Appendix: Glance and Focus: a Dynamic Approach to Reducing Spatial
Redundancy in Image Classification

A Implementation Details

A.1 Recurrent Networks

For RegNets [40], MobileNets-V3 [[16] and EfficientNets [50], we use a gated recurrent unit (GRU)
with 256 hidden units [[7] in the patch proposal network 7. For ResNets [14] and DenseNets [22], we
adopt 1024 hidden units and remove the convolutional layer in 7. This does not hurt the efficiency
since here the computational cost of 7 is negligible compared with the two encoders. With regards
to the recurrent classifier f., for ResNets [[14], DenseNets [22]] and RegNets [40]], we use a GRU
with 1024 hidden units. For MobileNets-V3 [16] and EfficientNets [50], we find that although a
GRU classifier with a large number of hidden units achieves excellent classification accuracy, it
is excessively computationally expensive in terms of efficiency. Therefore, we replace the GRU
with a cascade of fully connected classification layers. In specific, at ¢ step, we concatenate the
feature vectors of all previous inputs {€1, ..., &}, and use a linear classifier with the size tF'x C for
classification, where F' is the number of feature dimensions and C' is the number of classes. Similarly,
we use another (t+1)F x C linear classifier at (t41)" step. Totally, we have 7" linear classifiers with
the size F'xC,2F xC, ..., TFxC.

A.2 Policy Gradient Algorithm

During training, the objective of the patch proposal network 7 is to maximize the sum of the

discounted rewards:
T

max E {Zt_Q vt_2rt] , 4

where, v € (0,1) is a pre-defined discount factor, r; is the reward for the localization action I,
and 7T is the maximum length of the input sequence. The action l; is stochastically chosen from a
distribution parameterized by 7: l; ~ 7(l:|e;—1, h]_,), where we denote the hidden state maintained
within 7 by h]_,. Here we use a Gaussian distribution during training, whose mean is outputted by
7 and standard deviation is pre-defined as a hyper-parameter. At test time, we simply adopt the mean
value as I; for a deterministic inference process. Note that, we always resize the original image @ to
H' xW' as &1 (Glance Step), and thus we do not have I or ry.

In this work, we implement the proximal policy optimization (PPO) algorithm proposed by [44]]
to train the patch proposal network 7. In the following, we briefly introduce its procedure. For
simplicity, we denote 7(l:|e;—1, h]_5) by 7(l:|st), where s; is the current state containing e;_; and
hT_,. First, we consider a surrogate objective:

m(li|sy) -
— A 5
Toallels) ©)

where 7,4 and 7 are the patch proposal network before and after the update, respectively. The
advantage estimator A; is computed by:

CPI _
L7 =

Ay = —V(se)+ri+yrig1+-- + ’yTﬁtrT, (6)

where V' (s;) is a learned state-value function that shares parameters with the policy function (they
merely differ in the final fully connected layer). Since directly maximizing L usually leads to an
excessively large policy update, a clipped surrogate objective is adopted [44]:

. l ‘St) ~ . W(lt‘st) A
LCLIP:mm{W(tAA:h — " 1—¢14+6)A;;, @)

t raalbelsn) Pl e
where 0 < € < 1is a hyper-parameter. Then we are ready to give the final maximization objective:
maximize Eg [Lgup — o LYY + 8, (st)]) (8)

Herein, Sy (s;) denotes the entropy bonus to ensure sufficient exploration [58} 37, 44]], and L}* is
a squared-error loss on the estimated state value: (V (s;) — V'®&!(s,))2. We straightforwardly let
Ve (g,) =y +yry g +- -+ trp. The coefficients ¢; and ¢y are pre-defined hyper-parameters.

14

In our implementation, we execute the aforementioned training process in Stage II of the 3-stage
training scheme. To be specific, we optimize Eq. (8) using an Adam optimizer [28]] with 3; = 0.9,
B2 = 0.999 and a learning rate of 0.0003. We set v = 0.7, ¢ = 0.2, ¢c; = 0.5 and ¢o = 0.01.
The size of the mini-batch is set to 256. We train the patch proposal network 7 for 15 epochs and
select the model with the highest final validation accuracy, i.e., the accuracy when t = T'. These
hyper-parameters are selected on the validation set of ImageNet and used in all our experiments.

A.3 Training Details

Initialization. As introduced in the paper, we initialize the local encoder f; using the ImageNet
pre-trained models, while initialize the global encoder f; by first fine-tuning the pre-trained models
with all training samples resized to H' x W’. To be specific, for ResNets and DenseNets, we use the
pre-trained models provided by pytorch [39]], for RegNets, we use the pre-trained models provided by
their paper [40]], and for MobileNets-V3 and EfficientNets, we first train the networks from scratch
following all the details mentioned in their papers [50, [16] to match the reported performance, and
use the obtained networks as the pre-trained models. For H' X W’ fine-tuning, we use the same
training hyper-parameters as the training process [[14} 22140, |50, [16]. Notably, when MobileNets-V3
and EfficientNets are used as the backbone, we fix the parameters of the global encoder f; after
initialization and do not train it any more, which we find is beneficial for the final performance of the
Glance Step.

Stage 1. We train all networks using a SGD optimizer [14} 22, [56]] with a cosine learning rate
annealing technique and a Nesterov momentum of 0.9. The size of the mini-batch is set to 256,
while the L2 regularization coefficient is set to Se-5 for RegNets and 1e-4 for other networks. The
initial learning rate is set to 0.1 for the classifier f.. For the two encoders, the initial learning rates
are set to 0.01, 0.01, 0.02, 0.005 and 0.005 for ResNets, DenseNets, RegNets, MobileNets-V3 and
EfficientNets, respectively. The regularization coefficient A (see: Eq. (3) in the paper) is set to 1 for
ResNets, DenseNets and RegNets, and 5 for MobileNets-V3 and EfficientNets. We train ResNets,
DenseNets and RegNets for 60 epochs, MobileNets-V3 for 90 epochs and EfficientNets for 30 epochs.

Stage II. We train the patch proposal network 7 using an Adam optimizer [28] with the hyper-
parameters provided in Appendix [A.2] The standard deviation of the Gaussian distribution from
which we sample the localization action I, is set to 0.1 in all the experiments.

Stage ITI. We use the same hyper-parameters as Stage I, except for using an initial learning rate of
0.01 for the classifier f.. Moreover, we do not execute this stage for EfficientNets, since we do not
witness an improvement of performance.

Table 2: Details of the GFNets in Figure 4 of the paper

Backbone CNNs GFNets

(1) ResNet-50, H' = W' =96,T =5

(2) ResNet-50, H' = W' = 128, T = 5

(1) DenseNet-121, H' = W' =96,T =5

DenseNets (2) DenseNet-169, H' = W' =96, T = 5

(3) DenseNet-201, H' = W' =96,T =5

(1) RegNet-Y-600MF, H' = W' =96, T =5

RegNets (2) RegNet-Y-800MF, H' = W' =96,T =5

(3) RegNet-Y-1.6GF, H' = W' =96, T =5

(1) MobileNet-V3-Large (1.00), H' = W' =96, T = 3
MobileNets-V3 (2) MobileNet-V3-Large (1.00), H' = W' =128, T = 3
(3) MobileNet-V3-Large (1.25), H' = W' =128, T = 3
(1) EfficientNet-B2, H' = W’ =128, T =4
EfficientNets (2) EfficientNet-B3, H' = W' =128, T = 4

(3) EfficientNet-B3, H' = W' =144, T = 4

ResNets

The input size (H’, W), the maximum input sequence length 7" and the corresponding encoders used
by the GFNets in Figure 4 of the paper are summarized in Table 2| Note that we always let H'=W".

15

accuracy (%)

pog —— GFNet ol GFNet 1 —— GFNet
67 . --%-- MobileNets-V3 (H'x W' Fine-tuned) I‘X ' --%¥-+ RegNets-Y (H'xW’ Fine-tuned) . =%+ EfficientNets (H'> W’ Fine-tuned)
661%." --@- MobileNets-V3 . --®: RegNets-Y 1 --@- EfficientNets
65 . 671" 3
: 73
0.50 0.75 1.00 1.25 1.50 1.75 2.00 1 2 3 4 5 6 7 8 0.2 0.4 0.6 0.8 1.0
average budget (in Multiply-Adds) ~ x10° average budget (in Multiply-Adds) — x10° average budget (in Multiply-Adds) — x10°
(a) MobileNet-V3 (b) RegNet-Y (c) EfficientNet

" —— GFNet

=%+ ResNets (H'x W' Fine-tuned) 684 «*¥:+ Den ots (H'x W' Fine-tuned)
644 K ... ResNets 67 --@-+ DenseNets
B .
62 T T T T T T T 66
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 45 05 1.0 1.5 2.0 2.5 3.0 3.5
average budget (in Multiply-Adds) ~ x10° average budget (in Multiply-Adds) — x10°
(d) ResNet (e) DenseNet

Figure 9: The performance of H'XW" fine-tuned models. The results of Budgeted batch classification
are presented. Note that, the performance of the Glance Step is mainly determined by the low-
resolution fine-tuning, and thus this fine-tuning is an important component of the proposed GFNet
framework.

B Additional Results

B.1 Effects of Low-resolution Fine-tuning

As mentioned in the paper, our method initializes the global encoder f; by first fine-tuning the
pre-trained models with all training samples resized to H' < W’. An interesting observation is that the
low-resolution fine-tuning improves the computational efficiency by itself. The performance of the
fine-tuned models compared with baselines and GFNets is reported in Figure[J] It is important that
the improvements achieved by these fine-tuned models are actually included in our GFNets, since the
performance of the Glance Step is mainly determined by the low-resolution fine-tuning. On the other
hand, our method is able to further improve the test accuracy with the Focus Stage, and adjust the
average computational cost online.

B.2 Comparisons with MSDNet in Budgeted Batch Classification

. The comparisons of DenseNet-based GFNets and MSD-

i L Nets [20] under the Budgeted Batch Classification setting
72 are shown in Figure [T0} Following [20]], here we hold
714 out 50,000 images from the training set as an additional
70 ; validation set to estimate the confidence thresholds, and
697 — GFNet use the remaining samples to train the network (note that
Ei — \DI%DI\I\ct% we use the entire training set in Figure 4 (e) of the paper).
o e ‘ — One can observe from the results that GFNet consistently

0.5 10 L5 2.0 25 30 outperforms MSDNet within a wide range of computa-

average budget (in Multiply-Adds) x10° .
werage budget, (in Multiply-Adds) tional budgets. For example, when the budgets are around

Figure 10: Performance of GFNet ;. 102 Multiply-Adds, the test accuracy of our method
(based on DenseNets) versus MSDNet is higher than MSDNet by approximately 2%. GFNet is
[20,] under' the Budgeted Batch Classifi- own (o be a more effective adaptive inference framework
cation setting. than MSDNet. In addition, in terms of the flexibility of
GFNet, its computational efficiency can be further improved by applying state-of-the-art CNNs as
the two encoders.

16

	Implementation Details
	Recurrent Networks
	Policy Gradient Algorithm
	Training Details

	Additional Results
	Effects of Low-resolution Fine-tuning
	Comparisons with MSDNet in Budgeted Batch Classification

