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Abstract

Randomized classifiers have been shown to provide a promising approach for
achieving certified robustness against adversarial attacks in deep learning. How-
ever, most existing methods only leverage Gaussian smoothing noise and only
work for ℓ2 perturbation. We propose a general framework of adversarial certifica-
tion with non-Gaussian noise and for more general types of attacks, from a unified
functional optimization perspective. Our new framework allows us to identify a
key trade-off between accuracy and robustness via designing smoothing distribu-
tions and leverage it to design new families of non-Gaussian smoothing distribu-
tions that work more efficiently for different ℓp settings, including ℓ1, ℓ2 and ℓ∞
attacks. Our proposed methods achieve better certification results than previous
works and provide a new perspective on randomized smoothing certification.

1 Introduction

Although many robust training algorithms have been developed to overcome adversarial attacks
[1, 2, 3], most heuristically developed methods can be shown to be broken by more powerful adver-
saries eventually (e.g., [4, 5, 6, 7]). This casts an urgent demand for developing robust classifiers
with provable worst-case guarantees. One promising approach for certifiable robustness is the recent
randomized smoothing method [8, 9, 10, 11, 12, 13, 14, 15], which constructs smoothed classifiers
with certifiable robustness by introducing noise on the inputs. Compared with the other more tradi-
tional certification approaches [16, 17, 18] that exploit special structures of the neural networks (such
as the properties of ReLU), the randomized smoothing approaches work more flexibly on general
black-box classifiers and is shown to be more scalable and provide tighter bounds on challenging
datasets such as ImageNet [19].

Most existing methods use Gaussian noise for smoothing. Although appearing to be a natural choice,
one of our key observations is that the Gaussian distribution is, in fact a sub-optimal choice in high
dimensional spaces even for ℓ2 attack. We observe that there is a counter-intuitive phenomenon in
high dimensional spaces [20], that almost all of the probability mass of standard Gaussian distri-
bution concentrates around the sphere surface of a certain radius. This makes tuning the variance
of Gaussian distribution an inefficient way to trade off robustness and accuracy for randomized
smoothing.
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Our Contributions We propose a general framework of adversarial certification using non-
Gaussian smoothing noises, based on a new functional optimization perspective. Our framework
unifies the methods of [9] and [14] as special cases, and is applicable to more general smoothing
distributions and more types of attacks beyond ℓ2-norm setting. Leveraging our insight, we develop
a new family of distributions for better certification results on ℓ1, ℓ2 and ℓ∞ attacks. An efficient
computational approach is developed to enable our method in practice. Empirical results show that
our new framework and smoothing distributions outperform existing approaches for ℓ1, ℓ2 and ℓ∞
attacking, on datasets such as CIFAR-10 and ImageNet.

2 Related Works

Certified Defenses Unlike the empirical defense methods, once a classifier can guarantee a con-
sistent prediction for input within a local region, it is called a certified-robustness classifier. Exact
certification methods provide the minimal perturbation condition which leads to a different classi-
fication result. This line of work focuses on deep neural networks with ReLU-like activation that
makes the classifier a piece-wise linear function. This enables researchers to introduce satisfiability
modulo theories [21, 22] or mix integer linear programming [23, 24]. Sufficient certification meth-
ods take a conservative way and bound the Lipschitz constant or other information of the network
[18, 16, 25, 26]. However, these certification strategies share a drawback that they are not feasible
on large-scale scenarios, e.g. large and deep networks and datasets.

Randomized Smoothing To mitigate this limitation of previous certifiable defenses, improving
network robustness via randomness has been recently discussed [27, 28]. [8] first introduced ran-
domization with technique in differential privacy. [12] improved their work with a bound given by
Rényi divergence. In succession, [9] firstly provided a tight bound for arbitrary Gaussian smoothed
classifiers based on previous theorems found by [29]. [10] combined the empirical and certification
robustness, by applying adversarial training on randomized smoothed classifiers to achieve a higher
certified accuracy. [11] focused on ℓ0 norm perturbation setting, and proposed a discrete smoothing
distribution which can be shown perform better than the widely used Gaussian distribution. [14]
took a similar statistical testing approach with [9], utilizing Laplacian smoothing to tackle ℓ1 certifi-
cation problem. [15] extended the approach of [9] to a top-k setting. [13] extends the total variant
used by [9] to f -divergences. Recent works [30, 31, 32] discuss further problems about certification
methods. We also focus on a generalization of randomized smoothing, but with a different view on
loosing the constraint on classifier.

Noticeably, [30] also develops analysis on ℓ1 setting and provide a thorough theoretical analysis on
many kinds of randomized distribution. We believe the [30] and ours have different contributions
and were developed concurrently. [30] derives the optimal shapes of level sets for ℓp attacks based
on the Wulff Crystal theory, while our work, based on our functional-optimization framework and
accuracy-robustness decomposition (Eq.9), proposes to use distribution that is more concentrated
toward the center. Besides, we also consider a novel distribution using mixed ℓ2 and ℓ∞ norm for
ℓ∞ adversary, which hasn’t been studied before and improve the empirical results.

3 Black-box Certification as Functional Optimization

3.1 Background

Adversarial Certification For simplicity, we consider binary classification of predicting binary
labels y ∈ {0, 1} given feature vectors x ∈ Rd. The extension to multi-class cases is straightforward,
and is discussed in Appendix C. We assume f ♯ : Rd → [0, 1] is a given binary classifier (♯ means
the classifier is given), which maps from the input space Rd to either the positive class probability in
interval [0, 1] or binary labels in {0, 1}. In the robustness certification problem, a testing data point
x0 ∈ Rd is given, and one is asked to verify if the classifier outputs the same prediction when the
input x0 is perturbed arbitrarily in B, a given neighborhood of x0. Specifically, let B be a set of
possible perturbation vectors, e.g., B = {δ ∈ Rd : ‖δ‖p ≤ r} for ℓp norm with a radius r. If the
classifier predicts y = 1 on x0, i.e. f ♯(x0) > 1/2, we want to verify if f ♯(x0+δ) > 1/2 still holds
for any δ ∈ B. Through this paper, we consider the most common adversarial settings: ℓ1, ℓ2 and
ℓ∞ attacks.
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Black-box Randomized Smoothing Certification Directly certifying f ♯ heavily relies on the
smooth property of f ♯, which has been explored in a series of prior works [16, 8]. These methods
typically depend on the special structure-property (e.g., the use of ReLU units) of f ♯, and thus can
not serve as general-purpose algorithms for any type of networks. Instead, We are interested in
black-box verification methods that could work for arbitrary classifiers. One approach to enable
this, as explored in recent works [9, 11], is to replace f ♯ with a smoothed classifier by convolving it
with Gaussian noise, and verify the smoothed classifier.

Specifically, assume π0 is a smoothing distribution with zero mean and bounded variance, e.g.,
π0 = N (0, σ2). The randomized smoothed classifier is defined by

f ♯
π0
(x0) := Ez∼π0

[
f ♯(x0 + z)

]
,

which returns the averaged probability of x0 + z under the perturbation of z ∼ π0. Assume
we replace the original classifier with f ♯

π0
, then the goal becomes certifying f ♯

π0
using its inherent

smoothness. Specifically, if f ♯
π0
(x0) > 1/2, we want to certify that f ♯

π0
(x0 + δ) > 1/2 for every

δ ∈ B, that is, we want to certify that

min
δ∈B

f ♯
π0
(x0 + δ) = min

δ∈B
Ez∼π0 [f

♯(x0 + z + δ)] >
1

2
. (1)

In this case, it is sufficient to obtain a guaranteed lower bound of minδ∈B f ♯
π0
(x0 + δ) and check if

it is larger than 1/2. When π0 is Gaussian N (0, σ2) and for ℓ2 attack, this problem was studied in
[9], which shows that a lower bound of

min
z∈B

Ez∼π0 [f
♯(x0 + z)] ≥ Φ(Φ−1(f ♯

π0
(x0))−

r

σ
), (2)

where Φ(·) is the cumulative density function (CDF) of standard Gaussian distribution. The proof
of this result in [9] uses Neyman-Pearson lemma [29]. In the following section, we will show
that this bound is a special case of the proposed functional optimization framework for robustness
certification.

3.2 Constrained Adversarial Certification

We propose a constrained adversarial certification (CAC) framework, which yields a guaranteed
lower bound for Eq.1. The main idea is simple: assume F is a function class which is known to
include f ♯, then the following optimization immediately yields a guaranteed lower bound

min
δ∈B

f ♯
π0
(x0 + δ) ≥ min

f∈F
min
δ∈B

{
fπ0(x0 + δ) s.t. fπ0(x0) = f ♯

π0
(x0)

}
, (3)

where we define fπ0(x0) = Ez∼π0 [f(x0 + z)] for any given f . Then we need to search for the
minimum value of fπ0(x0 + δ) for all classifiers in F that satisfies fπ0(x0) = f ♯

π0
(x0). This

obviously yields a lower bound once f ♯ ∈ F . If F includes only f ♯, then the bound is exact, but
is computationally prohibitive due to the difficulty of optimizing δ. The idea is then to choose F
properly to incorporate rich information of f ♯, while allowing us to calculate the lower bound in
Eq.3 computationally tractably. In this paper, we consider the set of all functions bounded in [0, 1],
namely

F[0,1] =

{
f : f(z) ∈ [0, 1],∀z ∈ Rd

}
, (4)

which guarantees to include all f ♯ by definition.

Denote by Lπ0(F ,B) the lower bound in Eq.3. We can rewrite it into the following minimax form
using the Lagrangian function,

Lπ0(F ,B) = min
f∈F

min
δ∈B

max
λ∈R

L(f, δ, λ) ≜ min
f∈F

min
δ∈B

max
λ∈R

{
fπ0(x0 + δ)− λ(fπ0(x0)− f ♯

π0
(x0))

}
,

(5)

where λ is the Lagrangian multiplier. Exchanging the min and max yields the following dual form.
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Theorem 1. I) (Dual Form) Denote by πδ the distribution of z + δ when z ∼ π0. Assume F and
B are compact set. We have the following lower bound of Lπ0(F ,B):

Lπ0(F ,B) ≥ max
λ≥0

min
f∈F

min
δ∈B

L(f, δ, λ) = max
λ≥0

{
λf ♯

π0
(x0)−max

δ∈B
DF (λπ0 ‖ πδ)

}
, (6)

where we define the discrepancy term DF (λπ0 ‖ πδ) as

max
f∈F

{
λEz∼π0 [f(x0 + z)]− Ez∼πδ

[f(x0 + z)]
}
,

which measures the difference of λπ0 and πδ by seeking the maximum discrepancy of the expecta-
tion for f ∈ F . As we will show later, the bound in (6) is computationally tractable with proper
(F ,B, π0).

II) When F = F[0,1] := {f : f(x) ∈ [0, 1], x ∈ Rd}, we have in particular

DF[0,1]
(λπ0 ‖ πδ) =

∫
(λπ0(z)− πδ(z))+ dz,

where (t)+ = max(0, t). Furthermore, we have 0 ≤ DF[0,1]
(λπ0 ‖ πδ) ≤ λ for any π0, πδ and

λ > 0. Note that DF[0,1]
(λπ0 ‖ πδ) coincides with the total variation distance between π0 and πδ

when λ = 1.

III) (Strong duality) Suppose F = F[0,1] and suppose that for any λ ≥ 0,
minδ∈B minf∈F[0,1]

L (f, δ, λ) = minf∈F[0,1]
L (f, δ∗, λ), for some δ∗ ∈ B, we have

Lπ0 (F ,B) = max
λ≥0

min
δ∈B

min
f∈F

L (f, δ, λ) .

Remark We will show later that the proposed methods and the cases we study satisfy the condition
in part III of the theorem and thus all the lower bounds of the proposed method are tight.

Proof is deferred to Appendix A.1. Although the lower bound in Eq.6 still involves an optimization
on δ and λ, both of them are much easier than the original adversarial optimization in Eq.1. With
proper choices ofF , B and π0, the optimization of δ can be shown to provide simple closed-form so-
lutions by exploiting the symmetry of B, and the optimization of λ is a very simple one-dimensional
searching problem.

As corollaries of Theorem 1, we can exactly recover the bound derived by [14] and [9] under
our functional optimization framework, different from their original Neyman-Pearson lemma ap-
proaches.
Corollary 1. With Laplacian noise π0(·) = Laplace(·; b), where Laplace(x; b) =

1
(2b)d

exp(−∥x∥1

b ), ℓ1 adversarial setting B = {δ : ‖δ‖1 ≤ r} and F = F[0,1], the lower bound in
Eq.6 becomes

max
λ≥0

{
λf ♯

π0
(x0)− max

∥δ∥1≤r
DF[0,1]

(λπ0‖πδ)

}
=


1− er/b(1− f ♯

π0
(x0)),whenf ♯

π0
(x0) ≥ 1− 1

2e
−r/b,

1
2e

− r
b−log[2(1−f♯

π0
(x0)],whenf ♯

π0
(x0) < 1− 1

2e
−r/b.

(7)

Thus, with our previous explanation, we obtain Lπ0(F ,B) ≥ 1
2 ⇐⇒ r ≤ −b log

[
2(1− f ♯

π0
(x0))

]
,

which is exactly the ℓ1 certification radius derived by [14]. See Appendix A.2 for proof details. For
Gaussian noise setting which has been frequently adopted, we have
Corollary 2. With isotropic Gaussian noise π0 = N (0, σ2Id×d), ℓ2 attack B = {δ : ‖δ‖2 ≤ r}
and F = F[0,1], the lower bound in Eq.6 becomes

max
λ≥0

{
λf ♯

π0
(x0)− max

∥δ∥2≤r
DF[0,1]

(λπ0‖πδ)

}
= Φ

(
Φ−1(f ♯

π0
(x0))−

r

σ

)
. (8)

Analogously, we can retrieve the main theoretical result of [9] :Lπ0(F ,B) ≥ 1
2 ⇐⇒ r ≤

σΦ−1(f ♯
π0
(x0)). See Appendix A.3 for proof details.
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3.3 Trade-off Between Accuracy and Robustness

The lower bound in Eq.6 reflects an intuitive trade-off between the robustness and accuracy on the
certification problem:

max
λ≥0

[
λf ♯

π0
(x0)︸ ︷︷ ︸

Accuracy

+

(
−max

δ∈B
DF (λπ0 ‖ πδ)

)
︸ ︷︷ ︸

Robustness

]
, (9)

where the first term reflects the accuracy of the smoothed classifier (assuming the true label is y = 1),
while the second term−maxδ∈B DF (λπ0 ‖ πδ) measures the robustness of the smoothing method,
via the negative maximum discrepancy between the original smoothing distribution π0 and perturbed
distribution πδ for δ ∈ B. The maximization of dual coefficient λ can be viewed as searching for a
best balance between these two terms to achieve the largest lower bound.

More critically, different choices of smoothing distributions yields a trade-off between accuracy and
robustness in Eq.9. A good choice of the smoothing distribution should 1© be centripetal enough to
obtain a large f ♯

π0
(x0) and 2© have large kurtosis or long tail to yield a small maxδ∈B DF (λπ0 ‖ πδ)

discrepancy term. In the next section, we’ll show how to design a distribution that could improve
both points.

4 Improving Certification Bounds with a New Distribution Family

4.1 “Thin Shell” Phenomenon and New Distribution Family

We first identify a key problem of the usage of Laplacian and Gaussian noise in high dimensional
space, due to the “thin shell” phenomenon that the probability mass of them concentrates on a sphere
far away from the center points [20].
Proposition 1 ([20], Section 3.1). Let z ∼ N (0, Id×d) be a d-dimensional standard Gaus-
sian random variable. Then there exists a constant c, such that for any δ ∈ (0, 1), Prob(√

d−
√
c log(2/δ) ≤ ‖z‖2 ≤

√
d+

√
c log(2/δ)

)
≥ 1− δ. See [20] for more discussion.

This suggests that with high probability, z takes values very close to the sphere of radius
√
d, within

a constant distance from that sphere. There exists similar phenomenon for Laplacian distribution:
Proposition 2 (Chebyshev bound). Let z be a d-dimensional Laplacian random variable, z =
(z1, · · · , zd), where zi ∼ Laplace(1), i = 1, · · · , d. Then for any δ ∈ (0, 1), we have Prob(
1− 1/

√
dδ ≤ ‖z‖1 /d ≤ 1 + 1/

√
dδ
)
≥ 1− δ.

Although choosing isotropic Laplacian and Gaussian distribution appears to be natural, this “thin
shell” phenomenon makes it sub-optimal to use them for adversarial certification, because one would
expect that the smoothing distribution should concentrate around the center (the original image) in
order to make the smoothed classifier accurate enough in trade-off of Eq.9.

Thus it’s desirable to design a distribution more concentrated to center. To motivate our new distribu-
tion family, it’s useful to examine the density function of the distributions of the radius of spherical
distributions in general.
Proposition 3. Assume z is a symmetric random variable on Rd with a probability density function
(PDF) of form π0(z) ∝ ϕ(‖z‖), where ϕ : [0,∞) → [0,∞) is a univariate function, then the PDF
of the norm of z is p∥z∥(r) ∝ rd−1ϕ(r). The term rd−1 arises due to the integration on the surface
of radius r norm ball in Rd. Here ‖·‖ can be any Lp norm.

In particular, for z ∼ N (0, σ2Id×d), we have ϕ(r) ∝ exp(−r2/(2σ2)) and hence p∥z∥2
(r) ∝

rd−1 exp(−r2/(2σ2)). We can see that the “thin shell” phenomenon is caused by the rd−1 term,
which makes the density to be highly peaked when d is large. To alleviate the concentration phe-
nomenon, we need to cancel out the effect of rd−1, which motivates the following family of smooth-
ing distributions:

π0(z) ∝ ‖z‖−k
n1

exp

(
−
‖z‖pn2

b

)
,
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where parameters k, n1, n2, p ∈ N. Next we discuss how to choose suitable parameters depending
on specific perturbation region.

4.2 ℓ1 and ℓ2 Region Certification
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Figure 1: Starting from radius distribution
in Eq.11 with d = 100 σ = 1 and k =
0 (black start), increasing k (green curve)
moves the mean towards zero without signif-
icantly reducing the variance. Decreasing
σ (red curve) can also decrease the mean,
but with a cost of decreasing the variance
quadratically.

Based on original Laplacian and Gaussian distributions
and above intuition, we propose:

ℓ1 : π0(z) ∝ ‖z‖−k
1 exp

(
−
‖z‖1
b

)
(10)

ℓ2 : π0(z) ∝ ‖z‖−k
2 exp

(
−
‖z‖22
2σ2

)
(11)

where we introduce the ‖z‖−k term in π0, with k a posi-
tive parameter, to make the radius distribution more con-
centrated when k is large.

The radius distribution in Eq.10 and Eq.11 is controlled
by two parameters: σ (or b) and k, who control the scale
and shape of the distribution, respectively. The key idea
is that adjusting extra parameter k allows us to control the
trade-off the accuracy and robustness more precisely. As
shown in Fig.1, adjusting σ moves the mean close to zero
(hence 1© yielding higher accuracy), but at cost of decreasing the variance quadratically (hence 2©
less robust). In contrast, adjusting k decreases the mean without significantly impacting the variance,
thus yield a much better trade-off on accuracy and robustness.

Computational Method Now we no longer have the closed-form solution of the bound like
Eq.7 and Eq.8. However, efficient computational methods can still be developed for calculating
the bound in Eq.6 with π0 in Eq.11 or Eq.11. The key is that the maximum of the distance term
DF[0,1]

(λπ0 || πδ) over δ ∈ B is always achieved on the boundary of B:
Theorem 2. Consider the ℓ1 attack with B = {δ : ‖δ‖1 ≤ r} and smoothing distribution π0(z) ∝
‖z‖−k

1 exp
(
−∥z∥1

b

)
with k ≥ 0 and b > 0, or the ℓ2 attack with B = {δ : ‖δ‖2 ≤ r} and smooth-

ing distribution π0(z) ∝ ‖z‖−k
2 exp

(
−∥z∥2

2

2σ2

)
with k ≥ 0 and σ > 0. Define δ∗ = [r, 0, ..., 0]⊤, we

have
DF[0,1]

(λπ0 ‖ πδ∗) = max
δ∈B

DF[0,1]
(λπ0 ‖ πδ)

for any positive λ.

With Theorem 2, we can compute Eq.6 with δ = δ∗. We then calculate DF[0,1]
(λπ0 ‖ πδ∗) =

Ez∼π0

[(
λ− πδ∗ (z)

π0(z)

)
+

]
using Monte Carlo approximation with i.i.d. samples {zi}ni=1 be i.i.d.

samples from π0: D̂ := 1
n

∑n
i=1 (λ− πδ∗(zi)/π0(zi))+ , which is bounded in the following con-

fidence interval [D̂ − λ
√
log(2/δ)/(2n), D̂ + λ

√
log(2/δ)/(2n)] with confidence level 1 − δ for

δ ∈ (0, 1). What’s more, the optimization on λ ≥ 0 is one-dimensional and can be solved numeri-
cally efficiently (see Appendix for details).

4.3 ℓ∞ Region Certification

Going further, we consider the more difficult ℓ∞ attack whose attacking region is Bℓ∞,r =
{δ : ‖δ‖∞ ≤ r}. The commonly used Gaussian smoothing distribution, as well as our ℓ2-based
smoothing distribution in Eq.11, is unsuitable for this region:
Proposition 4. With the smoothing distribution π0 in Eq.11 for k ≥ 0, σ > 0, and F = F[0,1]

shown in Eq.4, the bound we get for certifying the ℓ∞ attack on Bℓ∞,r = {δ : ‖δ‖∞ ≤ r} is
equivalent to that for certifying the ℓ2 attack on Bℓ2,

√
dr = {δ : ‖δ‖2 ≤

√
dr}, that is,

Lπ0(F[0,1], Bℓ∞,r) = Lπ0(F[0,1], Bℓ2,
√
dr).
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Figure 2: For ℓ∞ attacking, compared with
the distribution in Eq.11, the mixed norm dis-
tribution in Eq.13 (right) yields smaller dis-
crepancy term (because of larger overlap ar-
eas), and hence higher robustness and bet-
ter confidence bound. The distribution de-
scribed in Eq.12 has the same impact.

As shown in this proposition, if we use ℓ2 distribu-
tion in Eq.11 for certification, the bound we obtain
is effectively the bound we get for verifying a ℓ2 ball
with radius

√
dr, which is too large to give meaning-

ful results due to high dimension.

In order to address this problem, we extend our
proposed distribution family with new distributions
which are more suitable for ℓ∞ certification setting:

π0(z) ∝ ‖z‖−k
∞ exp

(
−
‖z‖2∞
2σ2

)
, (12)

π0(z) ∝ ‖z‖−k
∞ exp

(
−
‖z‖22
2σ2

)
. (13)

The motivation is to allocate more probability mass along the “pointy” directions with larger ℓ∞
norm, and hence decrease the maximum discrepancy term maxδ∈Bℓ∞,r

DF (λπ0 ‖ πδ), see Fig.2.

Computational Method In order to compute the lower bound with proposed distribution, we need
to establish similar theoretical results as Theorem 2, showing the optimal δ is achieved at one vertex
(the pointy points) of ℓ∞ ball.

Theorem 3. Consider the ℓ∞ attack with Bℓ∞,r = {δ : ‖δ‖∞ ≤ r} and the mixed norm smoothing
distribution in Eq.13 with k ≥ 0 and σ > 0. Define δ∗ = [r, r, ..., r]⊤. We have for any λ > 0,

DF[0,1]
(λπ0 ‖ πδ∗) = max

δ∈B
DF[0,1]

(λπ0 ‖ πδ) .

The proofs of Theorem 2 and 3 are non-trivial and deferred to Appendix. With the optimal δ∗ found
above, we can calculate the bound with similar Monte Carlo approximation outlined in Section 4.2.

5 Experiments

We evaluate proposed certification bound and smoothing distributions for ℓ1, ℓ2 and ℓ∞ attacks. We
compare with the randomized smoothing method of [14] with Laplacian smoothing for ℓ1 region
cerification. For ℓ2 and ℓ∞ cases, we regard the method derived by [9] with Gaussian smoothing
distribution as the baseline. For fair comparisons, we use the same model architecture and pre-
trained models provided by [14], [9] and [10], which are ResNet-110 for CIFAR-10 and ResNet-50
for ImageNet. We use the official code2 provided by [9] for all the following experiments. For all
other details and parameter settings, we refer the readers to Appendix B.2.

ℓ1 RADIUS (CIFAR-10) 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25

BASELINE (%) 62 49 38 30 23 19 17 14 12
OURS (%) 64 51 41 34 27 22 18 17 14

ℓ1 RADIUS (IMAGENET) 0.5 1.0 1.5 2.0 2.5 3.0 3.5

BASELINE (%) 50 41 33 29 25 18 15
OURS (%) 51 42 36 30 26 22 16

Table 1: Certified top-1 accuracy of the best classifiers with various ℓ1 radius.

2https://github.com/locuslab/smoothing. Our results are slightly different with those in original
paper due to the randomness of sampling.
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Evaluation Metrics Methods are evaluated with the certified accuracy defined in [9]. Given an
input image x and a perturbation region B, the smoothed classifier certifies image x correctly if the
prediction is correct and has a guaranteed confidence lower bound larger than 1/2 for any δ ∈ B.
The certified accuracy is the percentage of images that are certified correctly. Following [10], we
calculate the certified accuracy of all the classifiers in [9] or [10] for various radius, and report the
best results over all of classifiers.

5.1 ℓ1 & ℓ2 Certification

For ℓ1 certification, we compare our method with [14] on CIFAR-10 and ImageNet with the type 1
trained model in [14]. As shown in Table 1, our non-Laplacian centripetal distribution consistently
outperforms the result of baseline for any ℓ1 radius.

ℓ2 RADIUS (CIFAR-10) 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25

BASELINE (%) 60 43 34 23 17 14 12 10 8
OURS (%) 61 46 37 25 19 16 14 11 9

ℓ2 RADIUS (IMAGENET) 0.5 1.0 1.5 2.0 2.5 3.0 3.5

BASELINE (%) 49 37 29 19 15 12 9
OURS (%) 50 39 31 21 17 13 10

Table 2: Certified top-1 accuracy of the best classifiers with various ℓ2 radius.

For ℓ2 certification, we compare our method with [9] on CIFAR-10 and ImageNet. For a fair com-
parison, we use the same pre-trained models as [9], which is trained with Gaussian noise on both
CIFAR-10 and ImageNet dataset. Table 2 reports the certified accuracy of our method and the base-
line on CIFAR-10 and ImageNet . We find that our method consistently outperforms the baseline.
The readers are referred to the Appendix B.3 for detailed ablation studies.

5.2 ℓ∞ Certification

Toy Example We first construct a simple toy example to verify the advantages of the distribution
Eq.13 and Eq.12 over the ℓ2 family in Eq.11. We set the true classifier to be f ♯(x) = I(‖x‖2 ≤ r)
in r = 0.65, d = 5 case and plot in Fig.3 the Pareto frontier of the accuracy and robustness terms
in Eq.9 for the three families of smoothing distributions, as we search for the best combinations
of parameters (k, σ). The mixed norm smoothing distribution clearly obtain the best trade-off on
accuracy and robustness, and hence guarantees a tighter lower bound for certification. Fig.3 also
shows that Eq.12 even performs worse than Eq.11. We further theoretically show that Eq.12 is
provably not suitable for ℓ∞ region certification in Appendix A.5.
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CIFAR-10 Based on above results, we only compared the method defined by Eq.13 with [10] on
CIFAR-10. The certified accuracy of our method and the baseline using Gaussian smoothing distri-
bution and Proposition 4 are shown in Table 3. We can see that our method consistently outperforms
the Gaussian baseline by a large margin. More clarification about ℓ∞ experiments is in Appendix ??.

l∞ RADIUS 2/255 4/255 6/255 8/255 10/255 12/255

BASELINE (%) 58 42 31 25 18 13
OURS (%) 60 47 38 32 23 17

Table 3: Certified top-1 accuracy of the best classifiers with various l∞ radius on CIFAR-10.

To further confirm the advantage of our method, we plot in Fig.4 the certified accuracy of our method
and Gaussian baseline using models trained with Gaussian perturbation of different variances σ0

under different ℓ∞ radius. Our approach outperforms baseline consistently, especially when the ℓ∞
radius is large. We also experimented our method and baseline on ImageNet but did not obtain non-
trivial results. This is because ℓ∞ verification is extremely hard with very large dimensions [32, 31].
Future work will investigate how to obtain non-trivial bounds for ℓ∞ attacking at ImageNet scales
with smoothing classifiers.

6 Conclusion

We propose a general functional optimization based framework of adversarial certification with non-
Gaussian smoothing distributions. Based on the insights from our new framework and high dimen-
sional geometry, we propose a new family of non-Gaussian smoothing distributions, which outper-
form the Gaussian and Laplace smoothing for certifying ℓ1, ℓ2 and ℓ∞ attacking. Our work provides
a basis for a variety of future directions, including improved methods for ℓp attacks, and tighter
bounds based on adding additional constraints to our optimization framework.

Broader Impact

Adversarial certification via randomized smoothing could achieve guaranteed robust machine learn-
ing models, thus has wide application on AI security. a & b) With our empirical results, security
engineers could get better performance on defending against vicious attacks; With our theoretical re-
sults, it will be easier for following researchers to derive new bounds for different kinds of smoothing
methods. We don’t foresee the possibility that it could bring negative social impacts. c) Our frame-
work is mathematically rigorous thus would never fail. d) Our method doesn’t have bias in data as
we provide a general certification method for all tasks and data, and our distribution is not adaptive
towards data.
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