
A Theory

A.1 Proof of Proposition 1

In this section, we prove Proposition 1 about the asymptotic power law behavior of the model-average NLL of
the ensemble for a single object, NLLobj

n , as a function of the ensemble size n.

Proof. In what follows, by abuse of notation, the subscript obj is omitted. Consider n independent identically
distributed random variables p∗i ∈ [ε, 1], ε > 0 with mean µ = Ep∗i and variance σ2 = Dp∗i . Denote
p̄∗n = 1

n

∑n
i=1 p

∗
i . The cornerstone of the proof is doing Taylor expansion of logarithm around µ and obtaining

the following expression:

NLLobj
n = −E log(p̄∗n) = E

[
− log(µ) +

µ− p̄∗n
µ

+
(µ− p̄∗n)2

2µ2
+R2(µ− p̄∗n)

]
=

= − log(µ) +
1

n

σ2

2µ2
+ E [R2(µ− p̄∗n)] , (7)

where Rm(µ − p̄∗n) = − log
(
p̄∗n
µ

)
−
∑m
k=1

(µ−p̄∗n)k

kµk
is the remainder term. First we show how to

bound E [Rm(µ− p̄∗n)] w. r. t.n for general m and then use this bound to derive the O
(

1
n2

)
asymptotic

for E [R2(µ− p̄∗n)].

Let us fix some 0 < ε < µ and split the expectation of the remainder into two terms:

E [Rm(µ− p̄∗n)] = E
[
Rm(µ− p̄∗n) · 1[|p̄∗n − µ| > ε]

]
+ E

[
Rm(µ− p̄∗n) · 1[|p̄∗n − µ| ≤ ε]

]
. (8)

Applying the Hoeffding’s inequality to p̄∗n allows us to exponentially bound the probability of deviation from µ
by ε:

P (|p̄∗n − µ| > ε) ≤ 2 exp
(
−2nε2) . (9)

Taking inequality (9) into account, we can bound the first term in (8) as follows:∣∣E[Rm(µ− p̄∗n) · 1[|p̄∗n − µ| > ε]
]∣∣ ≤ 2M exp

(
−2nε2) , (10)

where M = maxp̄∗n∈[ε,1] |Rm(µ− p̄∗n)|.

In the second term of (8), as |p̄∗n − µ| ≤ ε < µ, the remainder term can be expanded as a Taylor series

Rm(µ− p̄∗n) =
∑∞
k=m+1

(µ−p̄∗n)k

kµk
and thus bounded as follows:

|Rm(µ− p̄∗n)| ≤
∞∑

k=m+1

|µ− p̄∗n|k

kµk
≤

∞∑
k=m+1

εk

kµk
. (11)

From that we derive the following bound on the second term in (8):∣∣E[Rm(µ− p̄∗n) · 1[|p̄∗n − µ| ≤ ε]
]∣∣ ≤ ∞∑

k=m+1

εk

kµk
= O

(
εm+1) . (12)

If we fix any 0 < δ < 1 and choose the following sequence of εn = n−
1−δ
2 ,1 the first bound (10) becomes

2M exp
(
−2nδ

)
, i. e. exponential in n, and the second bound (12) becomes O

(
n−

(m+1)(1−δ)
2

)
. By taking

δ = 1
5

, we obtain that E [R4(µ− p̄∗n)] = O
(

1
n2

)
.

To conclude the proof, we note that

E [R2(µ− p̄∗n)] =
E (µ− p̄∗n)3

3µ3
+

E (µ− p̄∗n)4

4µ4
+ E [R4(µ− p̄∗n)] (13)

and E (µ− p̄∗n)3 =
E(µ−p∗i )

3

n2 = O
(

1
n2

)
, E (µ− p̄∗n)4 = 3σ4

n2 +O
(

1
n3

)
= O

(
1
n2

)
. �

A.2 Power law in NLL with temperature applied after averaging

Here we consider the power-law behaviour of the calibrated NLL of the ensemble, when the temperature is
applied after averaging. Recall that K is the number of classes and operator ∗ denotes retrieving the prediction
for the correct class. Denote p̄n = 1

n

∑n
i=1 pi, µ = Epi. Then the single-object model-average NLL has the

following form (suppose, without loss of generality, that the first class is the correct one):

NLLobj
n (τ) = −E log

(
softmax

{(
log(p̄n)

)/
τ
}∗)

= E

[
−γ log(p̄n1) + log

(
K∑
k=1

p̄γnk

)]
, (14)

1As δ < 1, εn → 0 monotonically and from some n the condition 0 < εn < µ is fulfilled.
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where γ = 1
τ

. By applying a similar Taylor expansions trick as in Proposition 1 to the function f(p) =

−γ log(p1) + log
(∑K

k=1 p
γ
k

)
under expectation in (14), we arrive at:

NLLobj
n (τ) ≈ f(µ) +

1

2n

K∑
k,k′=1

cov(pik, pik′)
∂2f

∂pk∂pk′

∣∣∣∣
p=µ

, (15)

where
∂2f

∂pk∂pk′
=

γ

p2
1

[k = 1][k′ = 1]−
γ2pγ−1

k pγ−1
k′(∑K

s=1 p
γ
s

)2 + [k = k′]
γ(γ − 1)pγ−2

k∑K
s=1 p

γ
s

. (16)

We can see that the first term in (16) is non-negative, while the second one is, on the contrary, always negative.
High values of temperature (i. e. γ < 1) make the last term negative as well, which, in turn, may lead to negative
b coefficient in the power law of the right-hand part of (15). We observe this effect in practice: at certain values
of temperature applied after averaging, the NLL starts increasing as a function of n, see Appendix C.2. We
could not apply a similar technique, as was provided in section A.1, to derive the exact asymptote in (15), when
the temperature is applied after averaging.

We note, however, that when the temperature τ is applied before averaging, i. e. fixed2 τ is used to compute the
final member networks predictions: pi(τ) = softmax{log(pi)/τ}, the expression for NLLobj

n (τ) fits the form
of (1):

NLLobj
n (τ) = −E log

(
1

n

n∑
i=1

p∗i (τ)

)
, (17)

and hence Proposition 1 is applicable. The power law parameter b = σ2

2µ2 in this case is always positive.

A.3 Lower envelope of power laws with continuous temperature

In this subsection, we show that even when the set of temperatures is uncountable, the lower envelope of power
laws asymptotically follows the power law. This argument generalizes our discussion at the end of section 2.

Proposition 2 Consider a compact set T and two continuous mappings c : T → R and b : T → R. Let each
value τ ∈ T correspond to a certain power law w. r. t.n:

PLn(τ) = c(τ) +
b(τ)

n
. (18)

Then the lower envelope LEn = minτ∈T PLn(τ) of the power laws (18) follows a power law asymptotically.

Proof. Let τn ∈ Argmin
τ∈T

PLn(τ) be the value which minimizes PLn(τ) at given n. Then the lower envelope

of power laws (18) can be defined as
LEn = PLn(τn). (19)

We need to show that ∃ c∗, b∗ ∈ R:

LEn = c∗ +
b∗

n
+ o

(
1

n

)
. (20)

By the definition of τn, the following inequalities hold:{
c(τn) + b(τn)

n
≤ c(τn+1) +

b(τn+1)

n

c(τn+1) +
b(τn+1)

n+1
≤ c(τn) + b(τn)

n+1

=⇒

{
c(τn+1) ≤ c(τn)

b(τn) ≤ b(τn+1).
(21)

The first of the right inequalities in (21) can be obtained via multiplication of the left inequalities by n and n+ 1,
respectively, and summation. The second inequality is obtained after substituting the first one into the right-hand
part of the first left inequality.

Now, as {τn} ⊂ T , which is a compact, there exists a subsequence τnk → τ∗ ∈ T which implies that
b(τn) → b(τ∗), c(τn) → c(τ∗) monotonically due to continuity of mappings b(τ), c(τ) and the right
inequalities in (21). Finally, consider the difference between LEn and PLn(τ∗):

0 ≤ PLn(τ∗)− LEn = c(τ∗)− c(τn) +
b(τ∗)− b(τn)

n
≤ b(τ∗)− b(τn)

n
. (22)

As b(τ∗)− b(τn) = o(1), we come to (20) with c∗ = c(τ∗), b∗ = b(τ∗). �

As was shown in section 2, NLLn(τ) follows a power law asymptotically for any fixed τ > 0. Due to continuity
of a softmax function w. r. t. τ , we could deduce that the parameters b and c of the respective power law are also
continuous functions of temperature. Finally, appropriately choosing the temperatures set T (namely, separate
from zero — the singularity point) allows to conclude that deviation of NLLn(τ) from its power law is o( 1

n
)

uniformly for all τ ∈ T and hence Proposition 2 is applicable to the lower envelope of NLLn(τ) as well.

2We use the same value of τ for all member networks.
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B Experimental details

Data. We conduct experiments on CIFAR-100 and CIFAR-10 datasets, each containing 50000 training and
10000 testing examples. For tuning hyperparameters, we randomly select 5000 training examples as a validation
set. After choosing optimal hyperparameters, we retrain the models on the full training dataset. We use a
standard data augmentation scheme: zero-padding with 4 pixels on each side, random cropping to produce
32× 32 images, and horizontal mirroring with probability 0.5.

Details. We consider two architectures: VGG and WideResNet. We use the implementation provided
at https://github.com/timgaripov/dnn-mode-connectivity.To obtain networks of different sizes,
we vary the width factor of the networks: for VGG / WideResNet, we use convolutional layers with
[w, 2w, 4w, 8w] / [w, 2w, 4w] filters, and fully-connected layers with 8w / 4w neurons. For VGG / WideResNet,
we consider 2 6 w 6 181 / 5 6 w 6 453; w = 64 / 160 corresponds to a standard, commonly used, config-
uration with sstandard = 15.3M / 36.8M parameters. These sizes are referred to as the standard budgets. For
VGG, we use weight decay, and binary dropout for fully-connected layers. For WideResNet, we use weight
decay and batch normalization. For each considered width factor, we tune the hyperparameters using grid search
with the following grids: learning rate — {0.005, 0.05} / {0.01, 0.1} for VGG / WideResNet, weight decay —
{10−4, 3 · 10−4, 10−3, 3 · 10−3}, dropout rate — {0, 0.25, 0.5}. We train all models for 200 epochs using SGD
with momentum of 0.9 and the following learning rate schedule: constant (100 epochs) – linearly annealing (80
epochs) – constant (20 epochs). The final learning rate is 100 times smaller than the initial one. We use the batch
size of 128.

In several experiments presented in the Appendix, we train networks without regularization, with all hyperpa-
rameters being the same for all network sizes. By this, we mean that we set weight decay and dropout rate
to zero, do not use data augmentation, and use an initial learning rate 10 times smaller than in the reference
implementation to ensure that the training converges for all considered models.

Computing infrastructure. VGG networks were trained on NVIDIA Teals P100 GPU. Training one network
of the standard size / smallest considered size / largest considered size took approximately 1 hour / 20 minutes
/ 4.5 hours. WideResNet networks were trained on NVIDIA Tesla V100 GPU. Training one network of the
standard size / smallest considered size / largest considered size took approximately 5.5 hours / 50 minutes / 32
hours.

Approximating sequences with power laws. To approximate a sequence ŷm, m > 1 with a power law, we
solve optimization task (6) using BFGS and performing computations with the double-precision floating point
numbers (float64) to avoid overflow when computing the logarithms of nearly zero values. If we consider a
uniform grid for m in the linear scale, then in the logarithmic scale the density of the points in the area with
large m is much higher than in the area with small m. To account for this variable density, we weight terms
corresponding to different values of m in (6): wm = 1

m
. When we report the quality of approximation measured

with RMSE, we use uniform weights wm = 1
M

. The described heuristic is utilized for approximating ̂(C)NLLn,
since we have a uniform grid for n in the linear scale, and is not utilized for approximating ĈNLLs and ĈNLLB ,
since for these sequences we have a uniform grid for s /B in the logarithmic scale.

Test-time cross-validation. Ashukha et al. [2] utilize a so-called test-time cross-validation to obtain an
unbiased, low-variance estimate of the CNLL using the publicly available test set. The test-time cross-validation
implies that the test set is randomly split into two equal parts five times. For each split, one part is used to
find the optimal temperature, and the other one — to measure the CNLL, and vice versa. Finally, the CNLL is
averaged over ten measurements.

C Calibration of ensembles: applying temperature before or after averaging

C.1 Difference in CNLL

In section 2, we introduced two ways of applying temperature to the ensemble, namely before and after averaging.
In this subsection, we empirically compare these two calibration procedures. Figure 7 shows the results for VGG
on CIFAR-100, for setting with and without regularization. The difference between CNLL values is low in all
the cases, hence the two procedures perform similarly. In most of the cases, particularly in practically important
cases of ensembling networks of medium and large sizes, calibration with applying temperature before averaging
performs slightly better (there are a lot of green pixels in the heatmaps). The results for other dataset-architecture
pairs are similar. To sum up, the procedure with applying temperature before averaging can be used in practice
instead of the standard one, with temperature applied after averaging, without loss in the quality.
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Figure 7: Difference between CNLLs computed with applying temperature before and after averaging
for different values of ensemble size n and network size s, for VGG on CIFAR-100. Left: the optimal
temperature for CNLL is chosen using the whole test set. Right: CNLL is computed using test-time
cross-validation.
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Figure 8: NLLn(τ) for different values of τ and CNLLn. VGG on CIFAR-100, the smallest
considered network size (1/64 of standard budget). The blue / red color corresponds to the low / high
temperatures.

C.2 Dynamics of NLL with fixed temperature and CNLL

In this subsection, we illustrate the behaviour of NLLn(τ) and CNLLn for both ways of applying temperature.
Figure 8 shows the results for VGG on CIFAR-100, for setting with and without regularization, for the smallest
considered network size. When the temperature is applied before averaging, in practice, both NLLn(τ) and
CNLLn follow a power law as functions of n, with positive parameter b, as can be seen from figure 8, left
column. When the temperature is applied after averaging, NLLn(τ) starts growing w. r. t.n for high values of
τ , as can be seen from figure 8, right. As a result, CNLLn in this case may be non-convex, see the bottom
right plot. We observed the effect of NLLn(τ) increase in a wide range of settings, while the effect of CNLLn
non-convexity was observed only for small unregularized networks. In the most cases, CNLLn with temperature
applied after averaging also follows a power law.

D Comparison of CNLL and LE-NLL

In this section, we empirically show that moving the minimum operation outside the expectation in equation (3)
does not change the value of CNLL a lot in practice. In other words, we compare the values of CNLL (3),
commonly used in practice, and LE-NLL (4), utilized in section 2, for different dataset–architecture pairs. We
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Figure 10: Parameters of power laws and the quality of approximation for NLLn(τ) with fixed
temperature τ .

consider two scenarios for computing CNLL: (a) when the optimal temperature is chosen using the whole test
set, as it is the case for LE-NLL, and (b) when the test-time cross-validation is utilized [2]. In figure 9 we depict
the difference between CNLL and LE-NLL for different values of ensemble size n and network size s, for VGG
on CIFAR-100. We observe that the difference is negligible, compared to the values of LE-NLL. The relative
difference for all values of n and s is bounded by 0.018% / 0.29% for scenarios (a) and (b) respectively. For
WideResNet on CIFAR-100, the relative difference is bounded by 0.081% / 0.61%, for VGG on CIFAR-10 —
0.054% / 0.46%, for WideResNet on CIFAR-10 — 0.023% / 0.45% for scenarios (a) and (b) respectively. In all
the the experiments in the paper, we use CNLL computed using test-time cross-validation.
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VGG on CIFAR-100: temperature τ = 1 VGG on CIFAR-100: temperature τ= 3
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Figure 11: Power law approximation for NLLn(τ) for VGG of small size (1/64 of standard budget)
on CIFAR-100, with the standard and high values of temperature. Approximations in both linear
space and log-space are presented.

E NLL with fixed temperature as a function of ensemble size

E.1 Power law approximation for different dataset–architecture pairs

In this subsection, we show that NLLn(τ) can be closely approximated with a power law as a function of n, on
the whole considered range n > 1, for all values of τ > 0, and for different dataset–architecture pairs. Figure 10
supplements figure 2 for other dataset–architecture pairs, and shows the quality of approximation of NLLn(τ)
with power laws as well as the dynamics of power law parameters a, b, c.

For a particular network size, parameter a is generally a decreasing function of temperature τ . The described
effect does not hold for the ensembles of large WideResNet networks, because for them we only consider small
ensembles due to the resource limitations, so the approximation is performed for only a few points and is slightly
unstable. The described effect also does not hold for the ensembles of small VGG networks, since applying high
temperatures leads to the noise in NLLn(τ) for large n and makes the approximation slightly worse than for
other settings, as confirmed in the rightmost plot. This approximation is still very close, see appendix E.2.

Parameter b decreases when the temperature grows, since lower temperatures result in more contrast predictions,
and ensembling smooths them. Parameter c is a non-monotonic function of τ , and its optimum reflects the
optimal temperature for the “infinite”-size ensemble. The optimal temperature may be greater or less than one,
depending on the dataset–architecture combination.

E.2 Power law approximation for small networks with high temperature

Figure 11 visualizes the power law approximation of NLLn(τ) for VGG of the smallest considered width, with
a standard temperature τ = 1 and a high temperature τ = 3. In log-space, we observe the visible fluctuations
of NLLn(τ = 3) for large ensembles. These fluctuations result in a small bias in the estimation of power law
parameters, particularly parameter a. However, in the linear space, the fluctuations do not have a significant
effect, and the approximation is close to the data.

The reason for the fluctuations is that for high values of temperature and for large ensemble sizes n, the difference
NLLn(τ)− c for optimal c is extremely small, while the precision of the computation is limited. Particularly,
the minimum value of log2(NLLn(τ)− c) is approximately equal to −11 for τ = 3 and to −9 for τ = 1, see
the y-axes of figure 11. We observe the fluctuations for the ensembles of small networks, since for small s we
consider the largest values of n.

F Convergence of temperature

To show that the optimal temperature τ converges when ensemble size n increases, we plot optimal τ vs. n for
different dataset–architecture pairs in figure 12. We average the optimal temperature over runs, i. e. different
trained ensembles, and over folds in test-time cross-validation.

G Power law approximation of CNLL as a function of ensemble size

Figure 13 supplements figure 3, to show that CNLLn with the temperature applied before averaging can be
closely approximated with a power law on the whole considered range n > 1, for all considered dataset–
architecture pairs. The rightmost plot reports the quality of approximation in the log-space. We notice that in the
linear space, the RMSE is less than 5.9 · 10−4 for all blue points, corresponding to VGG, and less 4.7 · 10−4 for

17



0 20 40 60
ensemble size n

1.0

1.5

2.0

op
tim

al
 te

m
pe

ra
tu

re

VGG on CIFAR-100

0 20 40 60
ensemble size n

1.0

1.5

2.0

WideResNet on CIFAR-100

0 20 40 60
ensemble size n

1.0

1.5

2.0

VGG on CIFAR-10

0 20 40 60
ensemble size n

1.0

1.5

2.0

WideResNet on CIFAR-10
Network size s
(in standard
budgets)

1/64
1/32
1/16
1/8
1/4

1/2
1
2
4
8

Figure 12: Optimal temperatures for different dataset–architecture pairs.
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Figure 13: Parameters of power laws and the quality of approximation for CNLLn for different
network sizes s. VGG and WideResNet on CIFAR-10.

all green points, corresponding to WideResNet. The first three plots in each row visualize the dynamics of power
law parameters a, b, c as network size increases; these dynamics were discussed in section 4.

H CNLL of the ensemble of unregularized networks

In this section, we analyse the CNLL of the ensembles of unregularized networks as a function of network
size. Turning off regularization, i. e. weight decay and dropout, results in the clearly observed effect that for
large values of n, CNLLs of the ensemble of size n has optimum at some network size s. We firstly visualize
this effect in figure 14 showing the (n, s) plane of CNLL for the setting without regularization, for VGG
and WideResNet on CIFAR-100. For higher n (e. g.n > 5), the horizontal cuts are non-monotonic w. r. t. s.
Secondly, we analyse the CNLL of the “infinite”-size ensemble, using power laws discovered in the paper.
Figure 15 visualizes the parameters of the power laws approximating CNLLn for different values of s, for VGG
and WideresNet on CIFAR-100. We can clearly observe that parameter b, that reflects the possible gain of
ensembling the networks of size s, decreases as s increases, while the parameter c, that reflects the CNLL of
the “infinite”-size ensemble, is non-monotonic, i. e. achieves optimum at some s in the middle of the considered
range of s. The similar effect was observed in figure 3 for the regularized setting, but in a less visible form. We
notice that the decrease of parameter b in the setting without regularization is much larger, than in the standard
setting with regularization, and the effect of non-monotonicity of c is also stronger.

The described effect of the non-monotonicity of CNLLs for large ensembles may be a consequence of under-
regularization of the large networks, or a consequence of the decreased diversity of the large networks [23], and
needs further investigation.
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Figure 14: The (n, s)-plane of CNLL for WideResNet and VGG on CIFAR-100 for the setting
without regularization.
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Figure 15: Parameters of power laws and the quality of approximation for CNLLn for different
network sizes s. VGG and WideResNet on CIFAR-100, setting without regularization.
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Figure 16: Non-calibrated NLLs and CNLLs. Left and middle: for a single network, NLLs may
exhibit double descent, while CNLLs can be closely approximated with a power law. Right: NLLs
and CNLLs of an ensemble of several networks may be non-monotonic functions.

I Power law approximation of NLL as a function of network size

Figure 16 supplements figure 4, to show that CNLLs can be closely approximated with a power law on the
whole considered range of network sizes s, for all considered dataset–architecture pairs, with parameter a close
to −0.5. For the non-calibrated NLL of VGG on CIFAR-10, we observe the same double descend behaviour as
for VGG on CIFAR-100.

J Power law approximation of NLL as a function of the memory budget.
MSA effect

Figure 17 supplements figure 5, to show that CNLLB can be closely approximated with a power law on the
whole considered range of memory budgets B, for all considered dataset–architecture pairs. The right column of
the plots visualizes the MSA effect: for each memory budget B (each line), the optimum of CNLL is achieved at
abscissa n > 1. The MSA effect also holds for accuracy for a wide range of budgets, including budgets less than
the standard one, see figure 18. The optimal memory split is usually achieved for accuracy at the same n or at
the smaller n than for CNLL.
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Figure 17: Left and middle: CNLLB for different dataset–architecture pairs can be closely approxi-
mated with a power law. CNLLB is a lower envelope of CNLLn for different network sizes s. Right:
MSA effect: for different memory budgets B, the optimal CNLL is achieved at n > 1.
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Figure 18: MSA effect for accuracy: for different memory budgets B, the optimal accuracy is
achieved at n > 1.
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Figure 19: Predictions based on CNLLn power laws. Difference between true and predicted CNLL.
Predictions are made for large n based on n = 1..4 using all trained networks of each size, i. e. with
averaging CNLLn for n = 1..4 over a large number of runs.
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Figure 20: Predictions based on CNLLn power laws for VGG and WideResNet on CIFAR-10.
Predictions are made for large n based on n = 1..4 using 6 trained networks of each size. Left pair:
RMSE between true and predicted CNLL. Right pair: predicted optimal memory splits vs true ones.
Mean ± standard deviation is shown for predictions.

The timing analysis of the memory splitting procedure. One might wonder, how much slower is training and
prediction with the ensemble of several medium-size networks compared to a single large network. In table 1,
we list the training and prediction time for a single VGG on CIFAR-100, for different network sizes. We conduct
this experiment on GPU conducting training / prediction with several networks sequentially, using the training
batch size of 64 and the testing batch size of 1024. We observe that using the memory split with the relatively
small number of networks (which is the case in practice) is only moderately slower than using a single wide
network. For example, for budget 4S, with a single network / memory split of 4 networks, testing takes 111 / 132
sec, while one training epoch takes 42 / 64 seconds. Please note that these numbers are given for the case when
the networks in the memory split are trained / validated sequentially, while the memory split allows parallel
training / validation.

Network size (in standard budgets) 0.125 0.25 0.5 1 2 4 8
Time of 1 training epoch 7.8 8 11 16 27 42 80

Prediction time 6.8 9.5 20 33 63 111 227

Table 1: Training and prediction time for a single VGG of different sizes on CIFAR-100.

K Predictions based on power laws

In this section, we expand the discussion on using the power laws observed in the paper for predicting the CNLL
of large ensembles, and optimal memory splits for different memory budgets. For all predictions, we use the
values of CNLLn for n = 1..4 for different values of s as given data.

We firstly conduct an experiment in which CNLLn for n = 1..4 is averaged over all available b `
n
c runs, see

section 3 for details on the number of available runs. In this experiment, we predict CNLLn for n > 4. Figure 19
reports the RMSE between the true and predicted CNLLn. The predictions are highly precise with the error
2–3 orders smaller than the values being predicted. This experiment provides an evidence that the power laws
discussed in the paper can be used for prediction. However, the described setting is not practically applicable
due to the use of a large number of networks.

The second experiment is practically oriented: we use only 6 networks of each network size s, and average
CNLLn for n = 1..4 using only these 6 networks. The number 6 is chosen to provide more stable CNLL
estimates for n = 1..3. We average the errors in predictions over 10 / 5 runs for VGG / WideResNet. Figure 20
supplements figure 6 and shows the results for CIFAR-10. When predicting CNLLn for n > 4 (see the left
pairs of plots in figures 6 and 20), we obtain the error of 1-2 orders smaller than the values being predicted. The
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Algorithm 1 Finding optimal memory split using power laws
Input: budget B (the number of parameters);
Output: the optimal memory split of budget B;

1: CNLL∗ = +∞, n∗ = None; k = −1;
2: repeat
3: k += 1, n = 2k;
4: Train min(n, 6) networks of size B/n;
5: if n > 4 then
6: Fit the parameters of power law on sequence {ĈNLLi}4i=1;
7: Predict CNLLn using power law;
8: else
9: Compute CNLLn using trained networks;

10: if CNLLn < CNLL∗ then
11: CNLL∗ = CNLLn; n∗ = n;
12: found = False; // updated minimum
13: else
14: found = True; // passed minimum
15: until found
16: Train the ensemble of n∗ networks of size B/n∗.

accurate prediction of CNLLn allows predicting the optimal memory splits for different memory budgets B,
see the right pairs of plots in figures 6 and 20.

Finding optimal memory splits in practice. Let’s say we have a budgetB and want to find an optimal memory
split (MS). Algorithm 1 describes the procedure of finding the optimal MS using the discovered power laws.
With this algorithm, we need to train min(n, 6) networks of size B/n for n = 1, . . . , n∗ + 1 where n∗ is a
number of networks in an optimal MS, and after finding n∗, we also need to train lacking networks for the
optimal MS. If we do not use power-law predictions we can train MSs one by one (one network of size B, then
two networks of size B/2, etc.) while the quality of the MS starts to degrade. In this case we need to train n
networks of size B/n for n = 1, . . . , n∗ + 1. As a result, if n∗ > 4, power-law predictions allow training fewer
networks, and the higher n∗ the higher the gain.

L Additional experiments with ImageNet

Ashukha et al. [2] released the weights of the ensembles of ResNet50 networks (commonly used size) trained on
ImageNet. We used their data to empirically confirm the power-law behaviour of NLL and CNLL as functions
of the ensemble size. Figure 21 shows that the resulting power law approximations fit the data well, supporting
the results presented in section 4.
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Figure 21: Non-calibrated NLL and CNLL of the ResNet50 of the commonly used size on ImageNet.
Both NLLn and CNLLn can be closely approximated with a power law.
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