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Abstract

Multi-agent Imitation learning (MAIL) refers to the problem that agents learn
to perform a task interactively in a multi-agent system through observing and
mimicking expert demonstrations, without any knowledge of a reward function
from the environment. MAIL has received a lot of attention due to promising
results achieved on synthesized tasks, with the potential to be applied to complex
real-world multi-agent tasks. Key challenges for MAIL include sample efficiency
and scalability. In this paper, we proposed Bayesian multi-type mean field multi-
agent imitation learning (BM3IL). Our method improves sample efficiency through
establishing a Bayesian formulation for MAIL, and enhances scalability through
introducing a new multi-type mean field approximation. We demonstrate the
performance of our algorithm through benchmarking with three state-of-the-art
multi-agent imitation learning algorithms on several tasks, including solving a
multi-agent traffic optimization problem in a real-world transportation network.
Experimental results indicate that our algorithm significantly outperforms all other
algorithms in all scenarios.

1 Introduction

Multi-agent imitation learning tries to infer a hidden reward function from expert demonstrations and
optimizes a policy with the learned reward function for each agent in a multi-agent system. MAIL
has received a lot of research attention and shown promising results over a variety of tasks, including
the particle environments [15] and cooperative robotic control tasks based on OpenAI baselines [2],
social group communication [17], driving simulation [1], sports [10, 11], and etc. [18] formulates
the multi-agent generative adversarial imitation learning (MA-GAIL) by extending the single-agent
generative adversarial imitation learning [4] to the multi-agent case. [7] incorporates MA-GAIL with
an attention-actor-critic [6] to develop a multi-agent discriminator-actor-attention-critic (MA-DAAC)
algorithm.

MAIL has the potential to solve real-world complex problems, such as optimizing driving routes in a
city-scale transportation network [19], or optimizing the medical resource allocation to mitigate the
spread of disease [9]. However, applying MAIL to real-world problems is not easy. MAIL is often
formulated as solving a Markov game with unknown reward functions [18, 7]. To find the optimal
policy in a Markov game, each agent needs to take into consideration the policies of other agents [21].
The more agents in the environment, the more variance and uncertainty each agent has in the policy
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search. Moreover, interacting with the environment to collect samples is an expensive operation [20].
As such, the two fundamental challenges are sample efficiency and scalability.

To improve the sample efficiency, we introduce a Bayesian approach for MAIL which learns a more
stable reward function to more efficiently guide the policy search, and which enables an algorithm to
converge faster. To improve the scalability, we introduce a new multi-type mean field approximation
to effectively gather the information from other agents, which approximates the interactions within
the population of agents with those between a single agent and the average effect of the overall
population. To this end, we develop a new imitation learning algorithm, the Bayesian multi-type
mean field multi-agent imitation learning (BM3IL).

The contributions of the paper are summarized as follows. (1) We introduce a Bayesian formulation
of MAIL, which could improve the sample efficiency and convergence speed. (2) We introduce a new
multi-agent mean field approximation, which is more flexible and can achieve a better approximation
comparing to existing multi-type mean field approximation. (3) We apply the multi-agent mean
field approximation to a Bayesian formulation of multi-agent imitation learning and derive BM3IL,
which is both sample efficient and scalable to complex environments. (4) We demonstrate empirical
performance through benchmarking with existing algorithms in several scenarios, including real-
world city-scale transportation networks.

2 Background

2.1 Markov games and Nash equilibrium

A Markov game with N agents is formalized by the tuple G(S,A1, . . . ,AN , r1, . . . , rN , p, �), where
S is a state space, Ai is the action space of agent i 2 {1, . . . , N}. The reward function for agent i is
defined as ri : S⇥A1⇥ . . .⇥AN ! R. p is the transition probability S⇥A1⇥ . . .⇥AN ! ⌦(S),
with ⌦(S) being the collection of probability distributions over the state space S. � 2 [0, 1) is a
discount factor. At time step t, all agents take actions simultaneously, each receiving an immediate
reward rit, or equivalently, the cost cit = �rit. The initial states are determined by a distribution
⌘ : S ! [0, 1]. The joint policy is defined as ⇡(a|s) =

QN
i=1 ⇡i(ai|s), where we use bold symbols

to denote the concatenation of all variables for all agents. For agent i, the corresponding policy is
defined as ⇡i : S ! ⌦(Ai), where ⌦(Ai) is the collection of probability distributions over agent
i’s action space Ai. We use ⇡�i = [⇡1, ...,⇡i�1,⇡i+1, ...,⇡N ] to represent the joint policy except
⇡i. Provided an initial state s, the value function of agent i under the joint policy ⇡ is defined as
V i
⇡(s) =

P1
t=0 �

tE⇡,p[rit|s0 = s,⇡]. The Q function Qi
⇡ : S ⇥ A1 ⇥ · · · ⇥ An ! R of agent i

under the joint policy ⇡ can be formulated as Qi
⇡(s,a) = ri(s,a) + �Es0⇠p[V i

⇡(s
0)], where s0 is the

state at the next time step. The occupancy measure ⇢⇡(s,a) =
P

t �
tp(st = s,at = a) defines the

state action visitation distribution using the joint policy ⇡.

Nash equilibrium [5] describes the situation that all agents can not improve their value through
changing its own policy. It is represented by a joint policy ⇡⇤ = [⇡1,⇤,⇡2,⇤, ...,⇡N,⇤] such that
V i
⇡(s) � V⇡i,⇡�i,⇤(s), 8i, 8⇡i, 8s. Let V ⇤(s) = [V 1

⇡⇤(s), V 2
⇡⇤(s), ..., V N

⇡⇤(s)] be the Nash value
function associated with the Nash policy ⇡⇤ , Nash Q-learning [5] defines a Q iteration algorithm
H

NashQ(s,a) = Es0 [r(s,a)+�V ⇤(s0)] , where H
Nash is the Nash operator, Q = [Q1, Q2, ..., QN ]

is the Q function for all agents, and r(s,a) = [r1(s,a), r2(s,a), ..., rN (s,a)] is the reward function
for all agents. Given certain assumptions [5] the Q function will eventually converge to a Nash
equilibrium, which is referred to as the Nash Q value Q⇤ = [Q1,⇤, Q2,⇤, ..., QN,⇤].

2.2 Multi-agent generative adversarial imitation learning

In a Markov game G(S,A1, . . . ,AN , r1, . . . , rN , p, �), let ✓ = {✓i}Ni=1 be the parameters
associated with a policy, and � = {�i}Ni=1 the parameters associated with a reward func-
tion. The target function of MA-GAIL is arg min✓max�Es,a⇠⇢⇡✓

hPN
i=1 logD(s, ai;�i)

i
+

Es,a⇠⇢⇡E

hPN
i=1 log(1�D(s, ai;�i))

i
, which can be solved by iterating between optimizing the
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reward parameters

arg max�Es,a⇠⇢⇡✓

"
NX

i=1

logD(s, ai;�i)

#
+ Es,a⇠⇢⇡E

"
NX

i=1

log(1�D(s, ai;�i))

#
(1)

and optimizing the policy parameters, where D is a discriminative classifier

arg min✓Es,a⇠⇢⇡✓

"
NX

i=1

logD(s, ai;�i)

#
(2)

3 Methodology

We first reformulate multi-agent imitation learning in a Bayesian learning framework; then develop a
new hierarchical multi-type mean field approximation. Finally, the algorithm we proposed, BM3IL,
is introduced in details. The derivations and proofs are postponed to the Appendix.

3.1 Bayesian multi-agent imitation learning

3.1.1 A probabilistic view of multi-agent imitation learning

In a Markov game G(S,A1, . . . ,AN , r1, . . . , rN , p, �), we introduce binary observation variables
for the expert and agent, oE = {{oiE,t}Ni=1}Tt=1 and oA = {{oiA,t}Ni=1}Tt=1, for each agent i and time
step t. The subscript “E” represents an expert, “A” represent an agent. This convention will be used in
the following, and sometimes the subscripts are dropped when there is no confusion. The probability
of oit being equal to 1 is defined to be proportional to the exponential of a negative reward function:
p(oit = 1 | st, ait) / exp

�
c(st, ait)

�
= exp

�
�r(st, ait)

�
. The graphical representation is shown in

Figure 1. Let the policy be parameterized by ✓ = {✓i}Ni=1, the reward function parameterized by
� = {�i}Ni=1, and denote the trajectory of state action pairs as ⌧ = {{st, ait}Ni=1}Tt=1. Regarding the
parameters �, ✓ as random variables, the probability measure of agent and expert trajectories with
observations can then be represented as

p(⌧E, ⌧A, oE, oA, ✓,�) = p(✓)p(�)p(⌧E)p(⌧A; ✓)
YT

t=1

YN

i=1
p(oiE,t | sE,t, a

i
E,t;�

i)p(oiA,t | sA,t, a
i
A,t;�

i)

where p(⌧A; ✓) = p(sA,0)
QT

t=1

⇣QN
i=1 p(a

i
A,t | sA,t; ✓i)

⌘
p(sA,t+1 | sA,t, a1A,t, ..., a

N
A,t; �). Here

p(sA,t+1 | sA,t, a1A,t, ..., a
N
A,t; �) means that with probability �, the transition probability p(sA,t+1 |

sA,t, a1A,t, ..., a
N
A,t) will happen as the dynamics defined in a Markov game. With probability 1� �,

regardless of actions, it will transit into an absorbing state with reward zero (no observation in
absorbing state). For each agent i, we estimate the observation probability p(oit | st, ait;�i) with
a discriminator D(st, ait;�

i) such that p(oit = 1 | st, ait;�
i) = D(st, ait;�

i) and p(oit = 0 |
st, ait;�

i) = 1�D(st, ait;�
i).

Based on this, Eq. 1 could be viewed as finding a single point estimation of the parameter � that
maximizes a surrogate objective of the log posterior logp(� | oE = 0, oA = 1, ✓), conditioned on
seeing observation oiE,t = 0 for expert samples and oiA,t = 1 for agents samples. The interpretation is
to maximize the reward of expert samples and meanwhile to minimize the reward of agents samples.

logp(� | oE = 0, oA = 1, ✓)

/ logE⌧E ,⌧A

YT

t=1

YN

i=1
p(oiE,t = 0 | sE,t, a

i
E,t;�

i)p(oiA,t = 1 | sA,t, a
i
A,t;�

i)

� E⌧E ,⌧A log
YT

t=1

YN

i=1
p(oiE,t = 0 | sE,t, a

i
E,t;�

i)p(oiA,t = 1 | sA,t, a
i
A,t;�

i) (3)

= EsA,aA⇠⇢⇡✓

hXN

i=1
logD(sA, a

i
A;�

i)
i
+ EsE ,aE⇠⇢⇡E

hXN

i=1
log(1�D(sE , a

i
E ;�

i))
i

The policy optimization in Eq. 2 could be viewed as finding a parameter ✓ that minimizes a surrogate
objective of the log posterior conditioned on seeing oA = 1, which implies to maximize the reward
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Figure 1: Probabilistic graphical model for the Bayesian
multi-agent imitation learning
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Figure 2: Attention mechanism for the
mean field approximation

the agents received.

logp(✓ | oA = 1,�) / logE⌧A

YT

t=1

YN

i=1
p(oiA,t = 1 | sA,t, a

i
A,t;�

i)

� E⌧A log
YT

t=1

YN

i=1
p(oiA,t = 1 | sA,t, a

i
A,t;�

i) = EsA,aA⇠⇢⇡✓

hXN

i=1
logD(sA, a

i
A;�

i)
i

(4)

3.1.2 Bayesian multi-agent imitation learning

Interacting with an environment to collect samples is an expensive operation in imitation learning. We
seek to improve the sample efficiency through learning a discriminator that can produce more robust
reward signals. To this end, instead of using a single point estimation to learn � as in MA-GAIL, we
propose to learn a distribution of the parameter p(�). In this setting, one can derive a more robust
estimation of the reward signals, which can better guide policy optimization.

To learn the optimal distribution of �, we use a prior distribution p(�) as the initial distribution q,
the surrogate objective of the posterior distribution p(� | oE = 0, oA = 1, ✓) (Eq. 3) as the target
distribution p, and minimize the distance between p and q. To be specific, we adopted SVGD [14],
where we draw L samples of � as an estimation of the distribution, and iteratively tune the samples to
minimize the kernelized Stein discrepancy S(q, p). The l � th sample for agent i can be updated as

�i
l = �i

l + ✏'i(�) (5)

where ✏ is the step size, 'i(�) = 1
L

PL
l=1

⇣
k(�i

l,�)�
i
l +r�i

l
k(�i

l,�)
⌘

is the updating gradient, k

is a positive definite kernel, and �il = r�i
l
E⌧E ,⌧A log

QT
t=1 p(o

i
E,t = 0 | sE,t, aiE,t;�

i
l)p(o

i
A,t = 1 |

sA,t, aiA,t;�
i
l) is the gradient from the surrogate loss for agent i.

For policy optimization, we optimize the surrogate objective of the posterior (Eq. 4) to find the best
policy parameter ✓, given a collected L samples of the parameter �

min
✓

E⌧A log
TY

t=1

NY

i=1

p(oiA,t = 1 | sA,t, a
i
A,t) = min

✓

NX

i=1

EsA,ai
A⇠⇢⇡i

A

"
1

L

LX

l=1

logD(sA, a
i
A;�

i
l)

#

where standard policy learning algorithms such as Q-learning [16] and actor-critic [13] methods could
be applied. With this Bayesian formulation, existing multi-agent imitation learning algorithms could
be reformulated in the Bayesian approach. For example, for MA-DAAC, if we use the same policy
optimization method–the attention-actor-critic, but use multiple samples of the parameters � with the
updating method in Eq. 5, we derive a Bayesian MA-DAAC. Using the Bayesian formulation, we can
generate more robust reward signals, increase the sampling efficiency, and improve the convergence
rate, which we will demonstrate in the experiments section. More discussions about this Bayesian
approach are presented in the Appendix. The remaining problem is how to improve the scalability so
that the algorithm can still show prominent performance in large complex environments.

3.2 Mean field policy optimization

Existing approaches for multi-agent imitation learning have only been applied to scenarios with a
small number of agents [7]. This is partly due to the fact that the more agents, the more information
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each agent needs to take into consideration, and the more uncertainty and variance there is in policy
search. To improve the scalability of the Bayesian multi-agent imitation learning, we introduce a
multi-type mean field approximation into the policy search. We consider a system that categorizes
agents into different types. Each agent type may contain different state and action spaces with
different goals. The agents of the same type have the same state action spaces and reward functions.
We introduce a new multi-type mean field approximation over the Q value functions.

3.2.1 The mean field approximation

To simplify interactions among agents within one type, and to efficiently gather the information
across types, we introduce a hierarchical mean field approximation. Consider a Markov game
G(S,A1, . . . ,AN , r1, . . . , rN , p, �) with M types of agents. Assume each agent belongs to one
type, and each type contains Xm agents. We use a

kj
m to denote the action for agent kj in type m.

We assume Qi(s,a) = Qi(s, ai, ak1
1 , ..., a

kX1
1 , ..., ak1

M , ..., a
kXM
M ) can be factorized into the weighted

average of that only consider interactions within one type of agents Qi(s, ai, ak1
m , ..., a

kXm
m ), which

can be further decomposed additively into pairwise Qi(s, ai, a
kj
m ), i.e.,

Qi(s,a) =
MX

m=1

↵mQi(s, ai, ak1
m , ..., a

kXm
m ) =

MX

m=1

↵m
1

Xm

XmX

j=1

Qi(s, ai, akj
m ) (6)

Here ↵m is the weight and
PM

m=1 ↵m = 1. With this, the Q-function can be approximated with
mean field theorem through Taylor approximation. Let āim = 1

Xm

P
j a

kj
m and ãi =

P
m ↵māim. We

can show that
Qi(s,a) ⇡ Qi(s, ai, ãi) (7)

The derivation of Eq. 7 is shown in Appendix. This hierarchical mean field approximation achieved
using the weighted mean field to approximate the inter-types interactions, and vanilla mean field to
approximate the intra-types interactions. This is intuitive because agents of the same type are similar
to each other, and the interactions of which are capable to be estimated with a vanilla mean field.
Agents of different types have more difference and we estimate with a weighted mean field which
allows each agent to put different attention on different types of agents. This approximation on one
hand significantly reduces the complexity of the interactions among agents and the variance of the
Q value function, on the other hand still preserves global interactions between any pair of agents
implicitly.

Theorem 3.1. Let the deviation of actions bounded by 1
Xm

PXm

j=1

���akj
m � ãi

���  �m and
PM

m=1 ↵m�m  ✏, under the assumption given in Eq. 6, and that the Q function is K � Lipschitz,
then the error of the multi-type mean field Q function is bounded by

|Qi(s,a)�Qi(s, ai, ãi)|  K✏

With Theorem 3.1, we bound the error of our multi-type mean field approximation. In the following,
we will show how to learn this Q-function with multi-type mean field approximation.

3.2.2 Mean field update

The Q function for agent i can be updated iteratively with TD method

Qi(s, ai, ãi) = (1� ↵)Qi(s, ai, ãi) + ↵
�
ri + �V i(s0)

�
(8)

In the above, the reward is estimated through the learned parameters �i
l in Eq. 5

ri = � 1

L

LX

l=1

logD(s, ai;�i
l) (9)

The value function can be estimated as

V i(s) =
X

ai

⇡i(a
i | s, ãi)Ea�i⇠⇡�iQi(s, ai, ãi) (10)
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where the multi-type mean field action

ãi =
X

m

↵māim, āim =
1

Xm

XmX

j=1

akj
m , akj

m ⇠ ⇡(· | s, ãkj
m ) (11)

The action for each agent ai is chosen following a Boltzmann policy

⇡(ai | s, ãi) = exp(�Qi(s, ai, ãi))P
ai0 exp(�Qi(s, ai0 , ãi))

(12)

Alternatively, we can estimate the policy explicitly with a neural network, the gradient of which can
be computed as

r✓i log⇡✓i(s)Qi(s, ai, ãi) |ai=⇡✓i (s)
(13)

Theorem 3.2. Under assumptions 1). Each action-value pair for multi-type mean field settings is
visited infinitely often, and the reward is bounded by some constant. 2). Agents policies are Greedy in
the Limit with Infinite Exploration (GLIE). In the case with the Boltzmann policy, the policy becomes
greedy w.r.t. the Q-function in the limit as the temperature decays asymptotically to zero. 3). For each
stage game [Q1

t (s), . . . , Q
N
t (s)] at time t and in state s in training, for all t, s, i 2 {1, ..., N}, the

Nash equilibrium ⇡⇤ = [⇡1
⇤, . . . ,⇡

N
⇤ ] is recognized either as a). the global optimum or b). a saddle

point expressed as E⇡⇤ [Q
i
t(s)] � E⇡[Qi

t(s)], 8⇡ 2 ⌦(⇧kAk); or E⇡⇤ [Q
i
t(s)] � E⇡iE⇡�i

⇤
[Qi

t(s)],

8⇡i 2 ⌦(Ai) and E⇡⇤ [Q
i
t(s)]  E⇡i

⇤
E⇡�i [Qi

t(s)], 8⇡�i 2 ⌦(⇧k 6=iAk).

If we update the multi-type mean field approximation Q value function Qi(s, ai, ãi) for each agent
according to Eq. 8, 10, 11 and 12, it will converge to a Nash-Q value Q⇤ with error bounded by
K✏� S, where S is a constant, K and ✏ are from Theorem 3.1.

Theorem 3.2 follows the same structure as Theorem 3.4 in [3], but differs in that we introduce a new
multi-type mean field approximation Qi(s, ai, ãi). It shows that our approach converges to a fixed
point within a small bounded distance of the Nash equilibrium over the learned reward function.

3.2.3 An attention mechanism for the mean field approximation

In practice, we perform state-action embeddings ei(s, ai) and mean-field action embeddings eim(āim)
before sending (s, ai, ãi) to the Q value function, which transforms different action dimensions of
each types, if any, to an embedding space with the same dimensions. The Q function with embeddings
can be represented as Qi(ei(s, ai), ãi), where ãi =

P
m ↵meim(āim).

We implement the hierarchical mean field approximation of the Q function Qi(ei(s, ai), ãi) through
an attention mechanism, as illustrated in Figure 2. The mean field within each type āim can be
computed through averaging the actions of each agent (element-wise average of an action vector,
for both continuous and discrete action spaces). The weighted mean field between each type,
ãi =

P
m ↵meim(āim), can be viewed as each agent querying each type for the information of their

mean actions, where the weight ↵m reflects the attention that this agent puts on each types.

The mean field weight ↵m is implemented as the attention weight comparing the state action
embedding ei(s, ai) and the mean field action embedding eim(āim) in terms of the dot similarity,
which is evaluated through a softmax function, i.e.,

↵m / exp
�
eim(āim)TWT

k Wqe
i(s, ai)

�
,

where Wq transforms ei(s, ai) into a “query” and Wk transforms eim(āim) into a “key”. The weights
Wk and Wq are shared among agents, which allows learning more efficiently as the aggregating of
information for each agents are different but share some common features.

3.3 Bayesian multi-type mean field multi-agent imitation learning

In this section, we present our algorithm, Bayesian multi-type mean field multi-agent imitation
learning (BM3IL). We optimize with respect to a Bayesian framework of multi-agent imitation
learning, meanwhile using a multi-type mean field approximation in policy optimization. The
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objective function is given below, where ⇢⇡i
A(·|s,ãi;✓i) indicates the samples are generated using the

policy with the mean field approximation.

min✓max�

NX

i=1

Es,ai⇠⇢
⇡i
A

(·|s,ãi;✓i)

"
1
L

LX

l=1

logD(s, ai;�i
l)

#
+

NX

i=1

Es,ai⇠⇢
⇡i
E

"
1
L

LX

l=1

log
⇣
1�D(s, ai;�i

l)
⌘#

We iterate between optimizing the reward function and optimizing the policy. For reward learning, we
use SVGD to obtain L point estimation of the distribution of parameter �. For policy optimization,
we use an actor-critic method where we estimate the Q value with attention networks and model the
policy explicitly with fully connected neural networks. The algorithm is given in Algorithm 1.

Algorithm 1: Bayesian multi-type mean field multi-agent imitation learning
Input: A Markov game, expert dataset of trajectories {{siE,t, a

i
E,t}Ni=1}Tt=1, initial policy

parameters ✓ = {✓i}Ni=1, L samples of the reward function parameters � = {{�i
l}Ni=1}Ll=1

sampled from the prior distribution p(�), and Q value function parameters ! = {!i}Ni=1
Output: Learned policy parameters ✓
for iter = 0, 1, ... do

Sample trajectories {{siA,t, a
i
A,t}Ni=1}Mt=1 by executing ⇡✓

Update reward parameters � with Eq. 5
Estimate the reward with Eq. 9
Update the Q parameters ! through Eq. 8
Update policy parameters ✓ with gradient in Eq. 13

end

4 Connections with existing works

[3] developed a multi-type mean field approximation to solve a reinforcement learning problem,
where they assume all types having the same amount of agents, and they only apply mean field
for agents within each type. Comparing to their work, we develop a new multi-type mean field
approximation which does not require the number of agents for each type being equal, and which
approximates both inter-types and intra-types interactions among agents. By allowing agents to put
different attention on different types, our method provides more effective information gathering.

Our work is partly inspired by [8], which applied Bayesian approach to single-agent imitation learning.
But they do not consider the discounted factor �, nor do they give the meaning of the observations.
We derive a more complete formulation of the Bayesian approach for multi-agent imitation learning.

[18] developed a multi-agent generative adversarial imitation learning (MA-GAIL) through ex-
tending the single-agent generative adversarial imitation learning, and [7] developed a multi-agent
discriminator-actor-attention-critic (MA-DAAC) which improves the MA-GAIL through integrating
attention-actor-critic in the policy optimization. Comparing to their versions, first, we developed a
Bayesian multi-agent imitation learning framework which learn a distribution of the reward param-
eters rather than a point estimation, and which improves the sample efficiency. Second, in policy
optimization, MA-GAIL does not consider other agents’ actions. MA-DAAC considers every agent’s
actions with an actor-attention-critic, which is not scalable. We introduce a multi-type mean field to
capture the interactions with other agents, which improves the scalability.

5 Experiments

In this section, we demonstrate the power of our algorithm empirically from the following perspectives:
(1) How the Bayesian approach improves the sampling efficiency of existing multi-agent imitation
learning. (2) How our algorithm, BM3IL, improves the scalability and the sampling efficiency. The
benchmarking algorithms include MA-GAIL [18], MA-DAAC [7] and MA-GAIL incorporating
the existing multi-type mean field approximation [3] in the policy optimization, which we call
MTMFIL. For fairness, all algorithms implement the same neural network structure. Details and
more experiments are presented in the Appendix.
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Figure 3: Learning curves of each algorithm in the Rover Tower environment. Left: 4 agents. Right: 8
agents. For the Bayesian algorithms, we vary the number of samples of the parameters �, as indicated
by the number after ’Bayesian’. For example, Bayesian-2-MA-DAAC means using 2 samples of the
parameters � for each agents.

Figure 4: Learning curves of each algorithm in the transportation environment

5.1 Sample efficiency of the Bayesian approach

To demonstrate how the Bayesian framework improves the sample efficiency, we compare the perfor-
mance of MA-DAAC with a Bayesian MA-DAAC, which uses the same algorithm as MA-DAAC
except using multiple discriminator networks to represent the multiple samples of the parameter �.
Noted that in this experiment, the goal is to demonstrate the contribution of the Bayesian formulation,
hence we do not apply the multi-type mean field approximation. The environment we used in this
experiment is the Rover Tower [6]. It involves a total of 4 or 8 agents, of which half are ’rovers’ and
half are ’towers’. The goal is to let the towers to navigate the rovers to arrive at their destinations.
We vary the total number of agents and the number of samples of the parameters � (the number of
discriminator networks for each agent).

The learning curves are shown in Figure 3. The experimental results showed that the Bayesian
approach converges faster than the MA-DAAC. Using 2 samples of the � already accelerates
the convergent speed significantly. Further improve the number of samples slightly improve the
convergent speed. The Bayesian approach outperforms the single point estimation counterpart MA-
DAAC because it learns a distribution of the discriminator, which provides more robust reward signals
to better guide the learning of the policy.

5.2 Performance of BM3IL in complex environment

To test the scalability and sampling efficiency of our method with the mean field approximation,
we benchmark BM3IL with MA-GAIL, MA-DAAC, and MTMFIL in a transportation environment
with a real-world network. The environment we used is Berlin, which contains 46 road locations, 10
facilities, and 50 agents representing 5000 vehicles that are supposed to go to work in the morning
and go back home at night, where each agent represent 100 vehicles. The agents are categorized into
different types, each type having their own home and work facilities. We vary the number of agents
(50, 60) and the number of types (5, 10, 15) in this environment.

The learning curves are shown in Figure 4. The experimental results showed that BM3IL outperforms
all other algorithms with faster convergence speed. Moreover, the more complex the environment (as
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the more types and more agents), the more performance gain it achieves. MA-GAIL performs worst
because it does not consider other agents’ actions. MA-DAAC gathers other agents’ information
through an actor-attention-critic, which performs better than MA-GAIL, but which is not as efficient
and scalable as our method. MTMFIL uses a multi-type mean field approximation which can not
put different attention on different types. Our algorithm achieved the best performance by using the
Bayesian approach to stabilize the reward signals, and the multi-type mean field approximation to
efficiently gather the information and improves scalability.

6 Conclusion

In this paper, we developed BM3IL, a multi-agent imitation learning algorithm. Our algorithm
improves sample efficiency by using a Bayesian formulation and improves scalability by introducing
a new multi-type mean field approximation. The benchmarking with 3 state-of-the-art algorithms
indicated that our method achieved the best sample efficiency and scalability.

7 Broader impact

From the research perspective, our work is the first to connect the attention mechanism with mean
field approximation, which connects the neural network community with the game theory community.
On the other hand, our work is also the first to introduce the concept of mean field to the multi-
agent imitation learning, which brings the game theory community into the imitation learning
community. The combination of the communities points out new research directions where more
research opportunities may be found.

From the society perspective, first, multi-agent imitation learning has a large number of real-world
applications. We live in a world full of complex multi-agent systems, such as the transportation
system where each vehicle or each group of vehicles can be viewed as an agent, or the epidemic
system where each individual or each group of people can be viewed as an agent. Optimizing the
policy in these real-world multi-agent systems are important and valuable, such as optimizing the
driving route of each vehicle to reduce the driving time, or optimizing the medical resource allocation
and regulating the interaction of people to mitigate the spread of epidemic disease. Reward function is
not given in such real-world systems. Instead, we may have expert demonstrations that we can mimic,
such as how experienced drivers drive in a transportation system. As such, optimizing the policies in
real-world multi-agent systems can be formulated as multi-agent imitation learning problems.

Second, our work has the potential to solve real-world multi-agent imitation learning problems. MAIL
is still a relatively new domain. The challenges for applying MAIL to solve real-world problems
are scalability and sampling efficiency since interactively collecting the samples is an expensive
operation and real-world systems often have a large number of agents. Our work is one step in this
direction. In this paper, we improve the scalability by introducing the Bayesian formulation, and
improve the sample efficiency through introducing a new multi-type mean filed approximation, as
demonstrated in the experiments. Our work has the potential to solve real-world MAIL problems.

The limitation of our approach is still scalability. Currently, we can not scale to environments with
thousands of agents and hundreds of types where the state-action space has thousands of dimensions.
Further improve the scalability would be the future work.
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