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We thank the anonymous reviewers for their enthusiasm and detailed comments on the manuscript. We summarise the2

reviews as positive, and the main concerns were related to clarifying the motivation and the experiments. We agree with3

the requests, and we will use the additional ninth page in the camera-ready paper for expanding the details as requested.4

We start by addressing R2’s concerns as they had the lowest score.5

R2: (1) The main motivation for this work is to establish understanding about the link between Matérn GP priors and6

neural network activation functions. This link is explicit as shown in this paper. A motive for this is to allow NN models7

to incorporate some of the appealing properties of GP models (e.g., well-characterized uncertainties), while maintaining8

the flexibility and efficiency of NNs. The choice of kernel/activation function is up to the modelling task and ‘expert9

knowledge’. We merely provide a building block. The Matérn is a widely used prior, and worth adding to the NN tool set.10

Stationarity encodes conservative behaviour suitable for uncertainty quantification (see R4(2)). (2) The references R211

provides ([1–3, 5]) are tackling a different problem, where the kernel is not used for encoding specific prior information,12

but inferred from data (cf., ‘automatic statistician’), and [4] is covered in this paper (limiting RBF case and NN kernel).13

UCI classification tasks with Matérn-3/2 activation/kernel showing the AUC
metric. Also results for SIREN activations included.
(10-fold cv) SVGP GPDNN SV-DKL Matérn activ. SIREN activation

n d c AUC AUC AUC AUC NLPD ACC AUC

Adult 45222 14 2 .893±.004 .774±.052 .912±.003 .913±.004 .314±.006 .854±.005 .912±.004
Connect-4 67556 42 3 .824±.005 .675±.019 .909±.013 .913±.004 .449±.008 .825±.005 .909±.003
Covtype 581912 54 7 .971±.001 .943±.015 .998±.000 .998±.000 .119±.002 .957±.001 .998±.000
Diabetes 768 8 2 .817±.049 .769±.053 .512±.095 .838±.051 .487±.066 .771±.054 .835±.054

(3) In the experiments, we originally reported only accuracy14

and NLPD (accounting for uncertainty). As requested, we15

added AUC to the results, which is in-line with the previous16

results (see table), with our proposed model outperforming17

the baselines. Comparison to SIREN is interesting (NB: the18

SIREN paper was put on arXiv after the submission DL), and to answer your question, we ran the experiments with it19

as well (see table). On the UCI tasks, SIREN performs comparably to our method. On the OOD image classification20

task, it performs clearly worse (known-class NLPD: 0.103 vs. 0.106, unknown-class NLPD: 0.896 vs. 1.62), but still21

better than the baselines. Note that SIREN encodes a different type of prior (infinite smoothness, like the RBF).22

R1: (1) We are glad that the question about relation to kernel feature expansions was brought up. Fourier features23

(random, dense/structured, sparse) are typically leveraged for stationary kernels by projecting the GP problem on a set24

of harmonic basis functions. While we share the idea of using the Fourier duality, the resulting model is spanned by25

different basis functions; e.g., sinusoidal FFs enforce (global) stationarity (approximation is based on Eq. (5)), while26

our approach is locally stationary as defined by the Gaussian weights in Eq. (2), which the approximation is based on.27

This discussion was left out in the interest of space, but the additional page will give us space to cover this. (2) We28

appreciate the suggestions for improving the visualizations. We did focus on real data (with three different real-world29

experiment setups) in our quantitative experiments, and the toy data examples were to give a general understanding.30

Your suggestion of varying the number of hidden units and MC samples is good and easy to do. We’ll include this in the31

appendix to facilitate understanding of the effect of these parameters. We’ll also run a GP on CIFAR-10 as suggested.32

(3) We recognize your concern with the term ‘uncertainty calibration’ (used here as GPs are commonly said to have33

representative uncertainties). We will replace it with the less loaded ‘uncertainty quantification’ where applicable.34

R3: (1) The paper ‘Deep Neural Networks as Gaussian Processes’ (thank you for the reference) works in the scope35

of our Sec. 2 (connection from activation functions to GP kernels for principled inference). We take the opposite36

direction (GP prior→ activation function) to encode properties of the GP prior into the NN. (2) Indeed, the SPDE link37

for constructing Gauss–Markov random fields from stationary kernels is relevant here. The deeper-level connection is38

related to the spectrum of the corresponding ‘covariance operator’ (the covariance function is formally the kernel of this39

operator). We agree that there is still a lot to uncover in this space. (3) The computational complexity of our model is40

on par with using other activation functions (say, a ReLU) in the NN models. In practice, we may converge slightly41

slower (e.g., 53 s vs. 42 s for the results on the ‘adult’ data set). Compared to the GP models, especially with large42

data sets, we gain a considerable speed-up. (4) You are right that in this regard our approach can be thought of as a43

simplified Bayesian neural network—but yet as one, where the Matérn prior can be directly encoded.44

R4: (1) We understand your comment on not dedicating attention to the inference methods (also raised by R2). This45

is true and mostly on purpose to retain focus. MC dropout is neither fast nor exciting, but does its job and unlikely46

introduces complications that would raise suspicions/complications with the model. Extending beyond it is left as future47

work. (2) In both Fig. 1–2 the number of hidden units is left small (also no ensembling or such used) to highlight the48

noisiness of the corresponding NN models. In Fig. 1, the uncertainty does not always increase right outside of the data49

range as it does for the GP models on the top. This property reflects the remaining suboptimality of the model. In Fig. 2,50

the trained models end up in different local optima (this could probably be tuned). Mean-reversion is characteristic for51

stationary models (outside data the model knows it’s uncertain and reverts to the mean) and a desired property (also52

applies to the RBF fig). (3) The activation func. lengthscale parameter is fixed in all the NN experiments, because the53

preceding layer(s) take care of scaling the inputs, which serves the same purpose. We will discuss this in the main paper.54

(4) As discussed in Sec. 5, the only practical problems were encountered with the spiky (non-differentiable) Matérn-1/255

activation. In general, tuning the learning rate might also help prevent possible issues with convergence.56


