
Supplementary Material:
Stationary Activations for Uncertainty

Calibration in Deep Learning

This supplementary document is organized as follows. App. A includes further details and derivations
for the Methods section in the main paper. App. B includes details on the experiments, baseline
methods, data sets, and additional tables and result plots.

A Derivations

A.1 Spectral Factorization of the Matérn Spectral Density

We consider the stationary (and isotropic) Matérn covariance function (the difference here compared
to the main paper is just defining r = x− x

′ ∈ R
d, the parameterization is the same as in [53]):
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where ν is a smoothness and ℓ a characteristic length-scale parameter, Kν(·) the modified Bessel
function, and Γ(·) the gamma function. This covariance function can be equally presented as a
spectral density function, as discussed in the main paper (Wiener–Khinchin theorem). We use the
angular frequency Fourier transform convention which simplifies keeping track of the scaling terms.
From the Fourier-duality, the spectral density function of Eq. (11) can be recovered by the Fourier
transform:

SMat(ω) =

∫

κMat(r) exp(−iωT
r) dr. (12)

Solving the integral gives
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2dπd/2Γ(ν + d/2)λ2ν
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, (13)

where λ =
√
2ν/ℓ. We can collect the constants into q2 = 2dπd/2Γ(ν + d/2)λ2ν/Γ(ν). We are

interested in the response of the system under white noise, and thus we relax to d = 1. This is
a recurring task in signal processing and control theory (see, [24] for a brief but comprehensive
overview on the topic). Following the rationale in the main paper, we look at the transfer function
that can be defined through the spectral density as S(ω) = G(ω) q2 G(ω)∗, where [·]∗ is the complex-
conjugate. Starting from Eq. (13), we can now do the spectral factorization by manipulating the
expression (recall that i2 = −1 and a2 − b2 = (a− b)(a+ b)):
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= G(iω) q2 G(−iω), (17)

which is the form we use in the main paper.

A.2 Recovering the Matérn Activation

Following Eq. (17), we can collect the transfer function of the corresponding stable part (see discussion
in the main paper) as

G(iω) = (λ+ iω)
−(ν+1/2)

. (18)

The remaining (power) spectral density (formally that of the driving white noise process w(t) that

captures the scaling coefficients) is q2 = 2π1/2λ2νΓ(ν + 1/2)/Γ(ν). Now taking the inverse Laplace



transform of the transfer function of G(iω) yields (this can be shown by considering the simplified
expression L[xα−1 exp(−a x)](s) = Γ(α) (s+ a)−α, for α > 0)

L−1[G(s)](x) =
1

Γ(ν + 1/2)
xν−1/2 exp(−λx), (19)

and by using the properties of the Laplace transform for expanding it to the real line, we recover the
transfer (or activation) in the input space:

σ(x) =
q

Γ(ν + 1/2)
Θ(x)xν−1/2 exp(−λx), (20)

where Θ(·) is the Heaviside step function.

A.3 Recovering RBF Activations in the Limit of ν → ∞

From the empirical results in Fig. 3 it is clear that the Matérn activations of form Eq. (20) approach
RBF activations as ν → ∞. However, it is not entirely trivial from Eq. (20) why this is the case.
Thus we provide the following high-level proof.

Let x ∈ R+ and ℓ = 1, such that Eq. (20) can be simplified to

σ(x) ∝ xν−1/2 exp(−λx), (21)

where λ =
√
2ν. By rewriting

σ(x) ∝ xν−1+1/2 exp(−
√
2ν x) (22)

we can directly collect the terms in the following form (α = ν + 1/2 and β =
√
2ν)

σ(x) ∝ xα−1 exp(−β x), (23)

which we recognize to have the same form as the probability density function of the gamma distribu-
tion

f(x |α, β) = βα xα−1 exp(−β x)

Γ(α)
, for x > 0, α, β > 0, (24)

where the parameterization is in terms of shape (α) and rate (β). Because α ≫ β (ν + 1/2 ≫
√
2ν)

as α → ∞, we can leverage the known result that the gamma distribution tends to a Gaussian
distribution as α → ∞ with mean α/β and variance α/β2 → 1/2 and thus recovering the RBF
activation in the limit

lim
ν→∞

σ(x) = C exp(−(x− c)2), (25)

where c = (ν + 1/2)/
√
2ν and C is a positive constant. Formally this means that the RBF activation

is pushed towards positive infinity (see Fig. 3a).

A.4 Remark on the Role of p(w)

In the derivation for the RBF-NN kernel Williams [68] considers the prior p(w) on the weights to be
a delta distribution such that w = 1. This is a special case of considering w to uniformly randomly
get values in {−1, 1} (‘binary white’), which coincides with the presentation in Williams [68] and
Rasmussen and Williams [53], due to the RBF activation function being an even function.

The common assumption of assuming p(w) to be Gaussian, is covered in Fig. 3b (light coloured
lines), where the smoothness properties (around origin for each ν) are well preserved, but the tail
behaviour is different (also agreeing with that of the RBF activation).

A.5 Closed-form Expressions for the RBF Kernel

In Sec. 3.3, we went through an alternative view through functional analysis. This approach proved
to be tricky for the Matérn class, even if it has been used for showing properties of the RBF (squared-
exponential) kernel in the past. For the RBF many derivations simplify and can be done in closed
form. This also helps in sanity checks for the Matérn class by comparing the limit behaviour to the



−4 −2 0 2 4

−
4

−
2

0
2

4

Input, x

In
p
u
t,
x
′

(a) Matérn-1/2

−4 −2 0 2 4

Input, x

(b) Matérn-3/2

−4 −2 0 2 4

Input, x

(c) Matérn-5/2

Figure 6: Gram matrices (colour map: ) corresponding to different values for ν in the Matérn-
NN covariance function Eq. (10) with particular choices for the hyperparameters (ℓ = 0.5 and
σ2
b = 12). The effect of the decay envelope is clearly visible when moving along the diagonal.

RBF. Thus we provide the following set of identities, which can be tedious to work out, but can be
useful in analysing these problems in the spirit of Sec. 3.3.

For the RBF covariance function we can form the associated eigenbasis in closed form. We consider
the re-parameterized RBF/squared-exponential kernel/covariance function of the form κ(x, x′) =
exp(−α2|x − x′|2), where α2 = 1/2ℓ2. And a weight function (input density function) w(x) =
β√
π
exp(−β2x2). For these choices the eigenbasis of the covariance function (or the covariance

operator) can be written as follows [18]:
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These eigenvalues and eigenfunctions are given in terms of physicists’ Hermite polynomials Hj(·).
The obtained eigenfunctions are orthonormal with respect to

∫

ϕi(x)ϕj(x)w(x) dx = δij . (28)

For example, if we choose α =
√
2 and β = 1, the first four eigenvalues and eigenfunctions are
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4
√
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4
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,
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4
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with associated eigenvalues γ0 = 1
2 , γ1 = 1

4 , γ2 = 1
8 , and γ3 = 1

16 .

Poggio and Girosi [50] do the derivation through Green’s function for radial basis function networks,
which recovers the RBF as the corresponding activation function. The RBF basis functions have a
natural role, which can be seen through Mercer’s theorem [44]. The theorem states that any positive-
definite kernel can be represented as the inner product between a fixed set of features, evaluated at x
and x

′:

κ(x,x′) = h(x)Th(x′). (30)

The RBF kernel on the real line has a representation in terms of infinitely many radial-basis functions
of the form h(x) ∝ exp(− 1

4ℓ2 (x− ci)
2), but any particular feature representation of a kernel is not

necessarily unique (see, [45] and [17] for a more detailed overview).



B Experiment Details

The following sections provide further details on the experiment setup and implementation. Example
codes are provided in separate files (see the accompanying README file) and they will also be available
online at a later stage.

B.1 Illustrative Toy Examples

To give an overview of the existing models and demonstrate how our model works, we provided two
simple toy examples: a 2D classification and a 1D regression example.

Classification In the classification example, we used the Banana data set (commonly even seen as a
benchmarking data set). The Banana data set consists of 400 training samples, which are plotted as
blue and orange circles in Fig. 1. The training set has 183 samples from class 0 (blue color) and 217
samples from class 1 (orange colour).

We used a fully connected neural network architecture with one hidden layer of 50 nodes. This
choice was partly to highlight the differences to the ‘infinitely wide’ GP. For the same reason, we
did not consider ensembling (the results were allowed to be noisy). The activation function of the
hidden layer was set to represent the respective GP model kernel. For the Matérn activation function
we fixed the lengthscale ℓ = 0.5, which corresponds to scaling the inputs. The neural networks
were trained for 2000 epochs with a batch size of 400 containing all training samples. The Adam
optimizer was used with an initial learning rate of 0.02, which was decayed by a factor 10 at epochs
250, 500, and 1000. Dropout with a rate of 0.2 on the hidden layer was used during training to
prevent overfitting and during testing to obtain MC dropout samples. For model testing a test sample
grid of 300 by 300 samples in the range (−3.75, 3.75) in both dimensions was created. To evaluate
uncertainty during testing 5000 MC dropout samples were sampled for each grid sample (large
number provides smoother figures). For each grid sample the MC dropout samples were averaged
after applying the softmax function on the network output, and the resulting class probabilities p
and q for the two classes were interpreted as a Bernoulli distribution standard deviation σ =

√
pq.

This standard deviation was used as the uncertainty measure for the 2D classification task, plotted in
Fig. 1. Figure Fig. 7 shows further tests on the Banana data set, visualizing the effect of changing the
number of MC dropout samples and the number of neurons in the hidden layer of the network.

Regression For the 1D regression example, we generated a simple data set using the function
f(x) = 1

4 (x− 1
2 )

3 + 1
2x

2 −x+ 1
5 , which was chosen to generate differing function values at the two

clusters and to have moderate curvature in the function at both clusters. The clusters were generated
by sampling 100 values for x at both clusters (200 samples in total) from Gaussian distributions
with means of −1 and 1, and with a standard deviation of 0.07. The function f(x) was evaluated at
these values, and Gaussian noise with a standard deviation of 0.02 was added. The resulting training
samples for 1D regression are plotted as red dots in Fig. 2.

For simplicity, we used the same network architecture as in the classification example. Also the same
dropout rate was applied during both training and testing. On the 1D regression task the network was
trained for 2000 epochs with a batch size of 200 containing all training samples in a single batch.
Adam optimizer with the same initial learning rate and learning rate decay schedule was used, as
for 2D classification. The lengthscale was set to ℓ = 1 also for this regression example. To test the
model an evenly spaced sample grid of 100 samples in the range (−2.5, 2.5) was used. For each grid
sample 1000 MC dropout samples were obtained to estimate uncertainty. The standard deviation of
the network outputs accross MC dropout samples was used as the uncertainty measure (sigma in
Fig. 2, plotted as light blue color). The training and evaluation process was repeated 20 times for
each model and the average result is reported in Fig. 2.

GP baselines For the GP classification and regression baseline results we used GPflow 2 (https:
//github.com/GPflow/GPflow). The regression problem was a vanilla GP regression task, and
for the classification task, we used the Bernoulli likelihood with VGP inference (corresponding to a
non-sparse variant of [33]). GPflow has the ArcCos kernel built-in, and we implemented the ERF-NN
and RBF-NN kernels following the parametrization in Rasmussen and Williams [53]. We used Adam
for optimizing the hyperparameters and variational parameters.

https://github.com/GPflow/GPflow
https://github.com/GPflow/GPflow


Table 2: Further examples of UCI classification tasks, showing results for different choices for the
covariance function (or correspondingly activation function). The setup in each sub table is the same
and only the GP prior differs. Interestingly, the smoothness assumption of the prior seems to play a
clear role, and the low-order Matérns perform clearly better than the RBF.

(a) RBF: The neural network model outperforms the other methods except on the adult data set. However, overall
performance using the RBF is worse for all models compared to when a lower-order Matérn is used.

(10-fold cv) SVGP GPDNN SV-DKL RBF activation
n d c NLPD ACC NLPD ACC NLPD ACC NLPD ACC

Adult 45222 14 2 .341±.007 .840±.006 .431±.012 .850±.005 .317±.006 .854±.005 .327±.012 .853±.004

Connect-4 67556 42 3 .611±.009 .756±.005 .782±.026 .762±.008 .501±.110 .811±.049 .473±.010 .817±.005

Covtype 581912 54 7 .505±.004 .782±.002 .824±.063 .816±.021 .125±.073 .952±.029 .116±.002 .959±.001

Diabetes 768 8 2 .509±.037 .755±.057 .615±.015 .741±.041 .695±.005 .576±.086 .565±.052 .718±.047

(b) Matérn-5/2: The difference in the results given by this rather high-order Matérn and the RBF are rather clear.
Overall, the performance is similar as when a Matérn-3/2 is used.

(10-fold cv) SVGP GPDNN SV-DKL Matérn activation
n d c NLPD ACC NLPD ACC NLPD ACC NLPD ACC

Adult 45222 14 2 .342±.007 .841±.005 .873±.116 .804±.050 .315±.006 .854±.005 .317±.007 .855±.004

Connect-4 67556 42 3 .619±.010 .754±.006 1.74±.070 .758±.009 .462±.014 .826±.006 .453±.009 .827±.005

Covtype 581912 54 7 .496±.003 .786±.002 .779±.032 .822±.016 .101±.004 .962±.002 .115±.002 .960±.001

Diabetes 768 8 2 .507±.035 .763±.055 .608±.024 .755±.042 .693±.004 .629±.073 .489±.074 .768±.051

(c) Matérn-3/2: Neural network model performs comparably or better compared to the GP or NN+GP hybrids.

(10-fold cv) SVGP GPDNN SV-DKL Matérn activation
n d c NLPD ACC NLPD ACC NLPD ACC NLPD ACC

Adult 45222 14 2 .344±.006 .842±.005 .435±.014 .821±.037 .316±.006 .855±.004 .316±.007 .854±.005

Connect-4 67556 42 3 .629±.010 .750±.006 .763±.018 .768±.006 .459±.016 .827±.009 .450±.008 .828±.004

Covtype 581912 54 7 .494±.002 .787±.002 .722±.025 .842±.008 .101±.005 .962±.001 .118±.003 .958±.001

Diabetes 768 8 2 .506±.034 .759±.056 .634±.012 .744±.040 .691±.005 .507±.143 .486±.081 .766±.044

(d) Exponential: Very similar results to when other Matérn options are used, except for our method, which
suffers from the non-differentiability of the exponential activation function during training.

(10-fold cv) SVGP GPDNN SV-DKL Exponential activation
n d c NLPD ACC NLPD ACC NLPD ACC NLPD ACC

Adult 45222 14 2 .349±.006 .839±.005 .428±.014 .852±.006 .315±.005 .855±.005 .522±.084 .783±.151

Connect-4 67556 42 3 .680±.009 .727±.005 .747±.019 .773±.006 .459±.015 .827±.006 .944±.056 .670±.021

Covtype 581912 54 7 .494±.002 .791±.002 .689±.128 .811±.149 .101±.004 .962±.001 1.20±.009 .491±.009

Diabetes 768 8 2 .508±.030 .762±.061 .611±.013 .736±.048 .691±.004 .533±.137 1.05±.307 .443±.126

Table 3: UCI classification tasks with the SIREN activation function [58] showing NLPD, accuracy
and AUC metrics. The imposed prior model is different, so the results are not directly comparable
with the other methods (Table 2a being the closest).

(10-fold cv) SIREN activation
n d c NLPD ACC AUC

Adult 45222 14 2 .314±.006 .854±.005 .912±.004

Connect-4 67556 42 3 .449±.008 .825±.005 .909±.003

Covtype 581912 54 7 .119±.002 .957±.001 .998±.000

Diabetes 768 8 2 .487±.066 .771±.054 .835±.054

B.2 Benchmark Classification Tasks

In the main paper, we considered four UCI benchmark classification tasks, where the aim was to
compare our model to sophisticated previously published alternatives which aim to combine the
flexibility of neural networks with GPs—in practice by taking neural network outputs as inputs to a
GP model and performing joint learning and inference. We refer to these models as NN+GP hybrids.
The rationale behind this experiment is that if our activations really emulate the behaviour of a GP
with the corresponding covariance functions, we should be able to replace the hybrid GP part with a
single layer with the corresponding Matérn activation. In the experiments, we also used a standard
GP classifier as baseline (SVGP).

For benchmark classification tasks we chose four UCI data sets: ‘adult’, ‘connect-4’, ‘covtype’, and
‘diabetes’. The adult data set contains information of US citizens and the classification task is to
predict whether the individual makes over or under $50,000 in a year. The connect-4 data set contains
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Figure 7: Illustrative comparisons on the Banana classification data set. The subfigures show decision
boundaries and marginal predictive variance (low high) for MLP neural network results (one
hidden layer) with the network activation function being the Matérn- 52 activation. The rows show
results with different numbers of MC dropout samples and the colums show results for different
number of neurons in the hidden layer.

positions in the game of connect-4 and the classification task is to predict whether player 1 will win
or lose, or if the game will end in a draw. The covtype data set contains samples with cartographic
variables describing 30 by 30 meter forest patches, and the classification task is to assign samples
into one of seven possible forest cover type classes. The diabetes data set contains diagnostic data for
patients and the classification task is to determine whether the patient has diabetes or not. The small
diabetes data set (n = 768) was chosen on purpose to see possible problems with small data.

The symbols n, d, and c in Table 1, Table 2, and Table 3 represent the number of samples after remov-
ing missing values, the number of features in each sample, and the number of classes, respectively.
10-fold cross-validation was used to train and test each method. As preprocessing for all data sets
categorical features were one-hot encoded and continuous features were normalized using standard
scaling resulting in mean of 0 and variance of 1. For each fold of each method, the model was trained
for 20 epochs with a batch size of 500 samples. For every method using a neural network as part
of the model architecture, a fully connected network with layers d-1000-1000-500-50-c was used.
The Adam optimizer was used as the model optimizer for all models except for SV-DKL, for which
stochastic gradient descent optimizer was used with a weight decay of 0.0001 and momentum of
0.9. Training and testing was performed partially on CPUs and partially on GPUs (NVIDIA V100
and Tesla P100). On GPU the entire 10-fold cross-validation process for Matérn activation functions
takes roughly 5 seconds for the diabetes dataset, 1 minute for the adult and connect-4 datasets, and
13 minutes for the covtype dataset. Training the GP models is considerably slower.

SVGP (Stochastic Variational Gaussian Process) is a sparse GP method [33]. We used a GPflow 2
[43] implementation of SVGP to perform benchmark classification tasks. The learning rate was set
to 0.01. Bernoulli likelihood was used at the model outputs if the number of classes for the data set
was two, otherwise a softmax likelihood was used. The number of inducing points was set to 500.
This model acted as baseline and should not be directly compared to the NN+GP models (thus results
separated by a vertical line in the table).



GPDNN (Gaussian Process Deep Neural Networks, [6]) is a NN+GP hybrid model. We modified
the GPflow reference implementation that was provided by Bradshaw (https://gist.github.
com/john-bradshaw/e6784db56f8ae2cf13bb51eec51e9057). We used a RobustMax likeli-
hood with 0.1 epsilon on the model outputs. The number of inducing points and the number of active
dimensions for the GP were set to 50. The learning rate was set to 0.001. Training the GPDNN was
surprisingly fragile and without an exactly tuned learning rate and the epsilon value, the training
diverged and NLPD values were very bad. The results in the tables are the best we could get for this
model.

SV-DKL (Stochastic Variational Deep Kernel Learning, [71]) is also a NN+GP hybrid model. The
original SV-DKL publication considers a simple variant with pre-training and an additive GP. However,
the SV-DKL framework has been improved as part of GPyTorch [22] to support general GP priors
and end-to-end training. We used the reference implementation that is provided in the GPyTorch doc-
umentation (https://gpytorch.readthedocs.io/en/latest/examples/06_PyTorch_NN_
Integration_DKL/Deep_Kernel_Learning_DenseNet_CIFAR_Tutorial.html). This imple-
mentation uses an approximate GP with inducing points placed on a grid. For the connect-4 data set
a learning rate of 0.15 was used, and for the other data sets the learning rate was set to 0.1. Tuning
the learning rates helped in achieving better convergence, but had only minor effects on the final
numbers. The learning rate was used as is for training the neural network parameters, and when
training the GP model parameters the learning rate was scaled by a factor of 0.01. At 10 and 15
epochs, the learning rate was decayed by a factor of 10. The number of inducing points and the
number of active dimensions for the GP were set to 50. A softmax likelihood was used at the model
outputs. During training the likelihood was sampled 8 times to obtain an approximate distribution
and during evaluation likelihood was sampled 16 times. Training the SV-DKL was rather robust
compared to the GPDNN.

Matérn activation functions (ours) were implemented using PyTorch. Similarly as in the simple
examples, we fixed the scaling of the activations by choosing the lengthscale ℓ = 0.5. The learning
rates were set to 0.00005, 0.0002, 0.0005, and 0.0001 for data sets adult, connect-4, covtype, and
diabetes, respectively. Individual learning rates were set to achieve better convergence on each data
set. At 10 and 15 epochs, the learning rate was decayed by a factor of 10. A softmax function was
applied at the network output layer to obtain class probabilities. Dropout with a rate of 0.2 was
applied on the layer with 50 nodes during training to prevent overfitting and during testing to obtain
MC dropout samples. For each test set sample 100 MC dropout samples were obtained to estimate
uncertainty in the outputs. After applying the softmax function on the MC dropout sample outputs,
these 100 samples were averaged to obtain single class probabilities for each test sample.

SIREN activation functions [58] were implemented similar to the Matérn activation functions using
the same hyperparameters. The only difference to the Matérn activation function implementation was
the activation function used in the last hidden layer of the neural network.

Additional results Table 2 shows results on the benchmark classification tasks when different
GP covariance functions and their corresponding activation functions are used. The table showing
results for Matérn-3/2 is identical to Table 1 and shown here again for easier comparison. Looking at
the results in this table we can observe that the neural network model using the activation function
matching the GP kernel performs better or comparably to the GP and NN+GP hybrid models on all
data sets, except when exponential kernel/activation is used. This is caused by the non-differentiability
of the exponential activation which makes learning difficult for the neural network model. The GP
and NN+GP hybrid models do not suffer from this problem as they are using the kernel instead of the
activation function. Interestingly, the overall performance when an RBF is used is generally worse for
all models when compared to most Matérn alternatives, which can be expected as discussed in Sec. 5.
Table 3 shows results on the benchmark classification tasks when the SIREN activation is used.

To summarize, the results show that the Matérn activation is capable of capturing the behaviour,
accuracy, and uncertainty quantification of the NN+GP hybrid models, but without the slightly
awkward stack of combining models. In the NN+GP hybrids, approximate inference and possible
sparse methods have to be applied anyway.

https://gist.github.com/john-bradshaw/e6784db56f8ae2cf13bb51eec51e9057
https://gist.github.com/john-bradshaw/e6784db56f8ae2cf13bb51eec51e9057
https://gpytorch.readthedocs.io/en/latest/examples/06_PyTorch_NN_Integration_DKL/Deep_Kernel_Learning_DenseNet_CIFAR_Tutorial.html
https://gpytorch.readthedocs.io/en/latest/examples/06_PyTorch_NN_Integration_DKL/Deep_Kernel_Learning_DenseNet_CIFAR_Tutorial.html


B.3 Out-of-distribution Characterization with CIFAR-10

For image classification on the CIFAR-10 data set, we used the GoogLeNet [64] CNN architecture.
We modified the standard architecture slightly by adding an additional linear layer of 512 nodes
before the final classification layer. This makes the number of features in the end of the network
be 1024-512-c, instead of 1024-c, where c is the number of classes. We used pre-trained weights
in every layer except in the additional linear layer and the final cltassification layer. Both the
PyTorch base network architecture implementation and the pre-trained weights were based on those
of https://github.com/huyvnphan/PyTorch_CIFAR10.

During training all pre-trained weights remained fixed. The difference between models compared
on the CIFAR-10 task was only the choice of activation function in the additional linear layer of
512 nodes. Each model was trained for 100 epochs on the standard CIFAR-10 training set of
50,000 images but including only samples from five classes {plane, car, bird, cat, deer} resulting in
25,000 training samples being used. A batch size of 128 and a default learning rate of 0.01 with
the Adam (with weight decay) optimizer were used for training. For all Matérn activation functions
a lengthscale ℓ = 1 was used. During testing, images from all 10 classes of the standard test set
of 10,000 images were present (now including also {ship, truck, frog, dog, horse}). Dropout was
applied on the additional linear layer with probability 0.2 both to prevent overfitting during training
and to implement MC dropout during testing. During testing 10 MC dropout samples were obtained
for each test sample. Both training and testing were performed on GPUs (NVIDIA V100 and Tesla
P100).

The test set of 10,000 images has 5000 images from ‘known’ classes that were used during training
and 5000 samples from ‘unknown’ classes. To measure model performance we calculate classification
accuracy including only samples from known classes, since classification accuracy on unknown
classes is inevitably 0% for all models. To further measure performance in terms of uncertainty
estimates on known classes, we also calculate NLPD on test samples in known classes. To evaluate
classification of test samples in unknown classes (where the standard NLPD measure is not applicable),
we use a modified NLPD score:

For the ‘unknown’ classes: NLPDmod = − 1

N

N
∑

i=1

log

(

c

c− 1
(1− ymax,i)

)

, (31)

where N is the number of samples, c is the number of classes, and ymax,i is the highest predicted
class probability for sample i. This is similar to standard NLPD, differing only in how the predictive
density is defined for unknown classes. The standard predicted class probability of the correct class
can not be used, as the model can not predict any probability to unknown classes not specified for the
model. Zero loss for a sample with this measure corresponds to predicting the maximum uncertainty
prediction with class probabilities of 1

c for all classes, which is the best possible case for samples
from unknown classes. This loss has infinite value for a sample, for which the model predicts some
known class with 100% confidence, despite the sample belonging to none of the known classes. This
is not a standard metric, but provides interesting and intuitive numerical comparison for classifying
samples from unknown classes.

The numerical results for using different activation functions in CIFAR-10 classification are shown in
Table 4. For the results in the table, the network outputs were averaged across the 10 MC dropout
samples and a softmax function was applied on the resulting mean network outputs to obtain class
probabilities. Looking at the classification accuracy values, different models perform very similarly
achieving very high accuracy except for when the exponential (Matérn-1/2) or step activation is used.
The model with the exponential activation manages to learn something meaningful with an accuracy
of 37.6%, but the step activation has practically the accuracy of a random guess across the 5 known
classes. This bad performance is explained by the non-differentiability of the Matérn-1/2 (see Fig. 3a)
and step activations, which makes learning very challenging for the neural network.

In terms of NLPD on the known classes, the Matérn class of activation functions have the best
performance, but quite closely followed by the ERF and ReLU activations. For a practical example, a
sample will have an NLPD of 0.1 if it is predicted correctly with 90% class probability. The NLPD
values on the unknown class samples are strongly in favour of the RBF, Matérn-5/2, and Matérn-3/2
activations. The step function has the lowest NLPD on unknown class samples but this is arbitrary
as the model using the step function has not learned anything meaningful based on classification

https://github.com/huyvnphan/PyTorch_CIFAR10


Table 4: CIFAR10 classification accuracy (on the ‘known’ classes that were used during training) and
mean NLPD values reported separately for the ‘known’ classes and ‘unknown’ OOD classes. For
accuracy, larger is better, and NLPD smaller is better. For unknown classes the NLPD is calculated as
described in App. B.3.

RBF Matérn-5/2 Matérn-3/2 Exponential ERF Step ReLU SIREN

Accuracy (known class) 0.973 0.974 0.973 0.376 0.975 0.217 0.973 0.972
NLPD (known class) 0.099 0.110 0.103 1.26 0.147 1.52 0.181 0.106
NLPD (unknown class) 0.801 0.754 0.896 1.22 2.73 0.114 (∼inf) 1.62

accuracy and is just predicting all classes with almost equal probabilities, as can be seen in the
predicted probabilities for the step activation in Fig. 8.

After step activation, the second lowest NLPD value on unknown class samples is achieved by
the Matérn-5/2 activation at 0.754. This value corresponds to predicting unknown samples with a
maximum class probability of around 62% on average. For comparison, the NLPD of 2.73 for ERF
corresponds to a maximum predicted class probability of 95% on average for unknown samples. For
ReLU activation the NLPD for unknown samples is infinite within numerical limits as the model
predicts unknown class samples with 100% confidence to belonging to some of the known classes.

The uncertainty histograms and examples of classified images in Fig. 8 show improvement in OOD
sample uncertainty estimates when Matérn activations are used. For the results in this figure, the
uncertainty measure used was the standard deviation of MC dropout samples at the classification layer
outputs before applying the softmax function. Ideally, we would like to be able to separate known
and unknown class samples from each other based on their associated uncertainty. The histograms
in Fig. 8 show that Matérn class activation functions show good separation between samples of
unknown and known classes. The ERF activation function also shows decent separation. The ReLU
doesn’t show practically any separation in uncertainty of the unknown and known classes. For the
exponential and step activations, the histograms are not very meaningful as with these activations the
models didn’t manage to learn to properly classify the sample images. Looking at the samples of
classified images for ReLU, all known class samples with highest uncertainty have a predicted class
probability of 1.00 and many of the unknown class samples with lowest uncertainty have quite low
predicted class probabilities. This suggests that for ReLU, standard deviation of MC outputs and the
predicted class probability do not correlate very well with each other as uncertainty measures.

B.4 Black-box Radio Emitter Classification

In the final example, we consider an application outside the standard benchmarking tasks, which
underlines both the importance of uncertainty quantification and OOD characterization. The data set
for the radio emitter classification task was generated through simulations, as large radar data sets
are not publicly available. However, the properties are well understood and the observations can be
simulated.

Data We use a simulator provided by Saab for creating a realistic data set. The simulation setup
was tuned in collaboration with experts at Saab. Each simulated radar emitter sample has a carrier
frequency, pulse width, and a series of 25 to 250 pulse arrival times. The pulse arrival times follow
some pattern characteristic to the specific radar emitter. To set up a classification task we specify
100 simulated emitters with characteristic carrier frequencies, pulse widths, and pulse arrival time
patterns. These characteristic parameters are partly overlapping between different simulated emitters
to make the classification task harder. Each simulated emitter can also operate in 10 different modes
of operation, each of which have slightly different characteristic parameters. For each mode of each
emitter, we simulated 5 samples on 11 different noise levels. In total, this adds up to 55,000 training
samples. The noise is added to the samples by disturbing the series of pulse arrival times, by either
dropping pulses or by adding spurious pulses to the sequence.

In addition to the training set, we simulated a test set with three groups of samples. The first test
sample group of 10,000 samples was generated from the same simulated emitters as the training set.
The second test sample group of 10,000 samples was generated from simulated emitters that are
unknown to the model, but that have their characteristic parameters resembling some of the simulated
emitters in the training set, making these test samples hard to distinguish from familiar training
samples. The third test sample group of 10,000 samples was generated from simulated emitters that



are unknown to the model, and that have very different characteristic parameters to the simulated
emitters in the training set, making these test samples easy to distinguish from samples that are from
the training set emitters. Together these three test sample groups help to set up an OOD classification
test, for which an ideal model can separate the samples in the two groups generated from unknown
emitters, from the samples generated by the familiar training emitters. In this task separating the
unknown emitter samples that more closely resemble the training set emitter samples should be harder
than separating the samples that are from emitters with very different characteristics.

Model The neural network architecture used for this task is a CNN architecture with skip connections,
combined with a small parallel fully connected network. The CNN part of the network is used to
process the series of pulse arrival times with 1D convolutional layers, and the fully connected part is
used to process the carrier frequency and pulse width information. The outputs of these two parallel
networks are concatenated and a fully connected layer structure of 148-120-c is used to provide the
final classification (c = 100). Dropout with a rate of 0.2 is applied on the fully connected layer with
120 nodes. The difference between the two tested models is also the activation function used in this
fully connected layer: either a ReLU activation or Matérn-5/2 activation with a lengthscale ℓ = 1 was
used. Dropout is active also during testing to provide MC dropout samples (100 MC dropout samples
are obtained). The Adam optimizer with a learning rate of 0.01 was used in training. The models are
trained for 7 epochs with a batch size of 50 samples.
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(a) Results with RBF activation
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(b) Results with Matérn-5/2 activation
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(c) Results with Matérn-3/2 activation
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(d) Results with the exponential (Matérn-1/2) activation
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(e) Results with ERF activation
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(f) Results with step activation
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(g) Results with ReLU activation

Figure 8: Additional OOD example on CIFAR-10 with 5 classes (‘known’) in training and all 10 in
testing. Left: Predictive variance histograms for know/unknown test class inputs, where the Matérn
shows gradually more separation with decreasing ν, except for the exponential activation which
shows poor separation. Right: Test samples from ends of the histograms (true and predicted label +
class prob.). For the Matérn-3/2, Matérn-5/2, RBF, and ERF uncertain known and certain unknown
samples feel intuitive (good calibration), while the results seem arbitrary for the exponential, ReLU
and step activations.
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