- We would like to thank the reviewers for their detailed comments and suggestions.
- 2 Scalability: As noted by Reviewer 1, our method scales well to much larger domains. For example, our method can
- 3 optimize a robust policy for a machine replacement problem with 5,000 states in only 163 seconds. We can optimize
- a robust policy for a 60-by-60 gridworld (3,600 states) in under two minutes. For comparison, a state-of-the-art
- 5 CVaR optimization approach for MDPs with no uncertainty over the reward function takes 2 hours for a similar-sized
- 6 gridworld (see [1] Section 5, last paragraph). We will add experiments demonstrating the scalability of our method
- to the appendix and will add an experiment where we transfer a learned reward function to a new environment (as
- 8 suggested by Reviewer 1).

9 Reviewer #1

- 10 > Right now I think that the description of the contributions hides the most useful contribution.
- 11 Thank you for the suggestion, we will clarify the contributions as suggested.
- > The robust implementation of the method (4.d) doesn't match the demonstration for one state.
- 13 The reason is that Bayesian IRL does not assume demonstrator optimality, only Boltzman rationality. We used a
- 14 relatively small inverse temperature resulting in reward function hypotheses that allow for occasional demonstrator
- 15 errors. Using a larger inverse temperature will cause the robust policy to match all the demonstrator's actions.
- 16 > The paper is fairly well written, but there is room for improvement in the paper presentation.
- 17 Thank you for the detailed and constructive suggestions. We will make the notation more consistent (for example by
- sticking to μ and w as much as possible) and add notation reminders throughout the paper. We will also introduce the
- examples as a motivation earlier in the paper.

20 Reviewer #2

- > Is conditional value-at-risk the best approach for adjustable risk-sensitivity?
- 22 We used CVaR because of its popularity and interpretability, but it is true that it is not always the best metric. BROIL
- 23 actually works with any convex risk measure, such as EVaR or entropic risk, the only modification is that the linear
- 24 program would need to be replaced by a convex optimization problem. We will make this clear in the paper.
- > The key issue is how to handle misspecification of the Bayesian prior.
- 26 This is a good point and something we would really like to tackle in a followup work. The Bayesian statistics community
- 27 has devoted a lot of effort to addressing this problem; we will add appropriate pointers.

28 Reviewer #3

- 29 > The method seems to rely heavily on the quality of prior/posterior distribution of the reward...
- 30 Yes, this is true for all Bayesian methods.
- > The linear structure of the reward brings computational convenience, however it is hard for the reward to satisfy this
- 32 structure in real-world applications.
- 33 We agree that linear approximation methods (including linear regression, and linear value function approximation) have
- limits, but their simplicity, speed, and generally smaller data needs (bias-variance tradeoff) make them often very useful.
- 35 > Any generalization of the method when we could parametrize the policy? ... deep RL or healthcare experiments?
- These are good suggestions. The BROIL objective is convex and nearly everywhere differentiable so it could also be
- used in place of expected return in a policy gradient-style approach. We judged this to be beyond the scope of this paper,
- but will mention this idea in the paper as an important and interesting area for future work.

39 Reviewer #4

- 40 > Assuming the samples are not exact, how do approximations in MCMC propagate onto optimization of BROIL?
- Thank you, this is an important question. It has been investigated in the stochastic programming community in the
- 42 context of the SAA method. We will include pointers to relevant literature on this topic in the revision.
- 3 > The method is presented in the context of inverse RL. Has it already been addressed within ordinary (non-inverse) RL?
- 44 Several similar methods have been studied in the context of RL, but the key difference is that most RL work considers
- uncertain transition probabilities, while in IRL it is rewards that are uncertain. This difference has a major impact on
- the type of algorithms that are appropriate for the two settings. Most relevant papers in ordinary RL, which address
- 47 robustness/risk aversion to *model error*, are distributionally robust MDPs (Xu & Mannor 2012), percentile optimization
- 48 (Delage & Mannor 2010), and epistemic risk aversion (Eriksson & Dimitrakakis 2019).

References

50 [1] Yinlam Chow, Aviv Tamar, Shie Mannor, and Marco Pavone. Risk-sensitive and robust decision-making: a cvar optimization approach. In *Advances in Neural Information Processing Systems*, pages 1522–1530, 2015.