼p̂,x′∼p

[k(x, x′)].

where the dependence on θ is in the expectations over p(θ). The log-derivative trick allows as to
rewrite the gradient of ∇θ Ex∼p(θ)[ f (x)] as

∇θ Ex∼p(θ)[ f (x)] =
∫

x
∇θ p(x; θ) f (x) dx

=

∫
x

p(x; θ)∇θ log p(x; θ) f (x) dx = Ex∼p(θ)[∇θ log p(x; θ) f (x)].

Then

∇θ E
x,x′∼p

[k(x, x′)] = E
x,x′∼p

[(
∇θ log p(x; θ) + ∇θ log p(x′; θ)

)
k(x, x′)

]
= 2 E

x,x′∼p

[
∇θ log p(x′; θ)k(x, x′)

]
and

∇θEx∼ p̂,x′∼p[k(x, x′)] = Ex∼p̂,x′∼p[∇θ log p(x′; θ)k(x, x′)].

Finally,

∇θ dMMD( p̂, p)2 = 2 E
x,x′∼p

[∇θ log p(x′; θ)k(x, x′)] − 2Ex∼p̂,x′∼p[∇θ log p(x′; θ)k(x, x′)].
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