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Abstract

Existing 3D human pose estimation models suffer performance drop when applying
to new scenarios with unseen poses due to their limited generalizability. In this
work, we propose a novel framework, Inference Stage Optimization (ISO), for
improving the generalizability of 3D pose models when source and target data
come from different pose distributions. Our main insight is that the target data, even
though not labeled, carry valuable priors about their underlying distribution. To ex-
ploit such information, the proposed ISO performs geometry-aware self-supervised
learning (SSL) on each single target instance and updates the 3D pose model before
making prediction. In this way, the model can mine distributional knowledge
about the target scenario and quickly adapt to it with enhanced generalization
performance. In addition, to handle sequential target data, we propose an online
mode for implementing our ISO framework via streaming the SSL, which substan-
tially enhances its effectiveness. We systematically analyze why and how our ISO
framework works on diverse benchmarks under cross-scenario setup. Remarkably,
it yields new state-of-the-art of 83.6% 3D PCK on MPI-INF-3DHP, improving
upon the previous best result by 9.7%.

1 Introduction

3D human pose estimation aims to localize 3D human body joints in images or videos. As a
fundamental task in computer vision, it is widely applied to human-robot interaction [15], action
recognition [53], human tracking [32], etc. This task is commonly resolved in a fully-supervised
manner with golden annotations [30, 57, 32, 55] that are collected in well-controlled laboratorial en-
vironments [21]. Despite their success in constrained scenarios, these methods are hardly generalized
to new scenarios (e.g., in-the-wild scenes), due to severe differences in the underlying distributions
(e.g., varying poses, camera viewpoints, body sizes and appearances).

Recent works address such a generalization challenge by leveraging either data augmentation strate-

gies such as image composition [32] and synthesis [8, 49], or more complicated model learning
strategies like introducing kinematics priors [57, 12], separating 2D and depth features [44, 31,45, 17]
or adopting adversarial learning [54, 14, 51]. However, they are still limited to the cases where

training and test samples have similar poses and otherwise tend to suffer large performance drop,
since their trained model is commonly biased to the training distribution and hardly generalizes well
to an unseen one that is very different.

In this work, we propose a novel scheme named Inference Stage Optimization (ISO). Instead of
focusing on improving model training, ISO improves and adapts the model at its inference stage
before making predictions (Fig. 1). Our insight is that the target samples, although not labeled, carry
valuable information about their distribution, which could be exploited to help adapt the model in the
inference stage for correcting unfavorable training bias and improving generalization performance.
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Figure 1: Illustration on our main idea. We consider cross-scenario setting where the model is trained
on the source scenario (e.g., indoor scenes) but applied to a new target scenario (e.g., in-the-wild
scenes). Existing methods (upper panel) usually use the trained model for predictions directly, which
would suffer performance drop under such cross-scenario setup. Different from them, ISO adapts
the model at its inference stage via performing self-supervised learning (SSL) on unlabeled target
samples before making predictions (bottom panel), which largely improves its generalizability. Red
arrow represents back-propagation based model update. Errors are labeled in black arrows.

However, exploiting such prior from unlabeled data is highly non-trivial. Inspired by recent success of
self-supervised learning (SSL) techniques for learning good representations from unlabeled samples
in other domains, we propose to leverage SSL to explore the underlying prior from unlabeled target
instances. Different from general objects, human poses present clear and informative geometry
structure, thus we deploy two different SSL methods, namely random projection adversary [14] and
geometric cycle consistency [7], which are simple but effective at learning geometry-aware represen-
tations. ISO therefore enables the model to mine both geometric and distributional information from
target instances and quickly adapt to the target scenario. As such, the model can estimate 3D poses
more reliably across different scenarios, even in presence of severe distribution shifts.

Concretely, when training on labeled source data, instead of only performing fully-supervised learning
(FSL) [30, 44, 55], our proposed ISO trains the model with FSL and SSL jointly. Such a training
scheme enables the model to leverage geometry-wise feedback from SSL to learn representations and
estimate 3D poses. This also facilitates model optimization in the inference stage. During inference,
ISO adapts the model parameters to the new scenario and distribution via performing SSL on each
target instance. Equipped with such instance-specific adaptation, the model can estimate 3D pose for
each sample from the new target scenario accurately. In addition, we also develop an online ISO to
accumulate the learned adaptation knowledge from a sequence of target samples, which would speed
up model adaptation and reduce computational overhead.

We conduct extensive experiments under cross-scenario setup: training a model on Human3.6M [21]
and evaluate it on MPI-INF-3DHP [3 1] and 3DPW [50]. Notably, ISO achieves new state-of-the-art
accuracy, 83.6% 3D PCK on MPI-INF-3DHP, improving upon the previous best result by 9.7%.

Our contributions are four-fold. 1) To our best knowledge, we are among the first to explore the practi-
cal cross-scenario 3D pose estimation task and develop an effective solution (i.e., ISO). Distinguished
from existing works, we explore how to effectively adapt the models during the inference stage. 2)
We identify and investigate two simple SSL techniques suitable for 3D pose estimation under the
ISO framework, to exploit geometric and distributional knowledge from unlabeled target data. 3) We
develop an online ISO framework, which can handle sequential data effectively and naturally apply
to practical scenes where data usually come online sequentially. 4) We provide understandings on
why and how ISO works for cross-scenario generalization by conducting systematic analysis, which
may inspire future works on improving generalization of human pose estimation.

2 Related work

3D pose estimation. Lots of deep methods have been proposed for 3D pose estimation from 2D
representations (e.g., images or poses) [48, 8, 49, 30, s , 34, 4, 40, 56], which highly
rely on well-annotated datasets. These methods easily overﬁt to d15tr1but10n specific patterns such



as camera views and pose subjects, and can hardly generalize to new scenarios. To improve their

generalizability, semi- and weakly-supervised methods [57, 54, 12, 51, 17, 52, 9, 36, 27] have
been developed. Some [57, 12, 36] use kinematics priors for regularization or post-processing;
others [54, 51] leverage adversarial training or separate 2D and depth features [44, 31, 45, 17] for

domain adaptation. Despite encouraging results, the applicability of these methods is still restricted in
scope defined by the datasets they are trained on. Recently, several geometry-driven self-supervised
methods [39, 14,7, 26, 37, 28, 38] are proposed to train the model with more unlabeled training data.
However, they are rarely used in a transductive manner for testing. Different from all above methods,
we are the first to learn distributional information from target instances at inference stage via SSL,
which is demonstrated an effective method for out-of-distribution 3D pose estimation.

Learning on target instances. Learning on target instances has emerged as a powerful technique
for mining complex data distributions and priors. Bau ef al. [3] improve photo manipulation per-
formance by adapting image priors to the statistics of an individual target image. Sun et al. [46]
leverage rotation prediction pretext task for solving domain shift in image classification. Shocher et
al. [41] perform super-resolution of a target image via learning to recover it from its downsampled
counterpart. However, these methods cannot be directly applied to 3D pose estimation. In this work,
we propose a novel ISO framework to improve 3D pose estimation under cross-scenario setup through
mining geometric and distributional knowledge from target instances.

3 Method

3.1 Problem formulation

Let I denotes an image and & € R7*?2 denotes 2D spatial coordinates of .J keypoints of the human in
the image. X € R/*3 denotes the corresponding 3D joints position. We consider such cross-scenario
setup: the model is trained on a source scenario D (e.g., indoor scenes) with pose distribution P,
and applied to a new scenario D; (e.g., in-the-wild scenes) with unseen poses, viewpoints, body sizes
and appearances drawn from a different distribution Q.

Empirically, a pose distribution P can be disentangled to appearance and geometry factors [39]. The
cross-scenario setup is faced with the pose distribution drift w.r.t. both of them. However, drift of
appearance distribution can be well solved by powerful off-the-shelf 2D pose estimators. Thus we
focus on addressing the drift w.r.t. pose geometry (i.e., poses, viewpoints, etc). We directly work
with skeleton data and aim to obtain a 3D pose model that can lift 2D poses to 3D ones with good
adaptive capability to a new scenario.

Suppose we have a pair of 2D and corresponding 3D poses {(x;, X;)} X, drawn i.i.d. from the
source distribution P. Existing methods usually train a 3D pose model on these training samples and
apply it directly on target samples drawn from the target distribution Q. In particular, the model with
parameter 0 is trained in a fully supervised learning (FSL) scheme:
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where L is a fully-supervised loss. Generally, L ¢ is defined as mean squared errors (MSE) of the
predicted and ground truth (GT) poses [30]. Several earlier works complement such a loss with a
bone supervision loss [44, 55]. Accordingly, £ is formulated as

Ly =X -X|3+|B- B3 ©)

Here X and X denote the GT and predicted 3D poses, respectively; B and B denote the GT and

predicted bone vectors computed from X and X, respectively [44]. The obtained model is typically
biased to the training samples and thus suffers limited generalizability.

3.2 Inference stage optimization

We introduce our Inference Stage Optimization (ISO) framework that allows a 3D pose model to
mine geometric and distributional knowledge from target instances during the inference stage, and
adapt to new scenarios with improved generalization performance. For simplicity, we consider a 3D
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Figure 2: Overall pipeline of ISO. (a) We first train our model by solving optimization of both FSL
and SSL tasks in the source scenario with labeled data. During inference, given each unlabeled target
sample, (b) we first perform SSL on it to update network parameters and (c) exploit the adapted
network for final pose estimation.

pose model implemented by a K-layer neural network with parameters 6y, for layer k. The stacked
parameter vector @ = (61, ..., 0x) specifies the entire model for 3D pose estimation. The overall
pipeline is illustrated in Fig. 2.

3.2.1 Training

Similar to existing methods, when training on the source scenario D, our model parameters 6
can be updated by solving the optimization problem in Eqn. (1). We call this the fully-supervised
learning (FSL) task. However, our ISO also performs a self-supervised learning (SSL) task with
self-supervised loss £ () to train the pose estimation model so that it can learn to adapt via SSL
feedback in the inference stage.

We choose two geometry-aware SSL methods to exploit pose geometry information from the skeleton
data: random projection adversary [14] and geometric cycle consistency [7], which are effective at
geometry adaptation. Note with our framework, more SSL methods can be explored in the future.

ISO-Adversary. The idea of random projection adversary SSL is that if a 2D pose is lifted to 3D
accurately, and rotated and projected with randomly generated camera view, the resulting ‘synthetic’
2D pose should lie within the valid 2D poses distribution. We build a pose discriminator D to classify
each input 2D pose as real or fake (randomly projected from 3D poses). The loss is defined as

Laay = E(log(D(r))) + E(log(1 — D(y))), 3)

where r and y denote real and fake 2D poses, respectively. We follow [14] to generate random camera
view by sampling an azimuth angle between [—7, 7] and an elevation angle between [—7 /9, 7/9)].

ISO-Cycle. The geometric cycle consistency SSL complements ISO-Adversary with cycle consis-
tency among 2D and 3D spaces. Specifically, by lifting the randomly projected 2D pose y back to 3D
and then re-projecting it to the original camera view, the resulting 3D and 2D poses should be consis-
tent with the original ones. The training can thus be supervised by exploiting the cycle-consistency of
the lift-project-lift process. Combined with the adversarial loss in Eqn. (3), the loss is

Leye = Laao + Aopllz — Z[3 + Xap || X — X3, €5

where x and & denote original and re-projected 2D poses, X and X denote lifted and re-lifted 3D
poses, Aop = 10 and A3p = 0.1 are weights for 2D and 3D loss terms, respectively.

During training, we optimize both FSL and SSL tasks to update network parameters. Following
standard multi-task learning framework [5], the SSL task shares some of the network parameters
0. = (01,...,0,) with the FSL task, where x € {1,..., K'}. We call these shared « layers as shared
feature extractor. The SSL task uses its task-specific parameters 6, = (9;i T G,K) We call these
unshared parameters 6, the SSL head, and 0 = (0,41, ..., 0x) the FSL head. As shown in Fig. 2
(a), the joint architecture has a shared bottom and two heads. Both heads output a J x 3 vector,



indicating the 3D pose prediction. The only difference between them is that their network parameters
are updated by solving different optimization problems.

We train the model in a multi-task learning fashion on the same data drawn from P. The joint-training
problem is formulated as

N

, 1
. 3in, Mm% ; (zf(a,-i, X;10.,0;) + \Cy(x:30.,0,, ed)). (5)

where 0, denotes network parameters of the pose discriminator D and A = 0.1 is a relative weight
for balancing different loss terms. Here £ denotes the self-supervised loss in Eqn. (3) or Eqn. (4).

3.2.2 Inference

After minimizing Eqn. (5) on data from D, with distribution P, we obtain the network parameters
67, 6% .67 and 07 for the shared featured extractor, FSL head, SSL head and pose discriminator,
respectively. During inference, ISO performs SSL on each single target instance x to update the
shared feature extractor, SSL head and pose discriminator (Fig. 2 (b)), which can be formulated as

min max Ls(x;0.,05,0,). (6)
eUs d

The SSL process is done using standard gradient descent (or a variant) with learning rate o and
iteration 7'. Additionally, a mini-batch contains several copies of « such that a single optimization
iteration can involve adversarial samples (i.e., randomly projected 2D poses) as much as possible,
which ensures better performance. After optimizing Eqn. (6), we obtain the updated parameter 67, of
the shared feature extractor, and make a prediction using 8* = (67, 0})) (Fig. 2 (c)). The motivation
behind this formulation is that the joint training scheme (FSL+SSL at the training phase) enables the
FSL head to be adaptive to the representations learned from SSL. In this way, the FSL head, though
being frozen, can be directly applied for making accurate predictions over the representations updated
by the SSL branch during inference.

We implement ISO in a vanilla mode, i.e., performing SSL on each target instance individually before
making prediction on it. For vanilla ISO, the optimization problem in Eqn. (6) is always initialized

with parameters Hf, Hf and 0(7;. After performing 7 iterations SSL on *" instance x;, we obtain
the updated parameters 6°, 6%, 0',. After making a prediction on x;, 0., 8, and 0, are discarded.

Besides vanilla ISO, when the target instances arrive sequentially, we propose a corresponding online
ISO by streaming the SSL to continuously exploit distributional knowledge among them. Specifically,
the online ISO solves the same optimization problem to update network parameters. However,
when learning on x;, 8., 65 and 0, are instead initialized with 02_1, 92_1 and 02_1 updated on the
previous instance x;_1. This allows the model to benefit from the distributional information available
in instances x1, ..., x;—1 as well as x;, and thus speeds up the model adaptation.

3.2.3 Network and algorithm details.

Network architecture. Our 3D pose estimation model primarily consists of the residual block
(RB) proposed in [30]. Each RB consists of two linear layers, Batch Normalization (BN) [20], leaky
ReLU [18] and dropout [42] with residual connection [19]. The feature dimension and dropout
probability are set to 1,024 and 0.5, respectively. Specifically, the shared feature extractor consists
of a linear layer followed by three stacked RBs. It first transforms the input 2.J-dimension vector
to a 1024-dimension vector, which is then fed to the FSL and SSL heads separately. Both the FSL
and SSL heads contain an unshared RB followed by a linear layer for 3D pose estimation. The pose
discriminator takes as input the 2.J-dimension vector (2D pose) and outputs classification results
(real or fake). We use three stacked RBs but remove all BN layers. For the 2-way classifier used for
representation learning analysis (Sec. 4.3), we use the same architecture as the pose discriminator,
except for the first layer since it takes 3D poses as inputs. The hidden feature used for visualization is
extracted from the final residual block of the classifier (1024-dimension vector).

Algorithm details. The summary of both vanilla and online ISO on target instances during infer-
ence is illustrated in Algorithm 1I.



Algorithm 1: Inference Stage Optimization.

Input :target instances {x;}iv,, pre-trained network parameters 87, 0% .87 07, learning rate a,
training iteration 7'.

Output : 3D pose estimations { X; } ;.
Initialization: 8% < 97 with x € {e, s, d}
for i =11t N do
if vanilla ISO then

| 6. < 82 with x € {e,s,d}
else

// online ISO

‘ 0% + 07" with * € {e, s, d}
end
for t =1t T do
Compute gradients Vg, Ls(x;; 0%, 0%, 84) (Eqn. (6)) where * € {e, s, d}.
Update parameters: 0% < 0% — aVg, Ls(xi; 0%, 0%, 07%) where * € {e, s,d}.

end

Predict 3D pose X ; using the network parameters 8° = (67, 0})) .
end

4 Experiments

We aim to answer the following questions through experiments: 1) Is ISO able to improve cross-
scenario generalization performance of 3D pose estimation? 2) How does ISO take effect to boost
generalization performance? 3) Does ISO introduce too much overhead in the inference stage?

4.1 Experiment setup

We quantitatively evaluate the generalizability of our method in cross-scenario setup, i.e., training a
model on Human3.6M and evaluate its performance on the more challenging 3D pose benchmarks
MPI-INF-3DHP [31] and 3DPW [50], which feature more diverse motions and scenes. We train
our model on subjects S1, S5, S6, S7 and S8 of Human3.6M [30, 57] and evaluate it on the official
test set of MPI-INF-3DHP and 3DPW. For MPI-INF-3DHP, we use Mean Per Joint Position Error
(MPJPE), 3D Percentage of Correct Keypoints (PCK) with a threshold 150mm and the corresponding
Area Under Curve (AUC) as metrics and adopt three evaluation protocols [17]: (i) unscaled (US); (ii)
glob. scaled (GS); (iii) procrustes (PA). For 3DPW, we follow [24] to use Procrustes Aligned MPJPE
(PA-MPIJPE) and 3D PCK as metrics. In addition, we use MPII [ 1] and LSP [22], the standard 2D
pose benchmarks with diverse scenes that reflect challenging factors such as strong pose deformations
and abundant viewpoints in the real world, to qualitatively verify the effectiveness of our method.

We train our model for 200 epochs on Human3.6M, adopting Adam [25] as optimizer with an initial
learning rate of 2 x 10~ and using exponential decay and mini-batch size of 1024. We use horizontal
flip augmentation at both training and inference. During inference, for both 3DHP and 3DPW, we
freeze batch normalization layers and perform SSL on each single target instance before making
prediction. Specifically, for both vanilla and online ISO, we adopt Adam optimizer with learning rate
a =2 x 107°. We set iteration 7" as 10 and 1 for vanilla and online ISO, respectively. In following
experiments, unless otherwise stated we use ISO-Cycle SSL technique.

4.2 Does ISO boost generalization?

We compare ISO (online) with several state-of-the-art approaches on 3DHP and 3DPW datasets.
Some methods consider domain adaptation [54], or use complex network architectures [30, 23, 12,

, 0, 13] and training schemes [51, 2, 47]. We use Baseline to denote the plain model trained
w1th only FSL task; Joint is the model trained with FSL and SSL tasks jointly; Vanilla refers to the
model adapted using vanilla ISO; Online is the model adapted using online ISO.

Results on 3DHP. We compare ISO against the methods in [54, 11, 6] under cross-scenario setup.
We directly report their results from original papers. Note some of them have missing metrics or do
not specify evaluation protocols. Additionally, we implement and compare with methods [55, 51]



based on their released code.' Table 1 shows the results under different metrics and protocols. Our
method achieves the highest accuracy in terms of 3D PCK and MPJPE across all evaluation protocols,
outperforming the second best by a large margin. This verifies the generalizability of our approach.

Results on 3DPW. We also compare ISO with state-of-the-art approaches on 3DPW. Some methods
exploit temporal information [12, 24, 13], while some others are trained on the training set of
3DPW [2, 47]. Table 2 reports the results. Our method outperforms several approaches in terms of
PA-MPJPE and even achieves comparable results with the fully-supervised method [47]. This shows
the generalization capability of our method.

Table 1: Results on 3DHP. * denotes our impleme-

ntation. US, GS and PA denote different protocols. Table 2: Our results (14-joints) on 3DPW.

Method PCKT AUCT  MPJPE | * denotes training using GT data.
Yang [54] 69.0 32.0

Citl 240 67 Method PCK PA-MPJPE |
Chang [0] 76.5 40.2 - Martinez [30] - 157.0
Wandt [51] 81.8 54.8 92.5 Dabral [12] - 923
Zhao [55]*(US) 762 4238 126.1 Ezggzzzg Fd 22'}1 ;gz
Ours (US) 83.6 48.2 922 Arnab [2]" i 72
Zhao [55]*(GS) 77.1 455 108.0 Doersch [13] - 74.7
Ours (GS) 84.5 50.9 88.4 Sun [47]* - 69.5
Wandt [51]* (PA) 81.6 47.0 95.4 Ours 82.0 70.8
Zhao [55]* (PA) 86.0 46.7 96.8

Ours (PA) 91.3 54.0 75.8

Qualitative results. We visualize some 3D pose estimations of ISO on the challenging LSP, MPII,
3DHP and 3DPW datasets in Fig. 3. Most of the involved poses and camera views are unseen to
our model. However, our ISO can still achieve good results even in presence of self-occlusion (1st
column), large pose variations (2nd, 3rd column), and unusual views (4th column). Additionally, ISO
compared with Baseline produces more geometrically plausible results. These verify the superior
generalizability of ISO to challenging new scenarios.

Components analysis. Please refer to supplement for analysis of SSL techniques and hyper-
parameters used in ISO.

Figure 3: Example 3D pose estimations from LSP, MPII (top row) and 3DHP, 3DPW (bottom row).
ISO results are shown in the left four columns. The rightmost column shows results of Baseline.
Errors are labeled in black arrows. Please refer to supplement for more qualitative results.

4.3 Why ISO performs well?

We investigate why and how ISO can improve cross-scenario generalization. All below experiments
are conducted on 3DHP using Online under the unscaled protocol, unless otherwise specified.

Geometric distribution alignment. Our main insight is performing ISO on target instances enables
the model to mine geometric knowledge (e.g., limb length ratios and body parts symmetry) about
the target distribution. To verify this, we inspect the distribution alignment in geometry of output

'Implementation is based on source code: SemGCN and RepNet for [55] and [51], respectively.
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left and right body parts, respectively.
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Figure 5: Visualization of Figure 6: Per body-part accuracy on 3DHP. PCK of each part is
hidden features using t-SNE. computed as the PCK of corresponding skeleton joints.

poses from Baseline and ISO (Online). Specifically, we compute the limb length ratios of upper
to lower arms and legs (both for left and right sides), and torso [57, 7]. The results are shown in
Fig. 4. We can observe the ratio distributions generated by ISO are sharper and closer to the real
ratio distributions of 3DHP, compared with those by Baseline. Additionally, ISO produces more
symmetric ratio distributions for the left and right sides of arms and legs than Baseline, which verifies
its ability to capture the symmetry of body parts. All these results clearly demonstrate the model
adapted via ISO can mine geometric knowledge about the target distribution and thus generalize well
to it, without requiring any prior for regularization [12] or post-processing [57].

Representation learning. To further analyze how ISO helps during inference, we train a 2-way
classifier to predict which dataset (Human3.6M or 3DHP) a given 3D pose comes from. The
classifier after trained can achieve averagely 99.5% accuracy on both datasets, demonstrating the
classifier’s ability to accurately capture the inter-dataset difference of geometry and judge the dataset
(or distribution) a 3D pose comes from. Then, we apply this classifier to distinguish whether the 3D
poses estimated by Baseline and ISO are close to the distribution of GT 3D poses from 3DHP. The
classifier only identifies 52.6% of the 3D poses estimated by Baseline drawn from the target 3DHP
distribution, while 83.4% of the 3D poses estimated by ISO drawn from 3DHP. This demonstrates
the representations adapted by ISO are more similar to the target ones. Additionally, we visualize
the hidden feature (1024-dimension vector) of the classifier by t-SNE [29] in Fig. 5. We can see
performing SSL on target instances draws the feature distribution of the generated 3D poses closer to
those of GTs (blue and green circles). All these results clearly demonstrate ISO enables the model to
adapt to the real distribution of 3DHP during inference stage.

Per body-part improvement. In addition to distribution alignment, we also study the performance
improvement of our method on each body part. We first divide all skeleton joints into eight parts: Hip,
Spine, Shoulder, Head, Elbow, Wrist, Knee and Ankle. Then we compute mean 3D PCK for each
part and present the results in Fig. 6. We can see Online improves over Baseline by a large margin for
Head, Elbow, Wrist and Ankle. All these parts are difficult to estimate especially for samples from
new scenarios, due to high flexibility. However, Online successfully estimates these parts, which
demonstrates the effectiveness of our method for cross-scenario generalization.

4.4 IsISO costly or sensitive to noise?

Inference time analysis. Our ISO scheme is slightly slower than a regular inference scheme, which
only performs a single forward pass for each sample. Here, we provide two potential solutions to



Table 3: Inference time analysis of different Table 4: Performances with different levels 2D

inference modes of 1SO. pose noise from N (0, o).
Method PCK AUC MPJPE Time[s] Method PCK AUC MPJPE
Vanilla 82.5 47.6 94.1 0.244 ISO 83.6 482 922
Vanilla-Ir 82.1 473 94.6 0.027 ISO (o = 5) 825 47.4 94.0
Online 83.6 482 92 0.027 180 (o = 10) 79.6 437 103.4
Onlineskip ~ 83.0 480 927 0.004 Baseline 89 437 1038
Baseline 78.9 437 103.8 0.003

improve the computational efficiency. For vanilla ISO, we set iteration 7" to 1 (instead of 10) and
learning rate « to 2e~* (instead of 2¢~°). The new setup is denoted as Vanilla-Ir. For online ISO,
since T is already 1, we propose to perform SSL once per 10 samples, denoted as Online-skip. For
all settings, we count average per-sample inference time in seconds and show results in Table 3.> We
observe by adopting the new inference setup, the computational efficiency can be improved by nearly
8% and 7x speedup for vanilla and online ISO, respectively, with good performance almost the same
as the original. Significantly, we see Online-skip achieves almost the same efficiency as the regular
inference scheme while improving the performance by a large margin.

Robustness to noisy observations. We evaluate robustness of our method under different levels of
noise by adding noise to the input 2D poses. Specifically, we add Gaussian noise (0, o) to the GT 2D
poses, where ¢ is the standard deviation in pixel [30]. The results are shown in Table 4. The accuracy
decreases linearly with o, which indicates the noise of 2D poses has major impact on the results.
However, this issue can be alleviated by using state-of-the-art 2D pose estimators [35, 43, 10] or
training with synthetic error [33, 6]. Note the maximum person size from head to foot is approximately
200px in the input data. Thus, Gaussian noise with 0 = 10 is considered as extremely large. However,
even under such large noise, ISO produces a better result (79.6% 3D PCK) than Baseline (78.9% 3D
PCK), which verifies its robustness.

5 Conclusion

We propose a new ISO framework for improving the generalizability of 3D pose estimation models. It
explores underlying priors in target instances and leverages SSL techniques to mine such knowledge
for estimating 3D poses accurately even under strong distribution shifts between source and target
scenarios. ISO achieves state-of-the-art performance on challenging MPI-INF-3DHP benchmark
under cross-scenario setting. In future, we plan to investigate more SSL techniques in our framework.

Broader impact

We propose Inference Stage Optimization (ISO) framework for cross-scenario 3D human pose
estimation. It can be applied to lots of 3D pose estimation related applications including human-robot
interaction, action recognition, human tracking, etc., which are all important research topics in
artificial intelligence. However, similar to most human pose estimation methods, ISO may be used for
military application and raise privacy concerns when misused. Generally, improving generalization
performance for the 3D human pose estimation task may have many applications, which could be
positive, negative or more complicated, but would depend on what task we use these applications for.
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