
Supplementary Materials for
Bayesian Robust Optimization for Imitation Learning

Daniel S. Brown∗
UC Berkeley

dsbrown@berkeley.edu

Scott Niekum
University of Texas at Austin
sniekum@cs.utexas.edu

Marek Petrik
University of New Hampshire

mpetrik@cs.unh.edu

A Code

Code to reproduce all experiments is available at https://github.com/dsbrown1331/broil.

B Linear Programming Details

The soft-robust BROIL objective is:

maximize
u∈RSA, σ∈R

λ · pTψ(πu, R) + (1− λ) ·
(
σ − 1

1− α
pT [σ · 1−ψ(πu, R)]+

)
subject to

∑
a∈A

(
I − γ · P T

a

)
ua = p0, u ≥ 0 .

When using the robust performance metric described in Section 4.2, we have ψ(πu, R) = RTu,
whereR is a matrix of size (S ·A)×N where each column ofR represents one sample of the vector
over rewards for each state and action pair. This results in the following optimization problem:

maximize
u∈RSA, σ∈R

λ · (Rp)Tu+ (1− λ) ·
(
σ − 1

1− α
pT
[
σ · 1−RTu

]
+

)
subject to

∑
a∈A

(
I − γ · P T

a

)
ua = p0, u ≥ 0 .

whereRp is the mean reward under the posterior distribution.

This can be written as a linear program in standard form as:

− minimize
u∈RSA, z∈RN , σ∈R

− λ · pTRTu− (1− λ) · (σ +
1

1− α
pTz)

subject to σ · 1−RTu− z ≤ 0,

[
(I − γP T

a1), . . . , (I − γP
T
am)
] u

a1

...
uan

 = p0,

u ≥ 0, z ≥ 0 .

We solve the above linear program to obtain the results presented in Section 5.1.

∗Work done while at UT Austin.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

https://github.com/dsbrown1331/broil

When using the baseline regret performance metric,ψ(πu, R) = RT(u−uE), we have the following
optimization problem:

maximize
u∈RSA, σ∈R

λ · (Rp)T(u− uE) + (1− λ) ·
(
σ − 1

1− α
pT
[
σ · 1−RT(u− uE)

]
+

)
subject to

∑
a∈A

(
I − γ · P T

a

)
ua = p0, u ≥ 0 ,

This can be written as a linear program in standard form as follows:

− minimize
u∈RSA, z∈RN , σ∈R

− λ · pTRT(u− uE)− (1− λ) · (σ +
1

1− α
pTz)

subject to σ · 1−RTu− z ≤ −RTuE

[
(I − γP T

a1), . . . , (I − γP
T
am)
] u

a1

...
uan

 = p0

u ≥ 0, z ≥ 0 .

Typically, we only have access to a handful of demonstrations and do not have direct access to the
state-occupancies of the demonstrator and cannot accurately estimate them. If we assume the reward
function is a linear combination of features, it is often the case that the number of features k is
much less than the total number of state-action pairs. Thus, it is typically much more practical and
computationally accurate to use an empirical estimate of the expert’s expected feature counts and
rewrite the baseline regret as ψ(πu, R) = RTu −W Tµ̂E , where W is a matrix of size k-by-N
where each column is a feature weight vector w ∈ Rk corresponding to each linear reward function
weight vector sampled from the posterior as described in Section 4.2. This results in the following
linear program which we use for our experiments in Section 5.2.

− minimize
u∈RSA, z∈RN , σ∈R

− λ · pT(RTu−W Tµ̂E)− (1− λ) · (σ +
1

1− α
pTz)

subject to σ · 1−RTu− z ≤ −W Tµ̂E

[
(I − γP T

a1), . . . , (I − γP
T
am)
] u

a1

...
uan

 = p0

u ≥ 0, z ≥ 0 .

We use Scipy’s linear programming software (v 1.4.1) when solving the above linear programs in
the experiments in the paper.2 Note also that the term −λpTRTuE or −λpTW Tµ̂E in the baseline
regret linear program objectives above can be dropped since they are just constants that do not affect
the resulting optimal policies.

C Runtime and Scalability

In the main paper we focused on simple case studies that are easily interpretable; however, our method
readily scales to much larger problems. In Figure 1 we show that we can easily solve instances with
thousands of states and thousands of reward functions in the posterior. To further test the runtime of
BROIL, we optimized a robust policy for a 60-by-60 gridworld (3,600 states) which took an average
time of 119.34 seconds to solve the BROIL linear program given a reward function distribution. For
comparison, a CVaR optimization approach for MDPs with no uncertainty over the reward function
takes 2 hours for a similar-sized gridworld (see [3] Section 5, last paragraph). All experiments were
run using Scipy’s standard linear programming solver on a Dell Inspiron 5577 laptop with an Intel
i7-7700 processor.

2https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linprog.html

2

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linprog.html

0 1000 2000 3000 4000 5000
Number of states

0

50

100

150

200

250

300

Ru
n

tim
e

(s
)

(a)

0 1000 2000 3000 4000 5000
Number of rewards in posterior

0
50

100
150
200
250
300
350
400

Ru
n

tim
e

(s
)

(b)

Figure 1: LP runtime as number of states and number of reward function hypothesis are increased
for the machine replacement problem. Results are averaged over 20 trials and error bars show plus
or minus one standard deviation. (a) Runtime as the number of states is increased and number of
reward function hypotheses is fixed at 200. (b) Runtime as the number of reward function hypotheses
is increased and the number of states is fixed at 100.

D Bayesian IRL Details

When learning a posterior from demonstrations we use Bayesian IRL [4]. Bayesian IRL has the
following likelihood function: Bayesian IRL assumes access to an MDP without a reward function,
denoted MDP\R and a set of demonstrations, D = {(s1, a1), . . . , (sm, am)}, consisting of state-
action pairs. Bayesian IRL (BIRL) [4] seeks to estimate the posterior over reward functions given
demonstrations, P(R |D) ∝ P(D |R) · P(R). BIRL makes the assumption that the demonstrator is
Boltzmann rational and follows a soft-max policy, resulting in the likelihood function

P(D |R) =
∏

(s,a)∈D

P
(
(s, a) |R

)
=

∏
(s,a)∈D

eβQ
∗
R(s,a)∑

b∈A e
βQ∗R(s,b)

(1)

where Q∗R(s, a) is the optimal Q-value function for reward R, and β is a parameter representing
the confidence in the demonstrator’s optimality. Given a reward function R, the Q-value of a
state-action pair (s, a) is defined as QπR(s, a) = R(s) + γ

∑
s′∈S T (s, a, s

′)V πR (s′). We denote
Q∗R(s, a) = maxπ∈ΠQ

π
R(s, a). Equation 1 gives greater likelihood to rewards for which the actions

taken by the expert have higher Q-values than the alternative actions.

Bayesian IRL uses Markov chain Monte Carlo (MCMC) sampling to sample from the posterior
P(R |D). Feature weights are sampled according to a proposal distribution, and for each sample the
MDP is solved to obtain the sample’s likelihood and determine the transition probabilities within
the Markov chain. We use β = 10 for all of our experiments. We sample reward function weights
for MCMC by using a Gaussian proposal distribution centered arounnd the previous sample, with
standard deviation of 0.2. We use a burn-in period of 500 samples and skip every 5th sample after
that to reduce auto-correlation. We experimented with range of values for β and found very similar
results. The step size was tuned to result in an accept ratio close to 0.4. Because scaling a reward
function does not affect the optimal policy, we following prior work [1, 2, 5] and assume that the
reward function is scaled. We project each sampled reward function weight proposal to the L2-norm
ball to ensure that ‖w‖2 = 1.

E Maximum Entropy IRL Detais

We compare against Maximum Entropy IRL [6]. We use the implementation presented by Ziebart et
al. [6], but to make it more comparable to Bayesian IRL we also add a Boltzmann parameter β to the
likelihood such that

P(ξ) ∝ exp(βR(ξ)). (2)

3

where ξ is a trajectory and R(ξ) is the cumulative return of a trajectory. We use β = 10 to match
our implementation choice for Bayesian IRL. We used a learning rate of 0.01. We perform projected
gradient descent by projecting to the L2-norm ball such that ‖w‖2 = 1. We use a horizon equal
to the number of states in the MDP. We stop gradient ascent on the likelihood function once it has
converged. We detect convergence by measuring the difference in the L2-norm of the updated and
prior weights and check if that is within a precision value of 0.00001. If so, then we stop gradient
ascent. We experimented with several different values for each of these hyperparameters and found
these to provide best performance.

F LPAL Details

Linear Programming Apprenticeship Learning (LPAL) [5] has a robust form that is similar to ours
but makes several critical and limiting assumptions: (1) they assume that the reward weights are
strictly positive, this means they assume that the feature vector φ(s) explicitly encodes whether a
feature is good or bad by its sign. (2) They assume very accurate estimation of the expert’s expected
feature counts µ̂E . This requires an extremely large number of demonstrations (c.f. [2]). (3) Finally,
they assume a worst-case adversarial reward function that penalizes whatever the learner does that
is most different from the demonstrator, even if this reward function completely contradicts the
demonstrations, i.e., it does not take into account the likelihood of reward functions.

To compare BROIL against a state-of-the-art robust IRL approach, we implemented Linear Program-
ming Apprenticeship Learning [5]. The original paper assumes that the signs of the feature weights
determine whether a feature is good or bad and that the feature weights w lie on the probability
simplex. In our work we do not assume prior knowledge about which features are good or bad (we
seek to infer this from demonstrations). Thus, we implemented LPAL in a way that allows it to work
with any features and feature weights that can be both positive and negative. We simply assume that
‖w‖1 ≤ 1.

In the paper we compare against the solution to the following derivation of the LPAL algorithm which
does not assume the weights are non-negative, thus removing the need to know beforehand which
features are good or bad. The LPAL formulation we use is as follows:

− min
B∈R,u∈RS·A

B (3)

s.t. B · 1−ΦTu ≤ −µ̂E , (4)
−B · 1 + ΦTu ≤ µ̂E , (5)

[
(I − γP T

a1), . . . , (I − γP
T
am)
] ua1...
uan

 = p0, (6)

u ≥ 0, (7)
B ∈ R, (8)

where Φ ∈ RS·A×k is the linear feature matrix with rows as states and columns as features and
w ∈ Rk.

We now derive the above formulation of the maxmin objective for LPAL. The basic LPAL objective
is

max
u∈U

min
w≥0,‖w‖1≤1

(uTΦw − uT
EΦw), (9)

where U is the set of all feasible state-action occupancies.

If we want to get rid of the requirement for positive weights then we have

max
u∈U

min
‖w‖1≤1

(uTΦw − uT
EΦw) (10)

The inner minimization can be changed into a maximization as follows:

max
u∈U
− max
‖w‖1≤1

(−ΦTu+ ΦTuE)
Tw (11)

4

Next, we use the fact that the L∞ norm and L1 norm are dual to each other and that ‖z‖ = ‖ − z‖ to
get the following optimization problem:

max
u∈U

−‖ΦTu−ΦTuE‖∞ (12)

We change the maximization to a minimization by changing signs:

−min
u∈U

‖ΦTu−ΦTuE‖∞ (13)

Using a standard linear programming reformulation we can write the above objective as follows:

− min
u∈U, B∈R

{
B |B · 1 ≥ ΦTu−ΦTuE , −B · 1 ≥ −ΦTu+ ΦTuE

}
. (14)

Rather than assuming access to the state-action occupancies of the demonstrator, we will typically
use a finite number of demonstrations to come up with an empirical estimate of the demonstrator’s
expected feature countsµE = ΦTuE . Given a set of demonstrated trajectoriesD = {τ1, . . . , τm}we
compute µ̂E = 1

|D|
∑
τ∈D

∑
(st,at)∈τ γ

tφ(st, at), where φ : S ×A → Rk denotes the state-action
reward features such that r(s, a) = wTφ(s, a). This gives us the following linear program:

− min
u∈U,B∈R

{
B |B · 1 ≥ ΦTu− µ̂E , −B · 1 ≥ −ΦTu+ µ̂E

}
. (15)

References
[1] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In

International Conference on Machine Learning (ICML), 2004.

[2] Daniel S. Brown and Scott Niekum. Efficient probabilistic performance bounds for inverse
reinforcement learning. In AAAI Conference on Artificial Intelligence, 2018.

[3] Yinlam Chow, Aviv Tamar, Shie Mannor, and Marco Pavone. Risk-sensitive and robust decision-
making: a cvar optimization approach. In Advances in Neural Information Processing Systems,
pages 1522–1530, 2015.

[4] Deepak Ramachandran and Eyal Amir. Bayesian inverse reinforcement learning. In International
Joint Conference on Artificial Intelligence (IJCAI), volume 7, pages 2586–2591, 2007.

[5] Umar Syed, Michael Bowling, and Robert E Schapire. Apprenticeship learning using linear
programming. pages 1032–1039, 2008.

[6] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy
inverse reinforcement learning. In AAAI Conference on Artificial Intelligence, pages 1433–1438.
Chicago, IL, USA, 2008.

5

	Code
	Linear Programming Details
	Runtime and Scalability
	Bayesian IRL Details
	Maximum Entropy IRL Detais
	LPAL Details

