
A Proofs

A.1 Proof for Theorem 1

A.1.1 Proof for (I) and (II)

First, observe that the constraint in Equation (3) can be equivalently replaced by an inequality con-
straint fπ0(x0) ≥ f ♯

π0
(x0). Therefore, the Lagrangian multiplier can be restricted to be λ ≥ 0. We

have

Lπ0(F ,B) =min
δ∈B

min
f∈F

max
λ≥0

Eπδ
[f(x0 + z)] + λ

(
f ♯
π0
(x0)− Eπ0 [f(x0 + z)] )

≥max
λ≥0

min
δ∈B

min
f∈F

Eπδ
[f(x0 + z)] + λ

(
f ♯
π0
(x0)− Eπ0 [f(x0 + z)] )

=max
λ≥0

min
δ∈B

{
λf ♯

π0
(x0) + min

f∈F
Eπδ

[f(x0 + z)]− λEπ0 [f(x0 + z)])

}
=max

λ≥0
min
δ∈B

{
λf ♯

π0
(x0) − DF (λπ0 ‖ πδ)}.

II) follows a straightforward calculation.

A.1.2 Proof for (III), the strong duality

We first introduce the following lemma, which is a straight forward generalization of the strong
Lagrange duality to functional optimization case.
Lemma 1. Given some δ∗, we have

max
λ∈R

min
f∈F[0,1]

Eπδ∗ [f(x0 + z)] + λ
(
f ♯
π0
(x0)− Eπ0 [f(x0 + z)]

)
= min

f∈F[0,1]

max
λ∈R

Eπδ∗ [f(x0 + z)] + λ
(
f ♯
π0
(x0)− Eπ0 [f(x0 + z)]

)
.

The proof of Lemma 1 is standard. However, for completeness, we include it here.

Proof. Without loss of generality, we assume f ♯
π0
(x0) ∈ (0, 1), otherwise the feasible set is trivial.

Let α∗ be the value of the optimal solution of the primal problem. We define f ♯
π0
(x0) −

Eπ0 [f(x0 + z)] = h[f ] and g[f ] = Eπδ∗ [f(x0 + z)]. We define the following two sets:

A =
{
(v, t) ∈ R× R : ∃f ∈ F[0,1], h[f ] = v, g[f ] ≤ t

}
B = {(0, s) ∈ R× R : s < α∗} .

Notice that both setsA and B are convex. This is obvious for B. For any (v1, t1) ∈ A and (v2, t2) ∈
A, we define f1 ∈ F[0,1] such that h[f1] = v1, g[f1] ≤ t1 (and similarly we define f2). Notice that
for any γ ∈ [0, 1], we have

γf1 + (1− γ)f2 ∈ F[0,1]

γh[f1] + (1− γ)h[f2] = γv1 + (1-γ)v2
γg[f1] + (1− γ)g[f2] ≤ γt1 + (1− γ)t2,

which implies that γ(v1, t1) + (1 − γ)(v2, t2) ∈ A and thus A is convex. Also notice that by
definition, A ∩ B = ∅. Using separating hyperplane theorem, there exists a point (q1, q2) 6= (0, 0)
and a value α such that for any (v, t) ∈ A, q1v + q2t ≥ α and for any (0, s) ∈ B, q2s ≤ α. Notice
that we must have q2 ≥ 0, otherwise, for sufficient s, we will have q2s > α. We thus have, for any
f ∈ F[0,1], we have

q1h[f ] + q2g[f ] ≥ α∗ ≥ q2α
∗.

If q2 > 0, we have

max
λ∈R

min
f∈F[0,1]

g[f ] + λh[f ] ≥ min
f∈F[0,1]

g[f ] +
q1
q2

h[f ] ≥ α∗,

which gives the strong duality. If q2 = 0, we have for any f ∈ F[0,1], q1h[f ] ≥ 0 and by the
separating hyperplane theorem, q1 6= 0. However, this case is impossible: If q1 > 0, choosing
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f ≡ 1 gives q1h[f ] = q1
(
f ♯
π0
(x0)− 1

)
< 0; If q1 < 0, by choosing f ≡ 0, we have q1h[f ] =

q1
(
f ♯
π0
(x0)− 0

)
< 0. Both cases give contradiction.

Based on Lemma 1, we have the proof of the strong duality as follows.

Notice that by Lagrange multiplier method, our primal problem can be rewritten as follows:

min
δ∈B

min
f∈F[0,1]

max
λ∈R

Eπδ
[f(x0 + z)] + λ

(
f ♯
π0
(x0)− Eπ0 [f(x0 + z)]

)
,

and the dual problem is

max
λ∈R

min
δ∈B

min
f∈F[0,1]

Eπδ
[f(x0 + z)] + λ

(
f ♯
π0
(x0)− Eπ0 [f(x0 + z)]

)
=max

λ≥0
min
δ∈B

min
f∈F[0,1]

Eπδ
[f(x0 + z)] + λ

(
f ♯
π0
(x0)− Eπ0 [f(x0 + z)]

)
.

By the assumption that for any λ ≥ 0, we have

max
λ≥0

min
δ∈B

min
f∈F[0,1]

Eπδ
[f(x0 + z)] + λ

(
f ♯
π0
(x0)− Eπ0 [f(x0 + z)]

)
=max

λ≥0
min

f∈F[0,1]

Eπδ∗ [f(x0 + z)] + λ
(
f ♯
π0
(x0)− Eπ0 [f(x0 + z)]

)
,

for some δ∗ ∈ B. We have

max
λ∈R

min
δ∈B

min
f∈F[0,1]

Eπδ
[f(x0 + z)] + λ

(
f ♯
π0
(x0)− Eπ0 [f(x0 + z)]

)
=max

λ≥0
min

f∈F[0,1]

Eπδ∗ [f(x0 + z)] + λ
(
f ♯
π0
(x0)− Eπ0 [f(x0 + z)]

)
=max

λ∈R
min

f∈F[0,1]

Eπδ∗ [f(x0 + z)] + λ
(
f ♯
π0
(x0)− Eπ0 [f(x0 + z)]

)
∗
= min

f∈F[0,1]

max
λ∈R

Eπδ∗ [f(x0 + z)] + λ
(
f ♯
π0
(x0)− Eπ0 [f(x0 + z)]

)
≥min

δ∈B
min

f∈F[0,1]

max
λ∈R

Eπδ∗ [f(x0 + z)] + λ
(
f ♯
π0
(x0)− Eπ0 [f(x0 + z)]

)
,

where the second equality (*) is by Lemma 1.

A.2 Proof for Corollary 1

Proof. Given our confidence lower bound

max
λ≥0

min
∥δ∥1≤r

{
λp0 −

∫
(λπ0(z)− πδ(z))+ dz

}
,

One can show that the worst case for δ is obtained when δ∗ = (r, 0, · · · , 0) (see following subsec-
tion), thus the bound is

max
λ≥0

{
λp0 −

∫
1

2b
exp

(
−|z1|

b

)[
λ− exp

(
| z1 | −|z1 + r|

b

)]
+

dz1

}
.

Denote a to be the solution of λ = exp
(

|a|−|a+r|
b

)
, then obviously we have

a =


−∞, b log λ ≥ r

− 1
2 (b log λ+ r) , −r < b log λ < r

+∞. b log λ ≤ −r

So the bound above is

λ

∫
z1>a

1

2b
exp

(
−|z1|

b

)
dz1 −

∫
z1>a

1

2b
exp

(
−|z1 + r|

b

)
dz1.
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i) b log λ ≥ r ⇔ λ ≥ exp
(
r
b

)
the bound is

max
λ≥er/b

{λp0 − (λ− 1)} = 1− exp
(r
b

)
(1− p0) .

ii) −r < b log λ < r ⇔ exp
(
− r

b

)
< λ < exp

(
r
b

)
the bound is

max
λ

{
λp0 − λ

[
1− 1

2
exp

(
−b log λ+ r

2b

)]
+

1

2
exp

(
b log λ− r

2b

)}
=max

λ

{
λ(p0 − 1) +

λ

2
exp

(
−b log λ+ r

2b

)
+

1

2
exp

(
b log λ− r

2b

)}
=
1

2
exp

(
− log [2(1− p0)]−

r

b

)
.

the extremum is achieved when λ̂ = exp
(
−2 log [2(1− p0)]− r

b

)
. Notice that λ̂ does

not necessarily locate in
(
e−r/b, er/b

)
, so the actual bound is always equal or less than

1
2 exp

(
− log [2(1− p0)]− r

b

)
.

iii) b log λ ≤ −r ⇔ λ ≤ exp
(
− r

b

)
the bound is

max
λ≤exp(− r

b )
λ · p0 = p0 exp

(
−r

b

)
.

Since λ̂ > er/b ⇔ p0 > 1− 1
2 exp(−

r
b ), notice that the lower bound is a concave function w.r.t. λ,

making the final lower bound become{
1− exp

(
r
b

)
(1− p0) , when p0 > 1− 1

2 exp(−
r
b )

1
2 exp

(
− log [2(1− p0)]− r

b

)
. otherwise

Remark Actually, we have 1 − exp
(
r
b

)
(1− p0) ≤ 1

2 exp
(
− log [2(1− p0)]− r

b

)
all the time.

Another interesting thing is that both the bound can lead to the same radius bound:

1− exp
(r
b

)
(1− p0) >

1

2
⇔ r < −b log [2(1− p0)]

1

2
exp

(
− log [2(1− p0)]−

r

b

)
>

1

2
⇔ r < −b log [2(1− p0)]

A.3 Proof for Corollary 2

Proof. With strong duality, our confidence lower bound is

min
∥δ∥2≤r

max
λ≥0

{
λp0 −

∫
(λπ0(z)− πδ(z))+ dz

}
,

define Cλ = {z : λπ0(z) ≥ πδ(z)} = {z : δ⊤z ≤ ∥δ∥2

2 + σ2 lnλ} and Φ(·) to be the cdf of
standard gaussian distribution, then∫

(λπ0(z)− πδ(z))+ dz

=

∫
Cλ

(λπ0(z)− πδ(z)) dz

=λ · P
(
N(z;0, σ2I) ∈ Cλ

)
− P

(
N(z; δ, σ2I) ∈ Cλ

)
=λ · Φ

(
‖δ‖2
2σ

+
σ lnλ

‖δ‖2

)
− Φ

(
−‖δ‖2
2σ

+
σ lnλ

‖δ‖2

)
.
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Define

F (δ, λ) := λp0−
∫

(λπ0(z)− πδ(z))+ dz = λp0−λ·Φ
(
‖δ‖2
2σ

+
σ lnλ

‖δ‖2

)
+Φ

(
−‖δ‖2
2σ

+
σ lnλ

‖δ‖2

)
.

For ∀δ, F is a concave function w.r.t. λ, as F is actually a summation of many concave piece wise
linear function. See [33] for more discussions of properties of concave functions.

Define λ̂δ = exp
(

2σ∥δ∥2Φ
−1(p0)−∥δ∥2

2

2σ2

)
, simple calculation can show ∂F (δ,λ)

∂λ |λ=λ̂δ
= 0, which

means

min
∥δ∥2≤r

max
λ≥0

F (δ, λ) = min
∥δ∥2≤r

F (δ, λδ)

= min
∥δ∥2≤r

{
0 + Φ

(
−‖δ‖2
2σ

+
σ ln λ̂δ

‖δ‖2

)}

= min
∥δ∥2≤r

Φ

(
Φ−1(p0)−

‖δ‖2
σ

)
= Φ

(
Φ−1(p0)−

r

σ

)
This tells us

min
∥δ∥2≤r

max
λ≥0

F (δ, λ) > 1/2⇔ Φ
(
Φ−1(p0)−

r

σ

)
> 1/2⇔ r < σ · Φ−1(p0),

i.e. the certification radius is σ·Φ−1(p0). This is exactly the core theoretical contribution of [9]. This
bound has a straight forward expansion for multi-class classification situations, we refer interesting
readers to Appendix C.

A.4 Proof For Theorem 2 and 3

A.4.1 Proof for ℓ2 and ℓ∞ cases

Here we consider a more general smooth distribution π0(z) ∝ ‖z‖−k1

∞ ‖z‖−k2

2 exp
(
−∥z∥2

2

2σ2

)
, for

some k1, k2 ≥ 0 and σ > 0. We first gives the following key theorem shows that DF[0,1]
(λπ0 ‖ πδ)

increases as |δi| becomes larger for every dimension i.

Theorem 4. Suppose π0(z) ∝ ‖z‖−k1

∞ ‖z‖−k2

2 exp
(
−∥z∥2

2

2σ2

)
, for some k1, k2 ≥ 0 and σ > 0, for

any λ ≥ 0 we have

sgn(δi)
∂

∂δi
DF[0,1]

(λπ0 ‖ πδ) ≥ 0,

for any i ∈ {1, 2, ..., d}.

Theorem 2 and 3 directly follows the above theorem. Notice that in Theorem 2, as our distribution is
spherical symmetry, it is equivalent to set B =

{
δ : δ = [a, 0, ..., 0]⊤, a ≤ r

}
by rotating the axis.

Proof. Given λ, k1 and k2, we define ϕ1(s) = s−k1 , ϕ2(s) = s−k2e−
s2

σ2 . Notice that ϕ1 and ϕ2 are
monotone decreasing for non-negative s. By the symmetry, without loss of generality, we assume
δ = [δ1, ..., δd]

⊤ for δi ≥ 0, i ∈ [d]. Notice that

∂

∂δi
‖x0 − δ‖∞= I{‖x0 − δ‖∞ = |xi − δi|}

∂

∂δi

√
(xi − δi)

2

= I{‖x0 − δ‖∞ = |xi − δi|}
− (xi − δi)

‖x0 − δ‖∞
.
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And also

∂

∂δi
‖x0 − µ‖2 =

∂

∂δi

√∑
i

(xi − µi)
2

=
− (xi − µi)

‖x0 − µ‖2
.

We thus have
∂

∂δ1

∫
(λπ0(x0)− πδ(x0))+ dx0

=−
∫

I {λπ0(x0) ≥ πδ(x0)}
∂

∂δ1
πδ(x0)dx0

=

∫
I {λπ0(x0) ≥ πδ(x0)}F1 (‖x0 − δ‖∞ , ‖x0 − δ‖2) dx0

=

∫
I {λπ0(x0) ≥ πδ(x0), x1 > δ1}F1 (‖x0 − δ‖∞ , ‖x0 − δ‖2) dx0

+

∫
I {λπ0(x0) ≥ πδ(x0), x1 < δ1}F1 (‖x0 − δ‖∞ , ‖x0 − δ‖2) dx0,

where we define

F1 (‖x0 − δ‖∞ , ‖x0 − δ‖2)

= ϕ′
1 (‖x0 − δ‖∞)ϕ2 (‖x0 − δ‖2) I{‖x0 − δ‖∞ = |x1 − δ1|}

(x1 − δ1)

‖x0 − δ‖∞

+ ϕ1 (‖x0 − δ‖∞)ϕ′
2 (‖x0 − δ‖2)

(x1 − δ1)

‖x0 − δ‖2
.

Notice that as ϕ′
1 ≤ 0 and ϕ′

2 ≤ 0 and we have∫
I {λπ0(x0) ≥ πδ(x0), x1 > δ1}F1 (‖x0 − δ‖∞ , ‖x0 − δ‖2) dx0 ≤ 0∫
I {λπ0(x0) ≥ πδ(x0), x1 < δ1}F1 (‖x0 − δ‖∞ , ‖x0 − δ‖2) dx0 ≥ 0.

Our target is to prove that ∂
∂δ1

∫
(λπ0(x0)− πδ(x0))+ dx0 ≥ 0. Now define the set

H1 = {x0 : λπ0(x0) ≥ πδ(x0), x1 > δ1}
H2 =

{
[2δ1 − x1, x2, ..., xd]

⊤ : x0 = [x1, ..., xd]
⊤ ∈ H1

}
.

Here the set H2 is defined as a image of a bijection

proj(x0) = [2δ1 − x1, x2, ..., xd]
⊤
= x̃0,

that is constrained on the set H1. Notice that under our definition,∫
I {λπ0(x0) ≥ πδ(x0), x1 > δ1}F1 (‖x0 − δ‖∞ , ‖x0 − δ‖2) dx0

=

∫
H1

F1 (‖x0 − δ‖∞ , ‖x0 − δ‖2) dx0.

Now we prove that∫
I {λπ0(x0) ≥ πδ(x0), x1 < δ1}F1 (‖x0 − δ‖∞ , ‖x0 − δ‖2) dx0

(1)

≥
∫
H2

F1 (‖x0 − δ‖∞ , ‖x0 − δ‖2) dx0

(2)
=

∣∣∣∣∫
H1

F1 (‖x0 − δ‖∞ , ‖x0 − δ‖2) dx0

∣∣∣∣ .
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Property of the projection Before we prove the (1) and (2), we give the following property of the
defined projection function. For any x̃0 = proj(x0), x0 ∈ H1, we have

‖x0 − δ‖∞ = ‖x̃0 − δ‖∞
‖x0 − δ‖2 = ‖x̃0 − δ‖2
‖x0‖2 ≥ ‖x̃0‖2
‖x0‖∞ ≥ ‖x̃0‖∞ .

This is because
x̃i = xi, i ∈ [d]− {1}
x̃1 = 2δ1 − x1,

and by the fact that x1 ≥ δ1 ≥ 0, we have |x̃1| ≤ |x1| and |x̃1 − δ1| ≤ |x1 − δ1|.

Proof of Equality (2) By the fact that proj is bijective constrained on the set H1 and the property
of proj, we have∫

H2

F1 (‖x̃0 − δ‖∞ , ‖x̃0 − δ‖2) dx̃0

=

∫
H2

ϕ′
1 (‖x̃0 − δ‖∞)ϕ2 (‖x̃0 − δ‖2) I{‖x̃0 − δ‖∞ = |x̃1 − δ1|}

(x̃1 − δ1)

‖x̃0 − δ‖∞
dx̃0

+

∫
H2

ϕ1 (‖x̃0 − δ‖∞)ϕ′
2 (‖x̃0 − δ‖2)

(x̃1 − δ1)

‖x̃0 − δ‖2
dx̃0

(∗)
=

∫
H1

ϕ′
1 (‖x0 − δ‖∞)ϕ2 (‖x0 − δ‖2) I{‖x0 − δ‖∞ = |x1 − δ1|}

(δ1 − x1)

‖x0 − δ‖∞
|det (J)| dx0

+

∫
H1

ϕ1 (‖x0 − δ‖∞)ϕ′
2 (‖x0 − δ‖2)

(δ1 − x1)

‖x0 − δ‖2
dx0

=−
∫
H1

F1 (‖x0 − δ‖∞ , ‖x0 − δ‖2) dx0,

where (∗) is by change of variable x̃0 = proj(x0) and J is the Jacobian matrix J =
−1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 and here we have the fact that x̃1 − δ1 = (2δ1 − x1)− δ1 = −(x1 − δ1).

Proof of Inequality (1) This can be done by verifying that H2 ⊆
{x0 : λπ0(x0) ≥ πδ(x0), x1 < δ1}. By the property of the projection, for any x0 ∈ H1, let
x̃0 = proj(x0), then λπ0(x̃0) ≥ λπ0(x0) ≥ πδ(x0) = πδ(x̃0) (by the fact that t ϕ1 and ϕ2 are
monotone decreasing). It implies that for any x̃0 ∈ H2, we have λπ0(x̃0) ≥ πδ(x̃0) and thus
H2 ⊆ {x0 : π0(x0) ≥ πδ(x0), x1 < δ1}.

Final statement By the above result, we have
∂

∂δ1

∫
(λπ0(x0)− πδ(x0))+ dx0 ≥ 0,

and the same result holds for any ∂
∂δ1

∫
(λπ0(x0)− πδ(x0))+ dx0, i ∈ [d], which implies our

result.

A.4.2 Proof for ℓ1 case

Slightly different for former cases, apart from proving ∂
∂δi

DF[0,1]
(λπ0 ‖ πδ) ≥ 0 for ∀δi ≥ 0, we

also need to demonstrate

Theorem 5. Suppose π0(x0) ∝ ‖x0‖−k exp
(
−∥x0∥1

b

)
, then for δ = (r, d − r, δ3, δ4, · · · ) and

δ̃ = (0, d, δ3, δ4, · · · ), 0 < r < d, we have

DF[0,1]
(λπ0 ‖ πδ) ≥ DF[0,1]

(
λπ0 ‖ πδ̃

)
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Proof. We turn to show that
∂

∂r
DF[0,1]

(λπ0 ‖ πδ) ≤ 0,

for δ = (r, d− r, δ3, δ4, · · · ) and r < d/2. We define ϕ(s) = s−k exp(− s
b ). With

∂

∂δi
‖x0 − δ‖1 =

∂

∂δi
|xi − δi| = −sgn(xi − δi) =

δi − xi

|xi − δi|
,

We have
∂

∂r
DF[0,1]

(λπ0 ‖ πδ)

=−
∫

I {λπ0(x0) ≥ πδ(x0)}
∂

∂r
πδ(x0)dx0

=

∫
I {λπ0(x0) ≥ πδ(x0)}F (x0)dx0,

where

F (x0) =−
∂

∂r
ϕ (‖x0 − δ‖1) = −ϕ

′ (‖x0 − δ‖1)
∂

∂r
‖x0 − δ‖1

= ϕ′ (‖x0 − δ‖1)
∂

∂r
(|x1 − r|+ |x2 − d+ r|)

= ϕ′ (‖x0 − δ‖1) · (sgn(x1 − r) + sgn(d− x2 − r)) .

Thus the original derivative becomes

=

∫
I {λπ0(x0) ≥ πδ(x0), x1 > r, x2 < d− r}F (x0)dx0

+

∫
I {λπ0(x0) ≥ πδ(x0), x1 > r, x2 > d− r}F (x0)dx0

+

∫
I {λπ0(x0) ≥ πδ(x0), x1 < r, x2 > d− r}F (x0)dx0

+

∫
I {λπ0(x0) ≥ πδ(x0), x1 < r, x2 < d− r}F (x0)dx0

=2

∫
I {λπ0(x0) ≥ πδ(x0), x1 > r, x2 < d− r}ϕ′(‖x0 − δ‖1)dx0

− 2

∫
I {λπ0(x0) ≥ πδ(x0), x1 < r, x2 > d− r}ϕ′(‖x0 − δ‖1)dx0

We only need to show that

∫
I {λπ0(x0) ≥ πδ(x0), x1 > r, x2 < d− r}ϕ′(‖x0 − δ‖1)dx0 ≥∫
I {λπ0(x0) ≥ πδ(x0), x1 < r, x2 > d− r}ϕ′(‖x0 − δ‖1)dx0.

Notice that r < d/2, therefore this can be proved with a similar projection x0 7→ x̃0:

(x1, x2, x3, x4, · · · ) 7→ (2r − x1, 2d− 2r − x2, x3, x4, · · · )

and the similar deduction as previous theorem.

A.5 Theoretical Demonstration about the Ineffetivity of Equation (12)

Theorem 6. Consider the adversarial attacks on the ℓ∞ ball Bℓ∞,r = {δ : ‖δ‖∞ ≤ r}. Suppose
we use the smoothing distribution π0 in Equation (12) and choose the parameters (k, σ) such that
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1) ‖z‖∞ is stochastic bounded when z ∼ π0, in that for any ϵ > 0, there exists a finite M > 0 such
that Pπ0(|z| > M) ≤ ϵ;

2) the mode of ‖z‖∞ under π0 equals Cr, where C is some fixed positive constant,

then for any ϵ ∈ (0, 1) and sufficiently large dimension d, there exists a constant t > 1, such that ,
we have

max
δ∈Bℓ∞,r

{
DF[0,1]

(λπ0 ‖ πδ)

}
≥ (1− ϵ)

(
λ−O(t−d)

)
.

This shows that, in very high dimensions, the maximum distance term is arbitrarily close to λ
which is the maximum possible value of DF[0,1]

(λπ0 ‖ πδ) (see Theorem 1). In particular, this
implies that in high dimensional scenario, once f ♯

π0
(x0) ≤ (1 − ϵ) for some small ϵ, we have

Lπ0(F[0,1], Bℓ∞,r) = O(t−d) and thus fail to certify.

Remark The condition 1) and 2) in Theorem 6 are used to ensure that the magnitude of the random
perturbations generated by π0 is within a reasonable range such that the value of f ♯

π0
(x0) is not too

small, in order to have a high accuracy in the trade-off in Equation (9). Note that the natural images
are often contained in cube [0, 1]d. If ‖z‖∞ is too large to exceed the region of natural images,
the accuracy will be obviously rather poor. Note that if we use variants of Gaussian distribution,
we only need ||z||2/

√
d to be not too large. Theorem 6 says that once ‖z‖∞ is in a reasonably

small scale, the maximum distance term must be unreasonably large in high dimensions, yielding a
vacuous lower bound.

Proof. First notice that the distribution of z can be factorized by the following hierarchical scheme:

a ∼ πR(a) ∝ ad−1−ke−
a2

2σ2 I{a ≥ 0}
s ∼ Unif⊗d(−1, 1)

z ← s

‖s‖∞
a.

Without loss of generality, we assume δ∗ = [r, ..., r]⊤. (see Theorem 4)

DF[0,1]
(λπ0 ‖ πδ∗) = Ez∼π0

(
λ− πδ

π0
(z)

)
+

.

Notice that as the distribution is symmetry,

Pπ0 (‖z + δ∗‖∞ = a+ r | ‖z‖∞ = a) =
1

2
.

Define |z|(i) is the i-th order statistics of |zj |, j = 1, ..., d conditioning on ‖z‖∞ = a. By the
factorization above and some algebra, we have, for any ϵ ∈ (0, 1),

P

(
|z|(d−1)

|z|(d)
> (1− ϵ) | ‖z‖∞ = a

)
≥ 1− (1− ϵ)d−1.

And |z|(d−1)

|z|(d) ⊥ |z|
(d). Now we estimate DF[0,1]

(λπ0 ‖ πδ∗).

Ez∼π0

(
λ− πδ

π0
(z)

)
+

=EaEz∼π0

[(
λ− πδ

π0
(z)

)
+

| ‖z‖∞ = a

]

=
1

2
EaEz∼π0

[(
λ− πδ

π0
(z)

)
+

| ‖z‖∞ = a, ‖z + δ∗‖∞ = a+ r

]

+
1

2
EaEz∼π0

[(
λ− πδ

π0
(z)

)
+

| ‖z‖∞ = a, ‖z + δ∗‖∞ 6= a+ r

]
.
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Conditioning on ‖z‖∞ = a, ‖z + δ∗‖∞ = a+ r, we have

πδ

π0
(z) =

(
1

1 + r
a

)k

e−
1

2σ2 (2ra+r2)

=

(
1

1 + r
a

)k

e−
d−1−k

2C2 (2 a
r +1).

Here the second equality is because we choose mode(‖z‖∞) = Cr, which implies that√
d− 1− kσ = Cr. And thus we have

EaEz∼π0

[(
λ− πδ

π0
(z)

)
+

| ‖z‖∞ = a, ‖z + δ∗‖∞ = a+ r

]

=

∫ (
λ−

(
1

1 + r
a

)k

e−
d−1−k

2C2 (2 a
r +1)

)
+

π(a)da

=

∫ (
λ−

(
1 +

r

a

)−k (
e

2a/r+1

2C2

)−(d−1−k)
)

+

π(a)da

=λ−O(t−d),

for some t > 1. Here the last equality is by the assumption that ‖z‖∞ = Op(1).

Next we bound the second term EaEz∼π0

[(
λ− πδ

π0
(z)
)
+
| ‖z‖∞ = a, ‖z + δ∗‖∞ 6= a+ r

]
. By

the property of uniform distribution, we have

P

(
|z|(d−1)

|z|(d)
> (1− ϵ) | ‖z‖∞ = a, ‖z + δ∗‖∞ 6= a+ r

)

=P

(
|z|(d−1)

|z|(d)
> (1− ϵ) | ‖z‖∞ = a

)
≥1− (1− ϵ)d−1.

And thus, for any ϵ ∈ [0, 1),

P
(
‖z + δ∗‖∞ ≥ ((1− ϵ)a+ r)

2 | ‖z‖∞ = a, ‖z + δ∗‖∞ 6= a+ r
)
≥ 1

2

(
1− (1− ϵ)d−1

)
.

It implies that

Ez∼π0

[(
λ− πδ

π0
(z)

)
+

| ‖z‖∞ = a, ‖z + δ∗‖∞ = a+ r

]

≥1

2

(
1− (1− ϵ)d−1

)(
λ−

(
1− ϵ+

r

a

)−k

e−
1

2σ2 (ϵ(ϵ−2)a2+2r(1−ϵ)a+r2)
)

+

=
1

2

(
1− (1− ϵ)d−1

)(
λ−

(
1− ϵ+

r

a

)−k

e−
d−1−k

2C2 (ϵ(ϵ−2)a2/r2+2(1−ϵ)a/r+1)
)

+

.

For any ϵ′ ∈ (0, 1), by choosing ϵ = log(2/ϵ′)
d−1 , for large enough d, we have

Ez∼π0

[(
λ− πδ

π0
(z)

)
+

| ‖z‖∞ = a, ‖z + δ∗‖∞ = a+ r

]

≥1

2

(
1− (1− ϵ)d−1

)(
λ−

(
1− ϵ+

r

a

)−k

e−
d−1−k

2C2 (2(1−ϵ)a/r+1)e
a2 log(2/ϵ′)

C2r2

)
+

=
1

2

(
1− (1− log(2/ϵ′)

d− 1
)d−1

)(
λ−

(
1− log(2/ϵ′)

d− 1
+

r

a

)−k

e−
d−1−k

2C2 (2(1−ϵ)a/r+1)e
a2 log(2/ϵ′)

C2r2

)
+

≥1

2
(1− ϵ′)

(
λ−

(
1− ϵ+

r

a

)−k

e−
d−1−k

2C2 (2(1−ϵ)a/r+1)e
a2 log(2/ϵ′)

C2r2

)
+

.
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Thus we have

1

2
EaEz∼π0

[(
λ− πδ

π0
(z)

)
+

| ‖z‖∞ = a, ‖z + δ∗‖∞ 6= a+ r

]

=
1

2
(1− ϵ′)

(
λ−O(t−d)

)
.

Combine the bounds, for large d, we have

DF[0,1]
(λπ0 ‖ πδ∗) = (1− ϵ′)

(
λ−O(t−d)

)
.

B More about Experiments

B.1 Practical Algorithm

In this section, we give our algorithm for certification. Our target is to give a high probability bound
for the solution of

Lπ0(F[0,1], Bℓ∞,r) = max
λ≥0

{
λf ♯

π0
− DF[0,1]

(λπ0 ‖ πδ)
}

given some classifier f ♯. Following [9], the given classifier here has a binary output {0, 1}. Com-
puting the above quantity requires us to evaluate both f ♯

π0
and DF[0,1]

(λπ0 ‖ πδ). A lower bound
p̂0 of the former term is obtained through binominal test as [9] do, while the second term can be
estimated with arbitrary accuracy using Monte Carlo samples. We perform grid search to optimize
λ and given λ, we draw N i.i.d. samples from the proposed smoothing distribution π0 to estimate
λf ♯

π0
− DF[0,1]

(λπ0 ‖ πδ). This can be achieved by the following importance sampling manner:

λf ♯
π0
− DF[0,1]

(λπ0 ‖ πδ)

≥ λp̂0 −
∫ (

λ− πδ

π0
(z)

)
+

π0(z)dz

≥ λp̂0 −
1

N

N∑
i=1

(
λ− πδ

π0
(zi)

)
+

− ϵ.

And we use reject sampling to obtain samples from π0. Notice that, we restrict the search space of
λ to a finite compact set so the importance samples is bounded. Since the Monte Carlo estimation
is not exact with an error ϵ, we give a high probability concentration lower bound of the estimator.
Algorithm 1 summarized our algorithm.
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Algorithm 1 Certification algorithm
Input: input image x0; original classifier: f ♯; smoothing distribution π0; radius r; search interval

[λstart, λend] of λ; search precision h for optimizing λ; number of samples N1 for testing p0;
pre-defined error threshold ϵ; significant level α;

compute search space for λ : Λ =range(λstart, λend, h)
compute N2: number of Monte Carlo estimation given ϵ, α and Λ
compute optimal disturb: δ depends on specific setting
for λ in Λ do

sample z1, · · · , zN1
∼ π0

compute n1 = 1
N1

∑N1

i=1 f
♯(x0 + zi)

compute p̂0 =LowerConfBound(n1, N1, 1− α)
sample z1, · · · , zN2

∼ π0

compute D̂F[0,1]
(λπ0 ‖ πδ) =

1
N2

∑N2

i=1

(
λ− πδ

π0
(zi)

)
+

compute confidence lower bound bλ = λp̂0 − D̂F[0,1]
(λπ0 ‖ πδ)− ϵ

end
if maxλ∈Λ bλ ≥ 1/2 then

x0 can be certified
else

x0 cannot be certified
end

The LowerConfBound function performs a binominal test as described in [9]. The ϵ in Algorithm 1
is given by concentration inequality.

Theorem 7. Let h(z1, · · · , zN ) = 1
N

∑N
i=1

(
λ− πδ(zi)

π0(zi)

)
+

, we yield

Pr{|h(z1, · · · , zN )−
∫

(λπ0(z)− πδ(z))+ dz| ≥ ε} ≤ exp

(
−2Nε2

λ2

)
.

Proof. Given McDiarmid’s Inequality, which says

sup
x1,x2,...,xn,x̂i

|h (x1, x2, . . . , xn)− h (x1, x2, . . . , xi−1, x̂i, xi+1, . . . , xn)| ≤ ci for 1 ≤ i ≤ n,

we have ci =
λ
N , and then obtain

Pr{|h(z1, · · · , zN )−
∫

(λπ0(z)− πδ(z))+ dz| ≥ ε} ≤ exp

(
−2Nε2

λ2

)
.

The above theorem tells us that, once ϵ, λ,N is given, we can yield a bound with high-probability
1 − α. One can also get N when ϵ, λ, α is provided. Note that this is the same as the Hoeffding
bound mentioned in Section 4.2 as Micdiarmid bound is a generalization of Hoeffding bound.

However, in practice we can use a small trick as below to certify with much less comupation:
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Algorithm 2 Practical certification algorithm
Input: input image x0; original classifier: f ♯; smoothing distribution π0; radius r; search interval

for λ: [λstart, λend]; search precision h for optimizing λ; number of Monte Carlo for first
estimation: N0

1 , N
0
2 ; number of samples N1 for a second test of p0; pre-defined error thresh-

old ϵ; significant level α; optimal perturbation δ (δ = [r, 0, . . . , 0]⊤ for ℓ2 attacking and
δ = [r, . . . , r]⊤ for ℓ∞ attacking).

for λ in Λ do
sample z1, · · · , zN0

1
∼ π0

compute n0
1 = 1

N0
1

∑N0
1

i=1 f
♯(x0 + zi)

compute p̂0 =LowerConfBound(n0
1, N

0
1 , 1− α)

sample z1, · · · , zN0
2
∼ π0

compute D̂F[0,1]
(λπ0 ‖ πδ) =

1
N0

2

∑N0
2

i=1

(
λ− πδ

π0
(zi)

)
+

compute confidence lower bound bλ = λp̂0 − D̂F[0,1]
(λπ0 ‖ πδ)

end
compute λ̂ = argmaxλ∈Λ bλ
compute N2: number of Monte Carlo estimation given ϵ, α and λ̂
sample z1, · · · , zN1

∼ π0

compute n1 = 1
N1

∑N1

i=1 f
♯(x0 + zi)

compute p̂0 =LowerConfBound(n1, N1, 1− α)
sample z1, · · · , zN2

∼ π0

compute D̂F[0,1]
(λπ0 ‖ πδ) =

1
N2

∑N2

i=1

(
λ− πδ

π0
(zi)

)
+

compute b = λ̂p̂0 − D̂F[0,1]
(λπ0 ‖ πδ)− ϵ

if b ≥ 1/2 then
x0 can be certified

else
x0 cannot be certified

end

Algorithm 2 allow one to begin with small N0
1 , N

0
2 to obtain the first estimation and choose a λ̂. Then

a rigorous lower bound can be achieved with λ̂ with enough (i.e. N1, N2) Monte Carlo samples.

B.2 Experiment Settings

The details of our method are shown in the supplementary material. Since our method requires
Monte Carlo approximation, we draw 0.1M samples from π0 and construct α = 99.9% confidence
lower bounds of that in Equation (9). The optimization on λ is solved using grid search. For ℓ2
attacks, we set k = 500 for CIFAR-10 and k = 50000 for ImageNet in our non-Gaussian smooth-
ing distribution Equation (11). If the used model was trained with a Gaussian perturbation noise of
N (0, σ2

0), then the σ parameter of our smoothing distribution is set to be
√

(d− 1)/(d− 1− k)σ0,
such that the expectation of the norm ‖z‖2 under our non-Gaussian distribution Equation (11)
matches with the norm of N (0, σ2

0). For ℓ1 situation, we keep the same rule for hyperparameter
selection as ℓ2 case, in order to make the norm of proposed distribution has the same mean with orig-
inal distribution. For ℓ∞ situation, we set k = 250 and σ also equals to

√
(d− 1)/(d− 1− k)σ0

for the mixed norm smoothing distribution Equation (13) just for consistency. More ablation study
about k is deferred to Appendix B.3.

B.3 Abalation Study

On CIFAR10, we also do ablation study to show the influence of different k for the ℓ2 certification
case as shown in Table 4.
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ℓ2 Radius 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25
Baseline (%) 60 43 34 23 17 14 12 10 8
k = 100 (%) 60 43 34 23 18 15 12 10 8
k = 200 (%) 60 44 36 24 18 15 13 10 8
k = 500 (%) 61 46 37 25 19 16 14 11 9
k = 1000 (%) 59 44 36 25 19 16 14 11 9
k = 2000 (%) 56 41 35 24 19 16 15 12 9

Table 4: Certified top-1 accuracy of the best classifiers on cifar10 at various ℓ2 radius. We use the
same model as [9] and do not train any new models.

C Illumination about Bilateral Condition3

The results in the main context is obtained under binary classfication setting. Here we show it has a
natural generalization to multi-class classification setting. Suppose the given classifier f ♯ classifies
an input x0 correctly to class A, i.e.,

f ♯
A(x0) > max

B ̸=A
f ♯
B(x0) (14)

where f ♯
B(x0) denotes the prediction confidence of any class B different from ground truth label

A. Notice that f ♯
A(x0) +

∑
B ̸=A f ♯

B(x0) = 1, so the necessary and sufficient condition for correct
binary classification f ♯

A(x0) > 1/2 becomes a sufficient condition for multi-class prediction.

Similarly, the necessary and sufficient condition for correct classification of the smoothed classifier
is

min
f∈F

{
Ez∼π0 [fA(x0 + δ + z)] s.t. Eπ0 [fA(x0)] = f ♯

π0 ,A
(x0)

}
>

max
f∈F

{
Ez∼π0 [fB(x0 + δ + z)] s.t. Eπ0 [fB(x0)] = f ♯

π0 ,B
(x0)

}
for ∀B 6= A and any perturbation δ ∈ B. Writing out their Langragian forms makes things clear:

max
λ

λf ♯
π0 ,A

(x0)− DF[0,1]
(λπ0 ‖ πδ) > min

λ
max
B ̸=A

λf ♯
π0 ,B

(x0) + DF[0,1]
(πδ ‖ λπ0)

Thus the overall necessary and sufficient condition is

min
δ∈B

{
max
λ

(
λf ♯

π0 ,A
(x0)− DF[0,1]

(λπ0 ‖ πδ)
)
−max

B ̸=A
min
λ

(
λf ♯

π0 ,B
(x0) + DF[0,1]

(πδ ‖ λπ0)
)}

> 0

Optimizing this bilateral object will theoretically give a better certification result than our method
in main context, especially when the number of classes is large. But we do not use this bilateral
formulation as reasons stated below.

When both π0 and πδ are gaussian, which is [9]’s setting, this condition is equivalent to:

min
δ∈B

{
Φ

(
Φ−1(f ♯

π0 ,A
(x0))−

‖δ‖2
σ

)
−max

B ̸=A
Φ

(
Φ−1(f ♯

π0 ,B
(x0)) +

‖δ‖2
σ

)}
> 0

⇔ Φ−1(f ♯
π0 ,A

(x0))−
r

σ
> Φ−1(f ♯

π0 ,B
(x0)) +

r

σ
, ∀B 6= A

⇔ r <
σ

2

(
Φ−1(f ♯

π0 ,A
(x0))− Φ−1(f ♯

π0 ,B
(x0))

)
,∀B 6= A

with a similar derivation process like Appendix A.3. This is exactly the same bound in the (restated)
theorem 1 of [9].

[9] use 1 − pA as a naive estimate of the upper bound of f ♯
π0 ,B

(x0), where pA is a lower bound
of f ♯

π0 ,A
(x0). This leads the confidence bound decay to the bound one can get in binary case, i.e.,

r ≤ σΦ−1(f ♯
π0 ,A

(x0)).

As the two important baselines [9, 10] do not take the bilateral form, we also do not use this form in
experiments for fairness.

3In fact, the theoretical part of [15] share some similar discussion with this section.
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